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In this article, we propose a general framework to study the dynamics and topology of cellular networks that

capture the geometry of cell packings in two-dimensional tissues. Such epithelia undergo large-scale deformation
during morphogenesis of a multicellular organism. Large-scale deformations emerge from many individual
cellular events such as cell shape changes, cell rearrangements, cell divisions, and cell extrusions. Using a
triangle-based representation of cellular network geometry, we obtain an exact decomposition of large-scale

material deformation. Interestingly, our approach reveals contributions of correlations between cellular rotations
and elongation as well as cellular growth and elongation to tissue deformation. Using this triangle method, we
discuss tissue remodeling in the developing pupal wing of the fly Drosophila melanogaster.

DOI: 10.1103/PhysRevE.95.032401

I. INTRODUCTION

Morphogenesis is the process in which a complex organism
forms from a fertilized egg. Such morphogenesis involves
the formation and dynamic reorganization of tissues [1-6].
Important types of tissues are epithelia, which are composed of
two-dimensional layers of cells. During development, epithelia
can undergo large-scale remodeling and deformations. This
tissue dynamics can be driven by both internal and external
stresses [3,6]. Large-scale deformations are the result of many
individual cellular processes such as cellular shape changes,
cell divisions, cell rearrangements, and cell extrusions. The
relationship between cellular processes and large-scale tissue
deformations is key for an understanding of morphogenetic
processes. In this paper, we provide a theoretical framework
that can exactly relate cellular events to large-scale tissue
deformations.

Modern microscopy techniques provide live image data of
the development of animal tissues in vivo [3—8]. An important
example is the fly wing, where about 10* cells have been
tracked over 17 h [Fig. 1(a)] [6]. Using cell membrane markers,
semiautomated image analysis can segment the geometrical
outlines and the neighbor relationships of all observed cells,
and track their lineage throughout the process [Fig. 1(b)] [3,8—
12]. This provides detailed information about many different
cellular events such as cell shape changes, cell rearrangements,
cell division, and cell extrusions.

As a result of a large number of such cellular events, the
cellular network is remodeled and undergoes changes in shape.
Such shape changes can be described as tissue deformations
using concepts from continuum mechanics. The aim of this
paper is to provide a framework to describe the geometry of
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tissue remodeling at different scales. We identify the contribu-
tions to tissue deformation stemming from cell shape changes
and from distinct cellular processes that remodel the cellular
network [Fig. 1(c)]. For example, tissue shear can result from
shape changes of individual cells or alternatively from cell
rearrangements without cells changing their shape [Fig. 1(d)].
In general, tissue deformations involve a combination of
such events. Furthermore, cell divisions and extrusions also
contribute to tissue deformations.

The relationship between tissue deformations and cellular
events has been discussed in previous work [13-18]. Here, in
order to obtain an exact decomposition of tissue deformation,
we present a triangle method that is based on the dual
network to the polygonal cellular network. We have recently
presented a quantitative study of the Drosophila pupal wing
morphogenesis using this approach [6].

In the following Secs. I[I-V, we provide the mathematical
foundations of the triangle method to characterize tissue
remodeling. In Sec. II, we introduce a polygonal network
description of epithelial cell packings. We discuss different
types of topological changes of the network that are associated
with cellular rearrangements and we define the deformation
fields of the network. In Sec. III, we define mathematical
objects that characterize triangle geometry and derive the
relation between triangle shape changes and network defor-
mations. Section IV presents the contribution of individual
topological changes to network deformations. Section V
combines the concepts developed in the preceding sections. We
discuss the decomposition of large-scale tissue deformation
into contributions resulting from large numbers of individual
cellular processes. In Sec. VI, we apply the triangle method to
the developing fly wing, comparing morphogenetic processes
in different subsections of the wing blade. Finally, we discuss
our results in Sec. VII. Technical details are provided in the
Appendixes A 1-B 2 b, while Appendix C compares our work
to related approaches.

©2017 American Physical Society
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FIG. 1. (a) The developing fly wing is an important model system to study epithelial morphogenesis. This panel shows the wing blade
at the developmental time of 23 h after puparium formation (hAPF). (b) Magnified region of membrane-stained wing tissue overlaid with
the corresponding polygonal network. Cells are represented by polygons (green), cell-cell interfaces correspond to polygon edges (blue), and
polygon corners correspond to vertices (red). (¢) We consider four kinds of cell-scale processes. (d) Two examples for pure shear of a piece of
cellular material: (i) pure shear by cell shape change and (ii) pure shear by T1 transitions. Colors in panels (c) and (d) indicate cell identities.

II. POLYGONAL AND TRIANGULAR NETWORKS

We introduce quantities to characterize small-scale and
large-scale material deformation. To this end, we first discuss
two complementary descriptions of epithelial cell packing
geometry.

A. Description of epithelia as a network of polygons

The cell packing geometry of a flat epithelium can
be described by a network of polygons, where each cell
is represented by a polygon and each cell-cell interface
corresponds to a polygon edge [Figs. 1(b) and 2(a)] [19].
Polygon corners are referred to as vertices, and a vertex
belonging to M polygons is denoted M-fold vertex. Thus, the
polygonal network captures the topology and geometry of the
junctional network of the epithelium.

Within such a polygonal network, we consider four kinds
of cellular processes [Fig. 1(c)]. (i) Polygons may change
their shapes due to movement of vertices. (ii) Polygons may
rearrange by changing their neighbors. A T1 transition is an el-
ementary neighbor exchange during which two cells (red) lose
their common edge, and two other cells (blue) gain a common
edge. However, a T1 transition could also just occur partially.
For instance, a single edge can shrink to length zero giving rise
to an M-fold vertex with M > 3. Conversely, an M-fold vertex
with M > 3 can split into two vertices that are connected by
an edge. (iii) A polygon may split into two by cell division.
(iv) A T2 transition corresponds to the extrusion of a cell from
the network such that the corresponding polygon shrinks to

a vertex. Note that the first process corresponds to a purely
geometrical deformation whereas the last three processes
correspond to topological transitions in the cellular network.

° N\ N\

(b)

FIG. 2. Triangulation of the cellular network. (a) Each threefold
vertex n (red dot) gives rise to a single triangle (red), which is also
denoted by n. The corners of the triangle are defined by the centers
of the three abutting cells (green dots). (b) Triangulation (red) on
top of membrane-stained biological tissue (white). There are no gaps
between the triangles.
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TABLE I. Notation used throughout this article.

Examples

a,B.y Cell indices

n,m Vertex and triangle indices
i,j,k Dimension indices (either x or y)
r,h and r;,h; Vectors

U,s" and U,-j,s,'.'i Tensors

U.g" and U;;.G Symmetric, traceless tensors
A,Q;,U; Large-scale quantities
a",q;;,u; Triangle-related quantities
AA,AQ; Finite quantities

8A,8U;; Infinitesimal quantities

B. Triangulation of a polygonal network

To define contributions of cellular processes to the large-
scale deformation of a polygonal network, we introduce a
triangulation of the polygonal network [Fig. 2(a)]. For each
vertex n (red) being surrounded by three cells, a triangle n
(red) is created by defining its corners to coincide with the
centers r* of the three cells (green). For the special case of
an M-fold vertex with M > 3, we introduce M triangles as
described in Appendix A 2. The center of a given cell « is
defined by the vector

o 1
r‘“=— rdA, (1)
a® J e

where the integration is over the cell area a* and r is a position
vector (Table I). Since triangle corners correspond to cell
centers, oriented triangle sides are referred to by a pair of
cell indices («f), and the corresponding triangle side vector is
given by

r@f = b _po. 2)

The so-created triangulation of the cellular material contains
no gaps between the triangles. It can be regarded as the dual
of the polygonal network [Fig. 2(b)].

C. Deformation tensor

To characterize the deformation of the cellular network,
we define a deformation tensor U;; that corresponds to the
coarse-grained displacement gradient:

1
U, = X/aihj dA. 3)

Here, A is the area of the coarse-graining region. The vector
field h(r) describes the continuous displacement field with
respect to the reference position r, and the indices i, j denote
the axes x,y of a Cartesian coordinate system. The region may
in general encompass several cells or just parts of a single cell.

The deformation tensor U;; can be expressed in terms of
the displacements h(r) along the margin of the region (see
Appendix A 1):

A

Here, the vector v denotes the local unit vector that is normal
to the margin pointing outwards.

1
U,-,-:—y{hjv,»dﬁ. (4)

PHYSICAL REVIEW E 95, 032401 (2017)

isotropic expansion dUyy, pure shear § 0; j rotation §W

FIG. 3. Infinitesimal displacement gradients §U;; can be decom-
posed into trace §Uy, describing isotropic expansion, symmetric,
traceless part 80, ; describing pure shear, and antisymmetric part § W
describing rotation.

For the case of infinitesimal deformation gradients
8U;; = U;;, we decompose 8U;; into its trace §Uy char-
acterizing isotropic expansion, its symmetric, traceless part
80, ; characterizing pure shear, and its anisotropic part §W
characterizing rotations (Fig. 3):

8Uj; = 28Uns; +80;; — 8We;. (5)

Here, §;; denotes the Kronecker symbol and ¢;; is the generator
of counterclockwise rotations with €;, = —1, €,, =1, and
€xx = €, = 0. Note that we mark symmetric, traceless tensors
with a tilde and that we denote infinitesimal quantities by
prepending a & (Table I).

Equations (3) and (4) define the deformation tensor U;;
based on the continuous displacement field h(r). However,
for typical experiments, the displacement k(r) is only known
for a finite number of positions r. In the following, we
will thus focus on the displacements of cell center positions
h(r*) = h* and interpolate between them in order to compute
the deformation tensor U;;.

D. Triangle-based characterization of network deformation

We relate the large-scale deformation characterized by U;;
to small-scale deformation, which we quantify on the single-
triangle level. We describe the deformation of a single triangle
n from an initial to a final state by an affine transformation,
which is characterized by a transformation tensor my; that

maps each initial triangle side vector r*#) to the corresponding
final side vector r"“?) [Fig. 4(a)]:

riP = mirl?, 6)

Note that Eq. (6) uniquely defines the tensor m7;, which always
exists [20]. However, for polygons with more than three sides,
no such tensor mfj exists in general. This is the deeper reason
for us to choose a triangle-based approach.

To relate triangle deformation to large-scale deformation
U;;, we first define a continuous displacement field &(r) by
linearly interpolating between cell center displacements k.

For any position r that lies within a given triangle n, we define
hj(r) = h§ + (ri — rf)uj;. @)

Here, o denotes one of the cells belonging to triangle n. Note
that the value of k(r) does not depend on the choice of o [21].
The triangle deformation tensor U;; is defined by

U?j = m;i — 8ij- (8)

032401-3
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(a) initial state of triangle n final state of triangle n

transformation
tensor my;
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(d) initial state of triangle n final state of triangle n

transformation
tensor m;;

=N

reference triangle triangle n ,
tensor s;; tensor s;;
shape transformation
tensor s;; J
1)1/'3 .
reference triangle
reference triangle .
©) £ triangle n
rotation pure she.ar isotropic
deformation scaling
—_— - 5
R(H expq a 12
«— a0

FIG. 4. Characterization of triangle deformation and shape. (a) Deformation of a triangle n from an initial state to a final state. The
deformation is characterized by the linear transformation tensor m}; mapping the initial side vectors of the triangle to the final side vectors
(blue arrows). (b) The shape of a triangle n in a given state is characterized by the tensor s;;. Tensor S;; maps the side vectors of a virtual
equilateral reference triangle to the side vectors of triangle n (blue arrows). (c) Shape properties of a triangle n. The transformation tensor
s;; is decomposed into a counterclockwise rotation by the triangle orientation angle 6, a pure shear deformation characterized by the triangle
elongation tensor §;;, and an isotropic rescaling to match the actual triangle area a. (d) Connection between triangle shape and triangle
deformation. A triangle deforms from an initial state to a final state. Deformation, initial state, and final state are characterized by the tensors

m;;, Sij, and S; D respectively.

Note the exchanged order of indices at the transformation
tensor m”,. Equation (7) defines the displacement field
h(r) throughout the entire triangular network such that the
displacement gradient is constant on the area of each triangle n,
taking the value of the triangle deformation tensor: 9;1; = uj;.
Based on this displacement field, the large-scale deforma-
tion tensor U;; as defined in Eq. (3) can be expressed as the
average triangle deformation tensor defined in Eq. (8):

Ui = (u). )]

Here, the angular brackets denote an area-weighted average
Z a"u

with A being the sum of all triangle areas and a” being the
area of triangle n.

Using Eq. (4), the large-scale deformation tensor U;; can
also be computed from the displacements of cell centers along
the margin of the triangular network. The margin is a chain of
triangle sides, and carrying out the boundary integral in Eq. (4)
for each triangle side, Eq. (9) can be exactly rewritten as

1
= LS he e g,
(af)

Here, («B) runs over all triangle sides along the boundary such
that cell 8 succeeds cell « in clockwise order, and

(10)

ulj) -

(11)

b A LB — B

Wi = 305 + 1),

(12)
13)

Thus, the vector vl.(aﬂ ) is the unit vector normal to side (aB),

pointing outside, the scalar A¢®?) is the length of side (af),
and the vector hﬁaﬁ Vs its average displacement.

III. TRIANGLE SHAPES AND NETWORK DEFORMATION

We examine the relationship between large-scale deforma-
tion and cellular shape changes. To this end, we introduce
quantities characterizing the shape of single triangles, and
discuss their precise relation to triangle deformation.

A. Shape and orientation of a single triangle

Here, we define a symmetric, traceless tensor ("17] and an
angle 0" that together uniquely characterize the shape of a
triangle n. We call q;’J the triangle elongation, which is a state
variable that specifies the shape anisotropy of a given triangle.
For simplicity, we omit the subscript n when discussing a
single triangle.

We start by introducing a shape transformation tensor
s;;, which generates a given triangle n from an equilateral
reference triangle [Fig. 4(b)]. More precisely, each side vector
c“P) of the equilateral reference triangle is mapped to the
corresponding side vector r‘*?) of the given triangle n:

P = ;e (14)

We choose the reference triangle to have area ay and one side
aligned with the x axis. Its side vectors ¢/*?) are defined in

032401-4
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Appendix A 3 a. Note that Eq. (14) uniquely defines the shape
transformation tensor S;;.

The elongation tensor §;; can be extracted from the shape
transformation tensor S;; by expressing S;; as the tensor
product of a rotation by the triangle orientation angle 6, a pure
shear transformation parametrized by the elongation tensor
@;;, and an area scaling [Fig. 4(c)]:

a2
s= (—) exp (§) - R(©). (15)
aop

Here, we denote tensors by bold symbols. The exponential
of a tensor is defined by the Taylor series of the exponential
function, the center dot denotes the tensor product, and the
tensor R(6) = exp (fe€) denotes a counterclockwise rotation
by 6. Note that the exponential of a symmetric, traceless tensor
has determinant one and describes a pure shear transformation.
Also note that for given s;;, Eq. (15) uniquely defines triangle
area a, triangle elongation §;;, and the absolute triangle
orientation angle 8 (see Appendix A 3 b, [22,23]).
Norm and axis of the elongation tensor

- ~ [cos (2¢) sin (2¢)

a= |q|(sin 2¢) —cos (2¢)> (16)
are given by |G = [(@.)? + @x,)*"2 = [Tr (§)/2]"% and
the angle ¢ (see Appendix A 3 ¢).

Note that the pure shear transformation exp (§) and the
rotation R(0) in Eq. (15) do not commute. Exchanging both in
Eq. (15) leads to a different definition of the elongation angle
¢ — ¢ — 0, whereas the elongation norm |q| and the triangle
orientation angle 6 remain unchanged.

B. Triangle deformations corresponding
to triangle shape changes

To reveal the precise relationship between triangle deforma-
tion and triangle shape, we consider again the deformation of a
triangle n, which is characterized by the tensor m;; [Fig. 4(d)].
We denote the initial and final shape transformation tensors
of the triangle by s;; and 8] ;» respectively. Since both shape
transformation tensors are defined with respect to the same
reference triangle, the following relation holds:

s;j = My Syj. 17)

Based on this equation, the triangle deformation tensor U;;
can be expressed in terms of triangle shape change. For
infinitesimal triangle deformations du;; = U;;, trace &Uy,
symmetric, traceless part 60;;, and antisymmetric part 81
describe isotropic expansion, pure shear, and rotation as in
Eq. (5):

8u,~j = %Sukkaij + (SCI,‘]‘ — 81//6,‘]‘. (18)

These deformation components can be computed from the
corresponding infinitesimal changes 8§, 8a, 66 of the triangle
shape properties @;;, a, 6 (see Appendix A 4):

80;; = 8Q;; + 5J7ij, (19)
SUgr = 8(Ina), (20)
SU = 8¢ + (56 — 5¢) cosh (2/d]) @1

PHYSICAL REVIEW E 95, 032401 (2017)

with
8ji; = —2[g86 + (1 — g)8pleirtix;- (22)

Here, we have set g = sinh (2/G|)/2|q| and 8¢ denotes the
change of the elongation axis angle ¢. Equations (19)—(21)
have interesting geometric interpretations for time-continuous
shape changes.

For example, Eq. (19), which relates triangle shear to
triangle elongation, can be considered for an infinitesimal time
interval 8. The pure shear rate V;; of a triangle then obeys
V;j8t = 80;;. According to Eq. (A20) in Appendix A4, the
pure shear rate corresponds exactly to a time derivative of §;;:

Dg;;
A
Dt
This generalized corotational time derivative is defined by
(D4;;/Dt)8t = 88;; + 8j;;, which can be rewritten as

D = a9y _ 2|:ca) +1 - c)il—(f]eikﬁ]kj. 24)

(23)

Dt dt

Here, the operator d/dt denotes the total time derivative of a
quantity, ¢ = tanh (2|q|)/2|ql, and w is the triangle vorticity
with @8t = 8. In the limit |§| « 1 for which ¢ ~ 1, the
generalized corotational derivative becomes the conventional
Jaumann derivative [24]:

Dq;; dq;; ~ ~

% ~ % + 0ikQr; + @k Qi » (25)
where we introduced w;; = —we;; = (V;; — Vj;)/2. The gen-
eral case of finite |§| with ¢ # 1 is discussed in more detail in
Appendix A4 a.

According to Eq. (20), the isotropic triangle expansion rate

Vix With V8t = Uy, can be written as

Vi — 1 da
T adr
The isotropic triangle expansion rate thus corresponds to the
relative change rate of the triangle area a.

Finally, Eq. (21) states that the change of the triangle
orientation angle 6 can be written as [see Eq. (A22) in
Appendix A 4]

do Uend cosh(2|g]) — 1
-, =W ij€ikYki 32T o AR
1€k 3 3] sinh (21d])

Hence, the triangle orientation angle & may not only change
due to a vorticity w in the flow field, but also due to local pure
shear. This shear-induced triangle rotation appears whenever
there is a component of the shear rate tensor V;; that is neither
parallel nor perpendicular to the triangle elongation axis. We
discuss this effect of shear-induced rotation in more detail in
Appendix A4b.

(26)

27)

C. Large-scale deformation of a triangular network

To understand how triangle shape properties connect to
large-scale deformation of a triangle network, we coarse
grain Egs. (19)—(21). We focus on the case where the shape
properties G, a", 0" of all involved triangles n change
only infinitesimally. The large-scale deformation tensor of
the triangular network can be computed using Eq. (9):
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8U;; = (8u;;). Consequently, one obtains large-scale pure
shear as (SUij = (80;;), large-scale isotropic expansion as
8Ujr = (8Uix), and large-scale rotation as §W = (§vyr). We
now express large-scale pure shear and isotropic expansion
in terms of triangle shape changes. We discuss large-scale
rotation in Appendix A 8.

1. Pure shear deformation on large scales

To discuss large-scale pure shear deformation, we first
introduce an average triangle elongation tensor

Q;; = (Qij)- (28)

The average is computed using an area weighting as in Eq. (10).

The large-scale pure shear tensor 80, ; can be related

to the change of the average triangle elongation 8Q; ; by

averaging Eq. (19) over all triangles in the triangulation (see
Appendix A 5 a):

(SU,‘]‘ = 5@,’(,’ + 5\],‘]' + Skij. 29)

Here, in analogy to Egs. (24) and (A20), we introduced the
mean-field corotational term

8dij = —2[C8W + (1 — C)sDlei Qy ;s (30)

where C =tanh(2|é|)/2|é|, and |Q| and @ denote norm
and angle of the average elongation tensor Q;;, respectively.
Note that different definitions for 83,-]- are possible and
an alternative to Eq. (30) is presented in Appendix AS5b.
Moreover, the contribution 8K; ; newly appears due to the
averaging. It is the sum of two correlations:

8Kij = —((8uw@;;) — 8UQij) + ((8;j) —

We call the first term growth correlation and the second term
rotational correlation.

Growth correlation is created by spatial fluctuations in
isotropic triangle expansion duy,. Figure 5(a) illustrates this
effect for a deformation where no large-scale pure shear
appears 8U;; = 0. Two triangles with different but constant
triangle elongation tensors G, deform: one triangle expands
isotropically and the other triangle shrinks isotropically.
Because of the area weighting in the averaging, the average
elongation tensor Q;; thus changes during this deformation.
Therefore, although 8U; ; = 01in Eq. (29), the average elonga-
tion changes by SQi_i # 0. This change in average elongation
is exactly compensated for by the growth correlation term.

Rotational correlation can be created by spatial fluctuations
of triangle rotation §y¥". We illustrate this in Fig. 5(b),
where the large-scale pure shear rate is again zero §U;; = 0.
We consider two triangles with the same area but different
elongation tensors f];’] Both triangles do not deform, but rotate
in opposing directions by the same absolute angle §v". The
large-scale corotational term is zero 8J;; = 0 because there is
no overall rotation §¥ = 0. However, the corotational term
for each individual triangle 8];11 is nonzero allowing for a
change of triangle elongation in the absence of triangle shear.
After all, the average elongation tensor Q;; increases along the
horizontal because each individual triangle elongation tensor
does. This change in average elongation is compensated for
by the rotational correlation term.

8dij). (31

PHYSICAL REVIEW E 95, 032401 (2017)

Yo @&

inhomogeneous
area growth

6Qi; =
ouyy, >0 ouy, <0
(b) inhomogeneous
rotation Q Q
S <0 Sy >0 5Q” -
Qij = Qij = >

FIG. 5. Correlation contributions to pure shear. (a) Inhomoge-
neous isotropic expansion that is correlated with elongation creates
a change in the average elongation éi_/, which is due to the area
weighting in the definition of O,-j. This contribution to the time
derivative of Q; ; is compensated for by the growth correlation term in
) Ri_/. (b) Inhomogeneous rotation that is correlated with elongation
creates a change in the average elongation @,-j. This contribution
to the time derivative of Q; ; is compensated for by the rotational
correlation term in 8K;;.

To obtain the large-scale pure shear rate V; ; defined by

V,;8t = 8U;;, we rewrite Eq. (29) as
DQ; =
ii = — +D;;. 32
J Dt + J ( )
Here, DO,- /Dt denotes a corotational time derivative that
is defined by (DQ;;/Dt)ét = 8Q;; + 8J;;, which can be
rewritten as
dQ; j

Déij . e
== _2[CQ+(1—C) ]Eikaj- (33)

<t

Here, C = tanh (2|Q])/2|Q| as defined below Eq. (30) and 2 is
the average vorticity with w8t = §W. The term D; ;in Eq. (32)
contains the correlation terms with f),- 0t =20 R,- e

Equation (32) is an important result for the case without
topological transitions. It states that the large-scale defor-
mation of a triangular network can be computed from the
change of the average triangle elongation, the correlation
between triangle elongation and triangle area growth, and the
correlation between triangle elongation and triangle rotation.

The correlations account for the fact that taking the
corotational derivative does not commute with averaging:

- DG;\ DQ;
D;; = 29 ) _ DM (34)
Dt Dt
In particular, as illustrated in Fig. 5(b), the rotational correla-
tion arises by coarse graining of the corotational term. Simi-

larly, the growth correlation can be regarded as arising from
the coarse graining of a convective term (see Appendix A 5 ¢).

2. Elongation and shear of a single cell

To more explicitly relate the above discussion to cell shape
and deformation, we define a cell elongation tensor C]f‘j for a
given cell « as follows. We select all triangles » that have one
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~NOo
qij

FIG. 6. The elongation §f; of a cell a (green) is defined by the
average elongation of the triangles belonging to « (red). The triangles
belonging to « are those that have one of their corners defined by the
center of «.

of their corners defined by the center of «, and then average
their elongation tensors (Fig. 6):

a;; = (Qij)- (35
The average is again area weighted as defined in Eq. (10).
Then, a cellular pure shear rate can be defined analogously:
\7;"] = (V;;). This cellular pure shear rate can also be expressed
by changes of C]j?; using Eq. (32). Moreover, the large-scale
elongation Q; ; and the large-scale pure shear rate \ ;j can be
obtained by suitably averaging the single-cell quantities (’.{f‘j
and Vi [25].

3. Isotropic expansion on large scales

Finally, we discuss large-scale isotropic expansion §Uyy
of a triangle network. We relate it to changes of the average
triangle areaa = A/N, where A is the total area of the network
and N is the number of triangles in the network.

To relate large-scale isotropic expansion §Uy; to changes
of the average triangle area a, we average Eq. (20):

sUp = 8(Ina). (36)

Accordingly, the large-scale isotropic expansion rate Vy; with
V8t = 38Uy can be expressed as

Vig = = —. (37
a

Hence, large-scale isotropic expansion corresponds to the
relative change of the average triangle area a.

IV. CONTRIBUTIONS OF TOPOLOGICAL TRANSITIONS
TO NETWORK DEFORMATION

So far, we have considered deformations of a triangular
network during which no topological transitions occur. Now,
we discuss the contributions of topological transitions to large-
scale deformations [26].

There are two main features of topological transitions
that motivate the following discussion. First, topological
transitions occur instantaneously at precise time points #; and,
correspondingly, there is no displacement of cell centers upon
topological transitions.

Second, topological transitions create and remove triangles
from the triangulation. For instance, for the typical case of
threefold vertices, a T1 transition removes two triangles and
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(a)
T1 transition n’
ey
(b)
cell division ": :1
Q-LLLS
(c)
és T2 transition
— 5
L [

FIG. 7. Effects of a single topological transition on the triangula-
tion. (a) A T1 transition removes two triangles (m and n) and creates
two new ones (p and g). (b) A cell division creates two triangles
(p and g, yellow). All other triangles shown (red) change their shape
instantaneously. (¢) A T2 transition removes three triangles (m, n, p)
and creates a new one (g).

then adds two new triangles [Fig. 7(a)], a cell division just
adds two triangles [Fig. 7(b)], and a T2 transition removes
three triangles and adds one new triangle [Fig. 7(c)].

To define the large-scale deformation tensor across a given
topological transition, an average over triangle deformations
as in Eq. (9) can no longer be used because the triangle
deformation tensor uf; is ill defined for disappearing and
appearing triangles. We thus define the large-scale deformation
depending on cell center displacements along the margin of
the triangular network using Eq. (11). We denote such a
large-scale deformation tensor across a topological transition
by AU;;. Because there are no cell center displacements
upon a topological transition, the large-scale deformation
tensor vanishes AU;; = 0, and so does large-scale isotropic
expansion AUy, = 0 and large-scale pure shear AU; ;i =0.
However, even though there is no actual network deformation
upon a topological transition, we will define the deformation
contribution by a topological transition in the following.

A. Contribution of a single topological transition to pure shear

To discuss the pure shear contribution by a topological
transition, we focus on a single T1 transition occurring at time
1. Pure shear contributions by cell divisions or T2 transitions
can be discussed analogously.

Because of the triangulation change during a T1 transition,
the average triangle elongation Q;; changes instantaneously
by a finite amount AQ; j (Fig. 8). To account for the shear
contribution by the T1 transition, we introduce an additional
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V T1 transition
—_—

FIG. 8. A T1 transition induces an instantaneous change of the
average triangle elongation. The average triangle elongation before
and after the T1 transition only depends on the position of the four
involved cell centers (green dots).

term AX;; into the shear balance Eq. (29):

AU;; = AQ;; + AX;;. (38)
Here, we have set corotational and correlation terms during the
T1 transition to zero [27]. Because AU;; = 0, we obtain from
Eq. (38) that AX;; = —AQ;;. Thus, the shear contribution

A)~(,-j due to the T1 transition compensates for the finite

discontinuity in Q[j, which occurs due to the removal and
addition of triangles.

Dividing by a time interval Az and in the limit Ar — 0, we
can transform Eq. (38) into an equation for the shear rate:

DQ,‘j
Dt

V. —

L

+Dij+Tij» (39)

where 'T'ij = A)~(,-j8(t — 1) and § denotes the Dirac delta
function. Hence, a T1 transition induces a discontinuity in
the average triangle elongation Q;;, causing a delta peak

in DQ; ;/Dt. This delta peak is exactly compensated for by

(a) time
i %

l T1 transition
l pure shear

pure shear
deformation

trt

deformation

T+ % -

Y T
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A)~(,-_,-8 (t — 1), such that the large-scale shear rate \7,-_,- contains
no delta peaks.

As an example, Fig. 9(a) illustrates a process during
which a network consisting of two triangles (red) is being
deformed between the times 0 and 7'. These triangles undergo
a pure shear deformation along the x axis without any
rotations or inhomogeneities. In the absence of any topological
transition, the shear rate along the x axis, V,,, corresponds
to the derivative of the average triangle elongation dQ,, /d¢
[Fig. 9(b)(i)—(iii)]. However, at a time point #;, a T1 transition
occurs and the average elongation along the x axis changes
instantaneously by AQ,. Thus, there is a Dirac § peak
in dQ,,/dt, which is compensated by the T1 shear rate
T = —AQ8(t — 1) [Fig. 9(b)(iv)] such that Eq. (39) holds
exactly.

For the special case where the four cell centers involved in
the T1 transition (green dots in Fig. 8) form a square, the mag-
nitude of AXH evaluates exactly to |AX| = (AgIn 3)/(2A),
where A is the area of the square and A is the total area of
the triangle network (see Appendix A 6 a). The axis of AX;; is
along one of the diagonals of the square. Both remain true for
the more general case of a rhombus, i.e., a quadrilateral whose
four sides have equal lengths.

B. Contribution of a single topological transition
to isotropic expansion

To define the isotropic expansion by a topological transi-
tion, we employ a similar argument as for the pure shear com-
ponent. For instance, to account for the isotropic expansion by

(b) .
o —
<

(@) 5>
w0

Q)O)g
=

L R s

1) & £ 8n,~

i) 525G

s E9
o
0
.
Bg x —
3.9%’0Q

s = ~

(iii) 55&)% 5

—
§859
257 A0
wv)

>\.UJ
28
(o=
2=

. < n 8

v ~ =

(iv) Eg,,_

E
220
@
0 7 T
time ¢

FIG. 9. Illustration of the shear rate contributions by average triangle elongation change and T1 transitions. (a) Between the time points 0
and 7, a triangular network is continuously sheared along the horizontal axis. At time point #;, a T1 transition occurs, which instantaneously
changes the average triangle elongation. (b) For the process shown in (a), schematic time-dependent plots of shear rate [blue, (i)], the average
triangle elongation [green, (ii)], its derivative [green, (iii)], and the shear rate by T1 transitions [red, (iv)]. For each tensor, the respective xx
component, i.e., the horizontal component, is plotted. The arrows in (iii) and (iv) indicate Dirac § peaks. Their magnitude corresponds to the

step in Q,, at #.

032401-8



TRIANGLES BRIDGE THE SCALES: QUANTIFYING ...

a single cell division occurring at time #;, we introduce a term
Ad into Eq. (36) (cell extrusions can be treated analogously):

AUy = A(Ina) + Ad. (40)

Here, A(Ina) denotes the change of Ina across the cell
division. Since there is no isotropic expansion upon the cell
division AUy = 0, we thus have Ad = —A(Ina). Because
the total area A of the triangulation remains constant during
the cell division, the isotropic expansion by a cell division
amounts to Ad =1In(1 4+2/N) with N being the number of
triangles in the network before the division.

Dividing by a time interval A¢ and in the limit Ar — O,
Eq. (40) transforms into

Vie = + kg (41)

with k; =In(1 +2/N)é(t — ;). Hence, as for the pure shear
component, the contributions of individual topological transi-
tions to the isotropic expansion component can be accounted
for by delta peaks.

Note that in order to avoid isotropic expansion contributions
by T1 transitions, care has to be taken when counting the
number of triangles N for the special case of M-fold vertices
with M > 3. In Appendix A2, we explain how we define N
in this case.

V. CELLULAR CONTRIBUTIONS TO THE LARGE-SCALE
DEFORMATION RATE

In this section, we provide equations that express large-scale
pure shear and isotropic expansion as sums of all cellular con-
tributions. Large-scale rotation is discussed in Appendix A 8.
Here, we present the equations for the deformation rates, i.e.,
in the limit of infinitesimal deformations. The case of finite
deformations is discussed in Appendix B.

A. Pure shear rate

We decompose the instantaneous large-scale shear rate Vi J
into the following cellular contributions:

- DQ;
Vii= 5,

The first term on the right-hand side denotes the corotational
time derivative of Q;; defined by Eq. (33). Note that some care
has to be taken when evaluating the corotational term in the
presence of topological transitions (see Appendix A 6). The
shear rate contributions by T1 transitions 'T'i j, cell divisions

C;;, and T2 transitions E;; to the large-scale shear rate are,
respectively, defined by

+T,;+C; +E; +Dy. (42)

Ty=—> aQls¢ — 1), (43)
keT1

Cj=-Y AQs¢ -1, (44)
keCD

Ej=—Y AQs—1). (45)
keT2

Here, the sums run over all topological transitions k of the
respective kind, #; denotes the time point of the respective

PHYSICAL REVIEW E 95, 032401 (2017)

transition, and AO;‘J- denotes the instantaneous change in Q; 5

induced by the transition. Finally, D;; denotes the shear rate
by the correlation effects as introduced in Sec. III C 1.

B. Isotropic expansion rate

We decompose the isotropic expansion rate Vi as follows
into cellular contributions:

+ kg —k,. (46)

Here, a is the average triangle area as in Sec. III C 3, and &,
and k, denote cell division and cell extrusion rates, defined as

2
ks = 8(t — ) 1In <1 + —), “@n
k;) N
2
k. = — 8(t — ) In (1 — —) (48)
> N

The sums run over all topological transitions k of the respective
kind, #; denotes the time point of the respective transition,
and N; is the number of triangles in the network before the
respective transition.

Instead of formulating Eq. (46) for a triangulation, the
polygonal network may also be used to derive such an
equation. With the isotropic expansion rate for the polygonal
network Vy,, the average cell area a” and the topological
contributions by divisions k; and extrusions k¢, we obtain
(see Appendix A7)

d(Ina”)

Vi = + ki — kP (49)
This equation can be interpreted as a continuum equation for
cell density [28,29], where the isotropic expansion rate contri-
butions by cell divisions k} and cell extrusions k. correspond
to cell division and cell extrusion rates, respectively.

C. Cumulative shear and expansion

Often, it is useful to consider cumulative deformations
rather than deformation rates. The cumulative shear defor-
mation is defined as ft;' \7,~ ;dt, other cumulative quantities
are defined correspondingly. Note that this cumulative shear
deformation is not a deformation that only depends on the
initial and final configurations at times f#, and #;, but it also
depends on the full path the system takes between those two
configurations (see Appendix A 9). The cumulative isotropic
expansion ftf)' Vidt =1n A(t;) — In A(tp) is independent of
the full path and given by a change of tissue area between
initial and final states. This follows from Eq. (37). The
cumulative shear can be decomposed into cellular contri-
butions. This decomposition can be obtained by integrating
the decomposition of shear rates (42) over time. Similarly,
the cumulative isotropic expansion can be decomposed into
cellular contributions by integrating Eq. (46) over time.

VI. TISSUE REMODELING IN THE PUPAL FLY WING
AS AN EXAMPLE

Our triangle method can be used to analyze tissue remod-
eling in the pupal fly wing [3,6]. Here, we provide a more
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shear rate by T1 transitions T;;
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FIG. 10. Patterns of tissue shear and contributions to shear in the pupal wing of the fruit fly at different times in hours after puparium
formation (hAPF). Local rate of pure shear (blue), corotational time derivative of the cell elongation (center), and shear rate by T1 transitions
(right). The bars indicate the axis and norm of the tensors. Shown are averages over squares with size (33 pm)? and over time intervals of about

2 h. The scale bars correspond to 100 pm.

refined and in depth analysis of the wing morphogenesis data
for three different wild type wings presented previously [6].
Differences to the previous analyses are (i) there are slightly
improved definitions of the shear rates for finite time intervals
between frames (see Appendix B 1), (ii) we now analyze
and compare subregions of the wing tissue, which provides
additional information about tissue remodeling.

Note that we have so far only discussed the case of
infinitesimal deformations. However, the sampling rate of
experimental data is necessarily finite. We explain how we
treat such finite deformation data in detail in Appendix B.

Figure 10 presents coarse-grained spatial patterns of local
tissue shear \7,~ ; (blue, left column), the corotational time
derivative of the cell elongation DQ; /Dt (green, center col-
umn), and the contribution to shear by T1 transitions \7,~  (red,
right column) at different times during pupal development. The
bars indicate the local axis and strength of shear averaged in a
small square. The full dynamics of these patterns can be seen
in the Supplemental Material, Movies M1-M3 [30]. Because
here we do not track cells but use a laboratory frame relative to
which the tissue moves, convective terms have been taken into
account (see Appendix B 2). The patterns in Fig. 10 correspond
to Fig. 5 and Video 6 in Ref. [6]. The pattern of tissue shear
rate is splayed and decreases in magnitude over time. The
pronounced inhomogeneities of the shear pattern at 22 hAPF
are due to different behaviors of veins and the intervein
regions [8]. The orientations of the patterns of cell elongation
change and shear by T1 transitions are both approximately

homogeneous at early and late times. At intermediate times,
about 22 hAPF, a reorientation of these patterns occurs, which
corresponds to a transitions between a phase I and a phase
IT of tissue remodeling [3,6]. During phase I, cells elongate
along the proximal-distal axis of the wing while they are
undergoing T1 transitions along the anterior-posterior axis of
the wing. During phase II, cells reduce their elongation along
the proximal-distal axis while undergoing T1 transitions along
this axis.

These dynamics and the two phases can be analyzed by
averaging contributions to tissue shear in distinct subregions
of the wing [see Fig. 11(a)] and in the whole wing blade.
We project the tensorial quantities on the x axis, which
is the average axis of cell elongation and is close to the
proximal-distal axis [see Fig. 11(b)]. The quantities discussed
are listed in Fig. 11(c). The shear rates as a function of time and
the corresponding cumulative shear are shown in Figs. 11(d)
and 11(e), respectively, averaged over the whole wing blade.
These data are consistent with the previous analysis [6]. The
fact that the sum of cellular contributions and tissue shear
coincide in Figs. 11(d) and 11(e) confirms the validity of
Eq. (42) (solid blue and dashed yellow lines).

InFigs. 11(f) and 11(g), we show shear rates and cumulative
shear for the four subregions of the wing blade indicated in
Fig. 11(a) and tracked in Movie M4 in the Supplemental
Material [30]. Comparing the average shear curves in
Figs. 11(f) and 11(g), we find systematic differences among
the different regions. Most significantly, distal regions, which
are regions closer to the tip of the wing (regions 3, 4) shear
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FIG. 11. Contributions to tissue shear as a function of time during pupal development of the fly wing. Shown are the data for one wing.
(a) The fly wing undergoes complex tissue remodeling, which we recorded between 15 and 32 hAPF. The colored areas mark regions of
tissue in which all cells were tracked during this time interval. (b) Schematic representation of the coordinate system used to describe tissue
deformations. The x axis points towards the tip of the wing and is aligned parallel to the axis of cell elongation averaged within the interval
between 24 and 32 hAPF and over all four regions. The average cell elongation computed for a single region deviates at most by 5° from this x
axis. (¢) Legend specifying different contributions to tissue shear. (d) Cellular contributions to shear and total shear rate averaged over regions
1-4 in (a) as a function of time. Plotted are the projections of the tensors on the x axis, for example, the component \7” of the tissue shear rate.
(e) Cumulative tissue shear and cellular contributions, projected on the x axis. (f), (g) Same plots as in (d) and (e), but for the subregions 1 to 4
indicated in (a). In (d)—(g), data were averaged over 10 subsequent interframe intervals.

more at early times, whereas proximal regions, i.e., regions shear at the end of the process is generally larger in distal

closer to the hinge (regions 1, 2), shear more towards the end  regions than in proximal regions. The transition from phase I
of the process (solid blue curves). Moreover, the cumulative to phase II can be seen in all four regions. However, it shifts
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FIG. 12. Contributions to isotropic tissue expansion as a function of time during pupal development of the fly wing. Shown are the
data for one wing. (a) Large-scale isotropic expansion rate and cellular contributions to it averaged over regions 1-4 as a function of time.
(b) Cumulative isotropic expansion rate and cellular contributions to it. (c), (d) Same plots as in (a) and (b), but for the subregions 1 to 4
indicated in Fig. 11(a). The legend in (a) applies to (b)—(d), too. In all panels, data were averaged over 10 subsequent interframe intervals.

from about 20.5 hAPF in region 4 to about 23 hAPF in region
1 [see, for example, intersection of dotted red and dashed
green curves in Fig. 11(f)]. Finally, cell divisions contribute
more to shear distally (region 4), whereas correlations effects
contribute more to shear proximally (region 1). All of these
results, which we found consistently for the three analyzed
wings, reveal a propagation of morphogenetic events through
the tissue.

We also quantified the isotropic expansion rate Vj; and
its cellular contributions, related by Eq. (46). For the entire
wing [Figs. 12(a) and 12(b)], we again confirm our earlier
results reported in [6]. We find that the total area of the wing
blade barely changes (solid blue curve). Correspondingly, cell
area decrease (dashed green curve) together with contributions
from cell extrusions (dotted cyan curve) compensate most of

the area changes due to cell divisions (solid orange curve).
When comparing the regions 1-4 [Figs. 12(a) and 12(d)], area
changes due to divisions occur earlier in region 1 and during a
shorter time as compared to regions 2—4. Furthermore, region
1 does substantially shrink, whereas regions 2—4 barely change
their areas. This difference may be related to the fact that the
wing hinge contracts its area during this process. All of these
results are again consistent among the three analyzed wings.

VII. DISCUSSION

In this article, we present a geometric analysis of tissue
remodeling in two dimensions based on a triangulation of
the cellular network. We decompose the pure shear rate, the
isotropic expansion rate, and the rotation rate of the tissue
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FIG. 13. Decomposition of deformations in cellular contributions. Key quantities and their relationships are shown as a schematic
diagram. (a) Decomposition of the isotropic deformation rate into cellular contributions. (b) Decomposition of the pure shear rate into
cellular contributions. Red numbers indicate the definition of the respective quantity (or the equation where the quantity first appears). Black

numbers indicate important relations between the quantities.

into cellular contributions. The main result of this article is
given by Egs. (42) and (46). Equation (42) provides an exact
expression of the large-scale shear rate as a sum of distinct
cellular contributions, stemming from cell shape changes, T1
transitions, cell divisions, cell extrusions, and from correlation
effects. This decomposition is based on the fact that for a single
triangle, shear deformations are related to cell elongation
changes in a corotating reference frame [see Eq. (23)]. The
corotating reference frame ensures that elongation changes
associated with pure rotations do not give rise to shear
deformations. In the absence of rotations, small elongation
changes and shear deformations are the same. Because of
nonlinearities in the corotational time derivative, the average
time derivative and the time derivative of the average differ [see
Eq. (34)]. When coarse graining, this gives rise to correlation
contributions to tissue shear. Such correlation terms exist when
tissue remodeling is spatially inhomogeneous. For example,
inhomogeneities of rotation rates give rise to correlation
contributions to tissue shear that stem from correlations
between rotation rates and triangle elongation [see Eq. (31)].
Similarly, correlations between area changes and elongation
also contribute to shear. Thus, correlation contributions to
large-scale tissue shear are a generic feature resulting from
the interplay of nonlinearities and fluctuations. Relationships
between the key quantities that underlie the decomposition of
deformations are illustrated in Fig. 13.

We have recently studied tissue morphogenesis in the
pupal wing epithelium using our triangle method both in
fixed reference frames and reference frames comoving with
the tissue [6]. During pupal morphonesesis, the wing blade
elongates along the proximal-distal axis while keeping its area
approximately constant. This process can be divided in two
phases [3]. In the first phase, cells elongate more than the over-
all tissue does. This strong cell elongation is driven by active
T1 transitions expanding perpendicular to the proximal-distal
axis. The cell elongation then subsequently relaxes during
phase two by T1 transitions along the proximal-distal axis.
At late times, the tissue reaches a state with slightly elongated
cells, which is a signature of active T1 transitions. Also note
that our analysis has shown that correlations contribute to
tissue shear. In particular, we have shown that correlations
between fluctuations of rotations and cell elongations occur
and play a significant role for tissue morphogenesis. Our

method can therefore detect biologically relevant processes
that are otherwise difficult to spot.

In this article, we provide a refined analysis of these
previously presented data, confirming our earlier findings.
In addition, we perform a regional analysis of pupal wing
remodeling. Discussing the shear and cellular contributions
to shear of the whole wing blade and in four different
subregions, we find that the main morphogenetic processes
of the wing [3,6] are also reflected in the different subregions.
However, the timing of these morphogenetic processes differs
among the regions, revealing a propagation of morphogenetic
events through the tissue.

Our work is related to other studies that decompose tissue
shear into cell deformation and cell rearrangements [13—18].
Our approach differs from these studies in that it provides
an exact relation between cellular processes and tissue defor-
mation gradients on all scales (for details see Appendix C).
Recently, a method based on cell center connection lines
rather than triangles was presented [18]. While Ref. [18] and
the method presented here both provide a decomposition of
shear into cellular contributions, the method presented here
has an important property. We relate tissue deformations
on all length scales to cellular contributions, taking into
account correlation terms. Simple area-weighted averaging
of triangle-based quantities generates in our approach the
corresponding coarse-grained quantities on large scales (see
Appendix C). Note that our approach can also be applied to
finite deformations (see Appendix B).

We have focused our discussion on tissue deformations that
are planar. It will be interesting to generalize our approach
to curved surfaces and to bulk three-dimensional tissues.
A generalization to three dimensions can be obtained by
following the same ideas, but using tetrahedra as geometric
elements. Most equations presented here apply also for bulk
three-dimensional tissues. Only Eqs. (15) and (19) require
special consideration of tetrahedral geometry.

The triangle method described here provides a general
framework to study the deformations and remodeling of
cellular material. These include not only biological tissues
but also complex fluid such as foams and amorphous solids.
Our approach can thus provide fundamental insight into the
geometry and help to understand complex rheology of cellular
and amorphous materials, both living and nonliving.
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APPENDIX A: DEFORMATION OF A TRIANGLE
NETWORK

1. Deformation and deformation gradients

For an Euclidian space, the following equation holds for a
vector field h:

/a,hjdA =¢ hj\},' d@, (Al)
A IA

where the area integral is over a domain A with boundary 9 A.
The vector v denotes the local unit vector that is normal to the
boundary pointing outwards.

Equation (A1) follows from Gauss’ theorem:

/diva dA:% a-vdl, (A2)
A aA

if the components of the vector a are chosen as
a = Sixh; (A3)

and i, j are fixed.

2. Triangulation of a cellular network
a. Triangulation procedure

Here, we define the triangulation procedure outlined in
Sec. II D more precisely. An inner vertex, i.e., a vertex that
does not lie on the margin of the polygonal network, gives
rise to one or several triangles. Any inner vertex touches at
least three polygons. An inner vertex that touches exactly three
polygons «, B, and y gives rise to a single triangle with corners
r® rf and r?, as explained in Sec. II D. Moreover, an inner
vertex that touches M with M > 3 polygons «y, ..., gives
rise to M triangles, which are defined as follows. One corner
of each of these M triangles is defined by the average position
¢ = (o) + -+ apy)/M. The other two corners of triangle i
with 1 < i < M are defined by r% and r*+', where the index
i = M + 1 corresponds to the index i = 1.

All non-inner vertices, i.e., those lying on the margin of the
polygonal network, do not give rise to any triangles. As aresult
of that, a stripe along the margin of the polygonal network is
not covered by triangles, which is ca. half a cell diameter thick.

Apart from this stripe, the resulting triangulation has no
gaps between the triangles. Overlaps between the triangles are
in principle possible. In such a case, at least one triangle can be
assigned a negative area. However, in our experimental data,
such cases are very seldom.

PHYSICAL REVIEW E 95, 032401 (2017)

b. Effective number of triangles

We compute the effective number N of triangles a follows:

N:ZI+Z(M,,—2). (Ad)

nev_s neV.s

Here, V_; denotes the set of all inner threefold vertices and
V.3 denotes the set of all inner M-fold vertices with M > 3.
The number M,, is the number of cells touched by vertex n
(i.e., vertex n is M,-fold). Hence, all triangles arising from
a threefold vertex count as one effective triangle, and all M
triangles arising from a M-fold vertex with M > 3 count as
(M — 2)/ M effective triangles.

An interpretation for this effective number N of triangles is
given by the following consideration. An M-fold vertex with
M > 3 can be thought of as M — 2 threefold vertices that are
so close to each other that they can not be distinguished from
each other. If we transform each inner M-fold vertex with
M > 3 of our polygonal network into such M — 2 threefold
vertices, then N is the number of inner threefold vertices in the
resulting network. Put differently, N is the number of triangles
in the triangulation of the resulting network.

3. Triangle shape
a. Side vectors of the reference triangle

In a Cartesian coordinate system, the vectors ¢'*?) describ-
ing the equilateral reference triangle are

12— ¢ (é) (AS)
oy (—1/2

c = Co (\/3/2 s (A6)
Gl _ —1/2

P = ¢ (—\/5/2 . (A7)

Here, ¢o = 2a,/*/3"/* is the side length and a the area of the
reference triangle.

b. Extraction of shape properties from the triangle shape
transformation tensor

Here, we show how to extract triangle area a, triangle
elongation §;;, and triangle orientation angle 6 from the shape
transformation tensor S;; according to Eq. (15):

a\ 12
s = (-) exp (§) - R(®). (A8)
ao

First, the area can be extracted by computing the determinant
of this equation, which yields

a = apdets. (A9)

To compute §;; and 0, it is useful to split the tensor S;; into a
symmetric, traceless part §;; and into a rest h;; containing the
trace and the antisymmetric part:

Sij = éij + h,’j. (A10)
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(@) (b)
exp g

(c)

FIG. 14. Geometrical interpretation of the elongation tensor §;;
for a given triangle. (a) Shows an equilateral triangle (red) with
circumscribed circle (blue) and centroid (i.e., center of mass, yellow).
(b) This triangle is deformed by the pure shear deformation given by
exp (€), where §;; is the elongation tensor of the so-created triangle.
The former circumscribed circle is transformed to an ellipse (blue),
and the former centroid is still the centroid of both the triangle and the
ellipse (yellow). (c) Long and short axes of the ellipse with lengths /
and s, respectively.

Then, the triangle orientation angle 6 is such that h;;
corresponds to a rotation by 6 up to a scalar factor f:

hij = fRi;(©), (ALD)

and the triangle elongation can be computed as

1 ~1/2

§;j = — arcsinh (i) 18] |8Ri(=0).  (Al2)
S| ap

In [22], we show that these values for a, §; j» and 6 do indeed

fulfill Eq. (A8), and that they are the unique solutions.

¢. Geometrical interpretation of the triangle elongation tensor

Figure 14 illustrates the geometrical interpretation of the
triangle elongation tensor @;;. Take the unique ellipse [blue in
Fig. 14(b)] that goes through all three corners of the triangle
(red) and has the same center of mass (yellow) as the triangle.
Then, the long axis of the ellipse corresponds to the axis of
the triangle elongation tensor {;;, and the aspect ratio of the
ellipse is given by I /s = exp (2|q|) [Fig. 14(c)].

This can be seen as follows. As discussed in Sec. III A and
the previous section, any given triangle can be created out
of an equilateral triangle using the pure shear transformation
exp (€), where §;; is the elongation tensor of the given triangle.
This is illustrated in Figs. 14(a) and 14(b). The circumscribed
circle of the equilateral triangle transforms into the ellipse
via the pure shear transformation. Thus, the length of the
long and short axes of the ellipse are [ = rexp(|g|) and
s = rexp(—|q|), where r is the radius of the circle.

The ellipse is uniquely defined because the equilateral
triangle and the pure shear deformation are uniquely defined as
proven in [22]. If there was another ellipse that went through
all corners of the triangle and had the same center of mass, this
ellipse could be created from a circle ¢’ using a different pure
shear transformation. Applying the inverse of this pure shear
transformation to the actual triangle n would yield a triangle n’.
Obviously, the triangle n” would have the circumscribed circle
¢’ and thus its center of mass would coincide with the center
of its circumscribed circle ¢’. Thus, n’ would be equilateral.
However, this is not possible since there is only one equilateral
triangle from which triangle n can emerge by a pure shear
deformation.
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4. Relation between triangle shape and triangle deformation

Here, we derive Egs. (19)—(21) in the main text. From
Eq. (17) follows with Eq. (8):

S:»j — Sjj = UgiSk;j- (A13)

For infinitesimal changes 84;;, 8a, 86 of the respective triangle
shape properties, the difference of the shape transformation
tensors is also infinitesimal 8s;; = S; i — Sij- From Eq. (A8)
follows

a
8sij = _asij + 5|Q|ﬁskj + SpeiSkj + (80 — 3)Sikex;.

(A14)
Inserted into Eq. (A13) and using the decomposition of the
deformation tensor (5), this yields

1 _
ESUkk&j + SU,’j + SWEU

da ~ ~," _
= —&;+ 8|q|% + 8¢ + (30 — 8p)Sikens;;' . (A15)

2a
To disentangle the contributions of the last term to the three
deformation tensor components, we transform the tensor
product into

- sinh (2|9]) ..
Sikfklsl;l = €k |:COSh (2198 — %%}- (A16)
Hence, we obtain
- _ Qi sinh (2§ _
sty = 3161 — (50 — sy D 5 a1
1q 1ql
da
SUge = —, (A18)
a
59 = 8¢ + (56 — 8¢) cosh (2] (A19)

Equations (19)—(21) in the main text follow directly. Note that
Egs. (A17)—(A19) can be rewritten into

50, = 8Gi; — 20c¥ + (1 — Odlentiy,  (A20)
Suy = 5(Ina), (A21)

h/g)) — 1
Sy = 80 — 8iiyj€ 4G 21D (A22)

2|q| sinh (21G])

with ¢ = tanh (2|d|)/2|G|. Here, to derive the expression for
the pure shear part §0;;, we used the decomposition of §§;; into
contributions of norm and angle changes of §;; [Eq. (A24)].
To derive the expression for the rotation part §v, we used that
from Eq. (A17) follows that

8Uije€kQri = —2(860 — 0¢)|q] sinh (2/G]). (A23)

a. Pure shear by triangle elongation change

To discuss the pure shear formula (A20), we first consider
the decomposition of an infinitesimal change of the triangle
elongation tensor §§;; into a contribution by the change of the
norm §|q| and a contribution by the change of the angle §¢:
~ Qij

8G;; =419 H + 28¢€iQy; - (A24)
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The pure shear §0;; from Eq. (A20) can be rewritten in a
similar form:

Gy
[¢]
There are two differences between Eqs. (A24) and (A25)
both of which affect the angular part. First, in Eq. (A25),
the rotation 8 is subtracted from the angular change of the
elongation tensor d¢. This accounts for bare rotations, which
do change the elongation tensor §;; by changing its angle ¢,
but do not contribute to pure shear §3; . Second, the “rotation-
corrected” angle change of the elongation tensor 8¢ — §yr
does not fully contribute to pure shear but is attenuated by a
factor ¢ with 0 < ¢ < 1, which depends nonlinearly on |q].
This second point makes the corotational time derivative in
Eq. (24) different from other, more common time derivatives.
However, for small elongations |§| < 1, we have ¢ — 1 and
the corotational time derivative corresponds to the so-called
Jaumann derivative [24].

8U;; = 681G =7 + 2c(8¢ — 8v)€ixQy; - (A25)

b. Shear-induced triangle rotation

Here, we discuss the shear-induced contribution §¢ in
Eq. (A22), which we rewrite as

80 = 8y + 8¢ (A26)

with
. cosh(2|q) —1

0% = MU 3 g sinb 21]) (2D

According to this equation, the triangle orientation angle 6
may change even with vanishing §4 whenever there is pure
shear that is neither parallel nor perpendicular to the elongation
tensor §;;, i.e., a pure shear that changes the elongation angle.

We illustrate this further in Fig. 15. For clarity, we use
a Minerva head in place of a triangle, but with analogously
defined shape and deformation properties [Fig. 15(a)]. We
discuss a continuous pure shear deformation of this head
without rotation or isotropic expansion at any time point
[Fig. 15(b)]:

SUgr = 0, (A28)

sy = 0. (A29)

Because of Eq. (A29), any potential change in the orientation
angle 6 must be due to the shear-induced effect: §6 = 5¢.
Furthermore, the pure shear is defined such that the elongation
norm |§| is constant, but the elongation angle ¢ may change.
This can be accomplished by a pure shear axis that is at each
time point at an angle of 7 /4 with respect to the elongation
axis. This criterion can be written as

8[],‘]‘ = (Shéiquj, (ASO)
where 8h is some infinitesimal scalar quantity. Comparison
of this equation with Eq. (A20) and insertion into Eq. (A27)
yields

5E = 5¢[1 - (A31)

1
cosh(2|d|)}'
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R(9)

)

sequence of infinitesimal pure shear deformations

FIG. 15. Illustration of the shear-induced rotation effect §&
appearing in Eq. (A22). For clarity, we use a Minerva head in place
of a triangle. (a) The definitions of orientation angle 6 and elongation
tensor §;; are analogous to the triangle quantities [Fig. 4(c)]. Roughly,
the orientation angle 6 corresponds to the direction in which the
Minerva head looks. The isotropic scaling has been set to one for
simplicity (a = ap). (b) The elongated Minerva head is subject to a
continuous pure shear deformation with varying shear axis. The pure
shear axis is at each time point oriented with an angle of 7 /4 with
respect to the elongation axis ¢, such that the elongation norm |§| does
not change but only the angle ¢. Here, snapshots of such a deformation
are shown. Alternatively, Movie M5 shows this deformation more
smoothly [30]. Strikingly, the head orientation angle 6 changes
by this deformation although the deformation never includes any
rotation component §v = 0. Here, we have set |q| = (In2)/2 such
that 80 = 8¢ = 0.25¢.

Hence, although there is no rotation component of the
deformation field §y = 0, the orientation angle 6 changes by
a nonvanishing amount 66 = 8§ [Fig. 15(b), Movie M5 [30]].

5. Large-scale pure shear
a. Relation to average elongation

To find the relation between large-scale pure shear §U; j and
large-scale elongation Q;;, we average Eq. (19):

80;; = (8G;;) + (8ij)- (A32)
To show Eq. (29), it remains to be shown that
8Qi; = (8Gi;) + (Bui@;j) — sUw Q). (A33)

This equation reflects the fact that changes in the triangle
areas also contribute to a change in the average elongation
Qj;. Formally, the equation can be derived using the definition
of the average elongation Q; 7 = (Q;;) together with Eqgs. (20)
and (36).

b. Alternative definition for the mean-field corotational term

In Eq. (30) we have introduced a mean-field corotational
term 8J;; to account for global rotations, which do not
contribute to the overall pure shear rate, but change the average
elongation tensor Q;;. We use the definition (30) throughout
this article. However, note that there are different conventions
possible for J;;. While the definition (30) was chosen in
analogy to Eq. (24), one could alternatively define based on
Eq. (22)

8Jij = —2[G8O + (1 — G)sDlenQyy, (A34)
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where G = sinh (2|Q])/2|Q| and §© = (56). Note that both
definitions (30) and (A34) yield in general different values
for (SJ, j.

c. Correlation terms arising from convective
and corotational terms

Here, we show how the correlation term D; ; arises from
convective and corotational terms. To this end, we introduce
continuous, time-dependent fields for shear rate ;;(r,) and
triangle elongation Q; j(r,t). Whenever a given position r lies
inside of a triangle n at time point 7, both are defined by

ﬁij(r,t) = \71'}1-, (A35)
0ij(r,t) = 4. (A36)
Given these definitions, Eq. (23) can be rewritten as
- DQ;j(r,t)
= — A37
Vij Dr (A37)

with the corotational time derivative DQ;; /Dt defined as
3Q;;(r.t) 81:1,

DQ ij ~
D - o7 + Vo Qij + TR
Here, n is the triangle which contains the position r at time
t. The vector v denotes the velocity field that is obtained by
linear interpolation between the cell center velocities, i.e., by
v(r)dt = h(r) with h(r) given by Eq. (7).

In Eq. (A38), we take the corotational term 8];3 /8t directly
from the triangle-related equation (23). However, in addition,
a convective term vid Q; ; needs to be introduced for the
following reason. The partial time derivative 3 Q; j(r,t)/0t on
the right-hand side is essentially different from the “total” time
derivative 8(];’]- /6t appearing in Eq. (24): Whenever the tissue
moves such that the boundary between two triangles passes
past position r, the partial time derivative contains a Dirac §
peak, which is not contained in the “total” time derivative. This
peak is exactly compensated for by the convective term, which
is only nonzero at triangle boundaries.

To obtain the large-scale shear rate of a triangulation, we
can coarse grain Eq. (A37) instead of the triangle relation (23).
Eventually, we should obtain the same relation for the large-
scale shear rate, Eq. (32). By comparing both ways, we can
spot which term in the continuum formulation gives rise to
which terms in the triangle formulation.

To coarse grain Eq. (A37), we write the large-scale shear
rate \7ij as follows [using Eq. (3)]:

(A38)

Vij = (@), (A39)
where the averaging bracket is defined as follows:
1
(U;j) = —/ ;j dA. (A40)
A Ja

Here, the integration is over the whole triangle network A with
area A. Substituting Eq. (A37) into Eq. (A39) yields

- 90i;(r, ~ 8jij
Vij = <%> — ((Ovi) Qij) + <#>
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1 ~
+ — wvi Qi dA.
A Joa !

(A41)

Here, we carried out a partial integration on the term arising
from the convective term, which gave rise to the boundary
integral. In the boundary integral, the vector v; denotes the
unit vector normal to the boundary, pointing outwards.

The second and the third terms in Eq. (A41) are essential
parts of the correlation term D;;. In particular, the term
—<(aka)Q,‘j> = —(ViG;;), which arose from the convective
term, is an essential part of the growth correlation. Similarly,
the term (3]; ;/6t) is an essential part of the rotational
correlation.

To obtain Eq. (32) from Eq. (A41), we note that the
average elongation is Q;; = ( 0; ), and transform its total time
derivative:

5@,,-_1{ 1 1

=——— QijdA
5t St A(t+68t)  A®) | Jaw

1 / ~ -
+— O dA — Q,»»dA)
A‘St( A(r+81) ! A(t) !

1
+ —

80;; dA. A42
a5t ), 0% (A42)
These three terms can be respectively transformed into
8@,‘] A 1 = 8Q,"(I‘,Z‘)
— = =V Q; —/ jdA+(—L2).
51 Wy o, Vel +< o1
(A43)

The first term is the mean-field term in the growth correlation
and the second term is the boundary term generated by the
convective term. Both terms appear due to a possible change
of the triangulation domain A. After all, Eq. (32) follows by
inserting Eq. (A43) into Eq. (A41).

6. Pure shear by a single T1 transition

In the absence of T1 transitions, we have AU;; = AO,-_,- +
AJ; i+ AK; 7> which can be obtained by integrating Eq. (29)
over time. Here, AU; ; 1s the tissue pure shear computed using
Eq. (4), AQ; ;j s the change of the average triangle elongation,
and AJi ; and Ar([ j are the corotational and correlation
contributions. We now define the shear associated with the
T1 transition AX;; such that the following decomposition
holds in the presence of a single T1 transition: AU, =

During a single T1 transition, two adjacent triangles are
replaced by two new triangles such that the quadrilateral
formed by both triangles remains unchanged (Fig. 8). In order
to define the shear associated with this retriangulation, we
choose a continuous deformation that transforms each of the
initial triangles into one of the final triangles as follows. Each
initial triangle is first deformed to an equilateral triangle by a
pure shear deformation starting from the initial q;?j and arriving
at dl’-’j = 0. The resulting equilateral triangle is reoriented and
rescaled such that by a subsequent pure shear deformation
increasing §;, the final triangle shape is reached. Because
the quadrilateral formed by both triangles has the same shape
before and after the T1 transition, AU;; = 0. Moreover, the
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continuous deformation via equilateral intermediate states
does not generate corotational or correlation contributions
AJ;; = AK;; = 0, such that we define

AX;; = —AQy;. (A44)
The absence of corotational and correlation contributions is
consistent with the fact that the quadrilateral formed by the
pair of triangles does not rotate during the T1 transition. Note
that, in principle, one could~ also use diffe£ent continuous
deformations to compute AQ;; + AJ;; + AK;;. This would
correspond to a different convention for the definition of AX;;.
In this case, corotational and correlation contributions to AXi J
could in general occur and the definition of AX; ; may depend
on which of the initial triangles is transformed into which of
the final triangles. Thus, the convention proposed here is the
simplest choice, does not introduce rotational contributions,
and does not depend on the association of initial to final
triangles.

Note that the triangle elongation angle ® changes during
the T1 transitio_n. Although in-between T1 transitions, §&
contributes to 8J;; [see Eq. (30)], the convention chosen here,
AJ;; = 0, implies that the T1-induced change in ® does not
contribute to the corotational time derivative DQ;;/Dr.

a. Special case: Square or rhombus

Here, we derive the shear by a single T1 transition for
the special case where the four involved cell centers (green
dots in Fig. 8) form a square or, more generally, a rhombus.
For the case of a square, all involved triangles are isosceles
triangles with a base angle of /4. Such a triangle has an
elongation tensor with an axis parallel to the base and with the
norm |§"| = (In3)/4. This can be shown using the formulas
presented in Appendix A 3 b, or by the following reasoning. We
ask for the shape transformation tensor s}; needed to transform
an equilateral reference triangle into an isosceles triangle with
the same area and a base angle of 77 /4. We set one of the sides
of the reference triangle and the base of the isosceles triangle
parallel to the x axis. Then, the ratio of the base length of the
isosceles triangle to the side length of the reference triangle
is 31/4, and the ratio of the heights of both triangles is 37/4.
Correspondingly, the shape transformation tensor reads as

R 31/4 0
s = < 0 3—1/4>'

This shape transformation tensor corresponds to the elongation
tensor Q?j that is parallel to the x axis and has norm |§"| =
(In3)/4.

The shear by the T1 transition is given by the change of
the average elongation tensor. For the case of a square, both
triangles before and after the T1 transition have the same
elongation tensor with norm |§"| = (In3)/4. Thus, also the
average elongation tensors for the square before and after the
T1 transition have norm |Q| = (In3)/4. However, the axes
of both average elongation tensors are perpendicular to each
other, oriented along the diagonals of the square. Thus, the
shear by the T1 transition, which is given by the change of the
average elongation tensor has norm |AX| = (In3)/2.

(A45)
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The more general case of a rhombus can be treated by
transforming the rhombus into a square by a pure shear
transformation along the short diagonal of the rhombus.
The effects of this pure shear transformation on the average
elongation tensors before and after the T1 transition cancel
out exactly. Note, however, that this argument only works
because the axis of this pure shear transformation is parallel or
perpendicular to the elongation axes of all involved triangles.

In the above arguments, the average elongation was com-
puted only for the rhombus with area Ag. However, when the
triangulation under consideration extends beyond the rhombus
and has area A, the norm of the shear by the T1 transition
results to be |AX| = (A In3)/(2A).

7. Cellular contributions to isotropic expansion
of a polygonal network

We derive a decomposition of the isotropic expansion rate
V7. of the polygonal network. To this end, we first define the
infinitesimal deformation tensor (SUf']. for the whole polygonal
network using a variant of Eq. (11), where we sum over
polygon edges b along the outline of the polygonal network
instead of triangle sides along the outline of the triangular
network:

1
P E b. b b
b

Here, A? is the area of the polygonal network, the vector vf’ is
the unit vector normal to side b that points outside, the scalar
AL is the length of side b, and 8h’; = ((Sh?’ + Sh;?)/Z with m
and n being the vertices at the ends of edge b, and 64" and
Sh'; being their respective displacement vectors.

Then, we have that

AP
AP
where §A? is the change of the area across the deformation.
This equation can be shown using that A? =), r,f v,}: AP
where the sum is over all polygon edges b along the outline of
the polygonal network, rf = (" + r})/2 with m and n being
the vertices at the ends of edge b, and r;" and r}/ being their
respective positions.

Defining the average cell area by a” = A”/N? where N”
is the number of cells in the polygonal network, we have for
the case without topological transitions

sUP = ——, (A47)

sUP = 8(na’). (A48)

Topological transitions are accounted for as explained in
Sec. IV B. Hence, we finally obtain Eq. (49) with

kb = Z 8(t — ;) In (1 + %) (A49)
keCD k

k== 8(t—1)in <1 — %) (A50)
k

keT2

where the sums run over all topological transitions k of the
respective kind, f; denotes the time point of the respective
transition, and N, ,f is the number of cells in the network before
the respective transition.
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8. Cellular contributions to large-scale rotation
in a triangle network

For the sake of completeness, we discuss the decomposition
of large-scale rotation Q2 = (w), i.e., 2§t = §\W, into cellular
contributions similar to the shear rate decomposition Eq. (42).
In particular, we want to relate 2 to average triangle orienta-
tion, which we characterize using the complex hexatic order
parameter Pg with

Ps = (ps)

Here, we use again an area-weighted average over all triangles,
i denotes the imaginary unit, and 6 is the triangle orientation
angle defined in Eq. (15).

In the absence of topological transitions, the change of the
hexatic order parameter Pg relates to the large-scale rotation
rate Q2 as follows [using Eq. (27)]:

dP, . - -
d—f = 6i Ps[2 + Vije 5 Qui FUQDT + ((Via ps) — Vit Po)

with  pg = 7. (A51)

+ 6i((wpe) — 2Ps) + 6i[ (Vi€ xui £ (1G1) ps)
— Vi€ Qui f(IQDPs]
with f(w) = [cosh Qw) — 1]/[2w sinh 2w)].
The complex hexatic order parameter Pg contains two

pieces of information, the magnitude Z¢ of hexatic order and
its orientation ®g¢, which are real numbers defined by

(A52)

Py = Ze%9s. (A53)

Here, the orientation angle is defined to lie within the
interval — /6 < ®g < /6. The value of the magnitude can
be expressed as the average Zg = (cos (6[6 — O¢])). Using
Eq. (A53), Eq. (A52) splits into an equation for the magnitude:

dZe .
T (Vik cos (6]60 — O¢])) — Vik Ze — 6{w sin (6[6 — O]))
— 6(V;j€,Qui £(1Q]) sin (6[6 — Bg])) (A54)
and into an equation characterizing the orientation
do ~ ~ ~
d—t" =Q+VyeuQuriQn+= (A55)

with correlations X given by

1 (1
Y= Z_{B(ka sin (6[60 — ©g])) + [{w cos (6[6 — BO]))
6

—QZ6] + [{(Vije 10w £(1Q) cos (6[0 — Og]))

- Vi,e,-kék,-fqéwza]}. (AS56)
Equation (A55) relates the orientation of the hexatic order ®g,
which can be interpreted as an average triangle orientation,
to the large-scale vorticity 2. For what follows, we multiply
Eq. (AS5) with éz:

SV =80 — 8U;;¢,,Qu f(1Q)) — 6. (A57)

Here, §®¢ denotes the change of the average triangle orien-
tation ®¢. Note the analogy of this equation with Egs. (29)
and (36).

To account for the effect of topological transitions, one
can proceed as in Sec. IV. The displacement gradient across
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a topological transition is zero and so is its anisotropic part
AW = 0 and the shear AU;; = 0. To account for example for
a T1 transition, we introduce a new term A E 6T into Eq. (A57),
which represents the rotation by the T1 transition:

AV = AO6 — AU, e Qu F(1Q) + AEL. (A58)

Here, A®y is the change of ®¢ induced by the T1 transition,
and we have set the correlations across the T1 transition to zero
as we did in Sec. IV A. After all, we obtain from Eq. (A58)
that AE] = —A®s.
Wrapping up, we find the following decomposition of the
large-scale vorticity:
d®g

Q=—"- VieaQurqQny+rl 418 +TE — %

(A59)

with the rotations by T1 transitions I'T, cell divisions F6C ,and
cell extrusions I'¢ defined by

Pf=—) AGLS(t— 1), (A60)
keTl

ré=-— Z AGL8(t — 1), (A61)
keCD

PE=—Y " AOs(t—1). (A62)
keT2

Here, the sums run over all topological transitions k of the
respective kind, #; denotes the time point of the respective
transition, and A@’g denotes the instantaneous change in ®g
induced by the transition.

Note that, in principle, one could also use for instance the
triatic order parameter

P = (e¥7). (A63)

However, for our purposes we prefer to use Ps over Ps. This
is because for a regular hexagonal array of cells, P; vanishes,
whereas Pg is nonzero. Hence, Ps would allow us to track
large-scale rotations of a regular hexagonal pattern of cells,
which would not be possible using P;3.

9. Path dependence of the cumulative pure shear

Here, we discuss the finite deformation of a triangular
network that starts from a state with configuration / and
ends in another state with configuration F. The initial and
final configurations I and F, respectively, define all triangle
corner positions and the topology of the network. We define
the corresponding cumulative pure shear by

F 5 T 5
/ (SUl'j Z./ V,’jdl,
1 0

where the deformation starts at time O in state / and ends at
time 7 in state F.

The cumulative pure shear does not only depend on the
initial and final states / and F, but also on the network
states in-between. We demonstrate this path dependence of
the cumulative pure shear for the case of a single triangle
(Fig. 16). The initial state / is given by a triangle with
an elongation tensor parallel to the x axis with §}, = Q,,

(A64)
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(a)ﬁﬁ
NG N N

(b) shear rotates axis of elongation tensor:
sty A oy oty A
DO 3 — —

FIG. 16. Path dependence of the cumulative pure shear. Shown
are two finite deformations with the same initial and final states, but
with a different cumulative shear. Initial and final states are isosceles
triangles, with the same elongation norm. (a) The triangle is sheared
along the y axis. (b) The triangle is sheared such that the elongation
tensor is rotated but the norm stays constant.

shear changes zx component of elongation tensor:

6&;}\

—

where Q is a positive scalar. The final state F is given by a
triangle with an elongation tensor parallel to the y axis with
§", = —Qo. In initial and final states, the triangle areas are
the same and in both states, 6" = 0. Figure 16 illustrates two
different deformation paths to reach state F from state /. In
Fig. 16(a), the triangle is sheared along the horizontal axis,
which corresponds to a cumulative shear along this axis of

/ 8", = —20,.
(a)

This follows from Eq. (19). In Fig. 16(b), the triangle under-
goes a time-dependent pure shear such that the elongation axis
is rotated but its norm stays constant. At the same time, to
ensure that the orientation angle does not change §6" = 0, the
rotation §y¥" as given by Eq. (21) is nonzero. The additional
contributions by the corotational term in Eq. (19) eventually
yield [22]

(A65)

/ 80", = —sinh (2Q). (A66)
(b)

Thus, the cumulative pure shear for both integration paths
is different or, put differently, the cumulative shear is path
dependent. Note that an equivalent statement is that the
cumulative shear over a cyclic deformation is in general
nonzero, where by cyclic deformation, we mean a deformation
with coinciding initial and final states.

Finally, we remark that at least for a triangular network with
more than two triangles, the path dependence of the cumulative
pure shear can be generalized as follows [22]. We consider a
set of tensors GE;, fjkl, G?j, and H;; that only depend on
the given state of the triangular network. Then, the following
equation

ij J

F
/ (G};SUkk—IrG‘?vk,SUkl + G} 5\1’) = H;;(F)— H;;(I)
1
(A67)

can be generally true only if G};;, = 0 and G}; = 0. Hence,
even adding a state-dependent factor ijkl and including
rotation and isotropic scaling does not resolve the general path
dependence of the cumulative pure shear.

Since any kind of two-dimensional material can be trian-
gulated, path dependence of the pure shear holds independent
of our triangle-based approach. It is a mere consequence of
integrating the instantaneous deformation rate V;;, which is
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(a) observed state O*:

(b) intermediate state I+ ;
(c) intermediate state I5:
I%:

(e) observed state OF+*:

T2 transitions

pure deformation
= cell center motion

T1 transitions

’ cell divisions

FIG. 17. Tllustration of the virtual intermediate states I¥, I¥, and
I¥ introduced between two observed states OF and O**!.

(d) intermediate state

substantially different from defining deformation with respect
to a fixed reference state as usually done in classical elasticity
theory [31].

APPENDIX B: ANALYSIS OF EXPERIMENTAL DATA

1. Quantification of spatially averaged cellular
deformation contributions

The equations derived in Secs. IIIB, IIIC, and V hold
exactly only for infinitesimal deformations and time intervals.
However, experimental data always have a finite acquisition
frequency. Here, we discuss how we adapt our theoretical
concepts to deal with finite time intervals in practice.

We start from a series OF of observed states of a cellular
network with k = 1, ..., Ngawes. Each of these states defines
cell center positions and cell neighborship relations. The
states are registered at times t*, respectively. We denote
the corresponding time intervals by Arf = t*+1 — ¢tk As a
first step, each of the cellular network states is triangulated
according to Sec. IID.

To quantify the deformation rate and all cellular contri-
butions to it between two observed states O% and O*t!, we
introduce three virtual intermediate network states / lk, 12", and
13" (Fig. 17, [6,22]). By introducing these intermediate states,
we shift all topological transitions to the beginning or to the end
of the time interval Az*. This separates topological transitions
from cell center motions, which now only occur between the
states /{ and I5 [Figs. 17(b) and 17(c)]. We justify this by
the fact that given only the observed data, it is in principle

032401-20



TRIANGLES BRIDGE THE SCALES: QUANTIFYING ...

impossible to know at what exact time between ¢* and **! a
given topological transition occurred.

We define the three intermediate states lk Ié‘ , and 13]‘ based
on the observed states O* and O**! as follows.

(1) The intermediate state I} is defined based on O**! by
reverting all divisions that occur between the observed states
O* and O**!. To this end, each pair of daughter cell centers
is fused into a mother cell center. The position of the mother
cell center is defined by the average position of the daughter
cell centers.

(2) The intermediate state I{‘ is defined based on O* by
removing the centers of all cells that undergo a T2 transition
between the observed states O* and O**!.

(3) The intermediate states / {‘ and 13" contain the same set
of cell centers, which, however, differ in their positions. Also,
the topology of both states is different. We thus define the
intermediate state If based on 1 lk by moving all cell centers to
their respective positions in 13" .

Note that the intermediate states carry just enough informa-
tion to define the triangulation. Vertex positions, which would
be needed to define cellular networks, are not contained.

For the precise explanation of how we compute the cellular
contributions to the deformation rate, we focus on the pure
shear part. Contributions to the isotropic expansion rate or the
rotation rate can be computed analogously. In the following, we
denote the large-scale shear rate quantified from experimental
data and contributions to it with the superscript “expt.”

We define the pure shear induced by a given kind of
topological transition as the negative change of average
elongation that is associated with the respective state change
(Fig. 17). We thus compute the shear rates by T1 transitions
T/, cell divisions C;}™", and T2 transitions ]} as follows:

Zex I = e

TP — —F[Qij(lgk) - Qi (1)), (B1)
C" = [o,,(o"“> Q). @
Lo o e

Here, Q; ;(X) denotes the average triangle elongation in the
virtual or observed state X. We divide by the time interval Az*
to obtain the respective rate of pure shear.

To compute the large-scale shear rate Vf;p ', the corotational

term :Jf;p ' and the correlation term f)?;p ‘, we proceed as
follows. We realized that direct application of Eq. (42) led
to large deviations for the fly wing data, which is exact
only to first order in the time interval Arf. We thus split
the time interval At* into N subintervals and then compute
Vi, I, and D] by summing the respective subinterval
contributions. To this end, we introduce intermediate states S”
withr = 1,...,N — 1, which are defined by interpolating all
cell center positions linearly between the states S° = Ilk and

SN = I§. Then, the velocity gradient tensor Vf;(pl is computed
by summing the deformation gradients defined by Eq. (11) for
all subintervals:

1 N-1
expt 2 : r
r=0
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with the subinterval deformation gradient

M
) =~ L8 =]
a=1
X [FSTHST) e (STH) — rat(ST) = (s
(BS)

Here, A(S™) and r*(S") are total triangulation area and position
of the center of cell « in state S”, respectively. The inner sum
runs over all margin cells « in counterclockwise order. The
shear rate V; ;j is the symmetric, traceless part of V;;.

The corotational term Je Pt is computed as follows:

N-1
~expt Tr
=3 (BO)
r=0
with
Jj; = =20C"W + (1= CT Y@ — @)]enQui (). (BT)

Here, C" = tanh (2|@’ |)/(2|(~)r |), where ij(S’) is the average
triangle elongation in state S”, and |Q"| and ®" are its norm
and angle. The symbol W" denotes the antisymmetric part of
the subinterval deformation tensor U’; ;» analogous to Eq. (5).
The correlation term Di jp is computed as
N—
expt L
z R A
=0

(@) = ) (BS)

Here, u};” and ]:er are isotropic expansion and corotational
term of triangle n with respect to the subinterval between S”
and S"*!, and q .(8") is the elongation of triangle n in state
S”. The averagmg for a given value of the summation index r
is carried out with respect to the triangle areas in state S”.

Finally, we compute the corotational derivative of the
average elongation as follows:

ukkqij(sr)>_ ;;inj(S’)]

+

A~ t
DQ;" 1
Dr A

—[Qi;(0*) = Q;;(0H + 7] (BY)

Here, :J;”-‘p " is the corotational term as computed from Eq. (B6).

Using all these definitions, we can make Eq. (42) hold
arbitrarily precise by choosing a sufficiently large value for N.
For the data shown in Figs. 11 and 12, we chose N = 100.
Note that this approach to deal with the finiteness of the time
intervals Ar* is different from the approaches chosen in our
previous publications [6,22].

2. Spatial patterns of shear components

To compute spatial patterns of large-scale tissue deforma-
tion and their cellular components as in Fig. 10, we introduce
a grid of squared boxes, which are labeled by the index b. In
Eq. (10), we introduced an average over triangles to compute
large-scale quantities. Here, we introduce such an average
for a given box b. For instance, the box-averaged shear rate
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V” = (V;;), is defined as

Vl] z :ab ij*

The sum is over all triangles n that have an overlap with box b,
and a;, is the area of this overlap. The normalization factor A,
is the overlap area between box b and the triangulation, i.e.,

Ab = Zn Clz.

(B10)

a. Infinitesimal time intervals

Here and in the following, we focus our discussion on
the computation of the pure shear part and its cellular
contributions. First, we ask how the box-averaged shear rate
Vb decomposes into cellular contributions for an infinitesimal
tlme interval 8¢ and in the absence of topological transitions.
To this end, we insert the relation between single triangle shear
rate and triangle shape, Eq. (23), into Eq. (B10) and obtain an
equation that is analogous to Eq. (32):

- DQ) .

Vi = D—t-’ + D).
However, here the corotational time derivative contains an
additional term Bibj:

(B11)

Q) 5Q), & 537, -
Dr & T out 5 (B12)

with the definitions
Q) = @i (B13)

- . d =, [ d
%Z‘R%Emﬁ%‘Q%Emﬂ%} (B14)
83, = =2[Co (89} + (1 = C3 D1y

Here, f;' =ay/a" is the area fraction of triangle n that is
inside box b, and C;, = tanh (2|Q”])/2|Q?|. The symbols |Q”|
and @, denote norm and angle of the average elongation tensor

(B15)

Qf’], respectively. The correlation term in Eq. (B11) is defined
by
. _ - 1, . -
DY = —((viwiij), — (Via)s Q) + g((ajij)b — 7).
(B16)

Equation (32) describes a triangulation that is followed as it
moves through space whereas, here, we consider a box b that
is fixed in space. Correspondingly, we interpret the additional
term Bibj in the corotational derivative as a convective term.

b. Finite time intervals

To practically compute the pure shear contributions for a
given box b for experimental image data, we proceed similar to
the previous section. We consider again a finite time interval
At* between two subsequent observed states OF and O**!,
To separate pure shear contributions by topological transitions
from contributions by cell center motion, we introduce again
the intermediate states illustrated in Fig. 17. Correspondingly,

the shear rates by T1 transitions T xpLb , by cell divisions C expLb.
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cexpt,b

and by T2 transitions E are defined as

expt. 1 A A

Lﬁ%rZEMHw—OH@L @17
ot =~ Llao - gyl s
E?;Pt,b Atk [Qb ( ) Ol’j(ok)b]~ (Blg)

The tensors Qf’j(X ) denote the box-averaged triangle elonga-
tion in the virtual or observed state X.

To compute the box-averaged shear rate V the
Sexpt,b expt b and

expt, b

convective term B , the corotational term J

the correlations D?}‘p

; between OF and O**!, we use the
subintervals and the states S” withr = 0, ..., N introduced in
the previous section. We again compute the quantities for each

subinterval separately and then sum over the subintervals

=
7expt,b ~p
Vit ALk 2 (@), (B20)
§W?L§WWM>@®WW
Y Atk gt J fb Y fbr ,
(B21)
N-1
expt,b b,r
Jr =300 (B22)
r=0
J;J]?f — _2[Cb,rqu,r + (] Cb r)(q)b 1 dDb,r)]
x € QY (SN, (B23)
f;(pt ’ Atk Z ukkqij(y))b - (u1r<k>b®f?j(sr))
+@m—%w. (B24)

Here, u};” and ﬁ:’]fr are trace and symmetric, traceless parts
of the deformation tensor of triangle n according to Eq. (8)
with respect to the subinterval between S and S"*!, q;.;.(S’)
is the elongation of triangle n in state S”, f,"" is the value
of f/' in state S, and its change is Af,"" = b"‘r+l -
We furthermore used C”" = tanh (2|Q""])/(2|Q"" ), where
|Q”"| and P are norm and angle of the box-averaged
elongation in state S”, Qﬁ’j(S’). The symbol W denotes the
antisymmetric part of the box-averaged deformation tensor
in state » and the tensor j;’]?r denotes the corotational term
for triangle n with respect to the subinterval between S” and
S™*1. Finally, the corotational derivative of the box-averaged
elongation is computed as

DA™

b k+1 ~b k ~expt,b
Yy — Q0 — Q0% + I

(B25)

For the patterns shown in Fig. 10, we used N = 100

subintervals.
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APPENDIX C: COMPARISON TO RELATED
APPROACHES

Other work has discussed tissue deformation and contribu-
tions of cellular processes to tissue deformation [13—18]. Such
approaches differ in the definitions of cellular contributions
to tissue shear as well as the tissue deformation measures
used. Our approach provides an exact local decomposition
of tissue deformation into cellular contributions which can
be coarse grained by simple averaging [Eq. (3)]. In fact, an
area-weighted average of triangle measures generates in our
approach the exact large-scale deformation tensor [Eq. (9)].
Other approaches are usually either approximate and neglect
certain contributions or they involve nonlinear deformation
measures, which cannot be simply averaged to obtain the large-
scale tissue deformation. However, in our approach, averaging
of corotational terms leads to correlation contributions that are
exactly defined and correspond to a renormalization effect.
Note that the definitions of deformations and deformation
contributions defined here commute with their coarse graining.
This implies that if a cell network is divided into subnetworks,
our results are independent of whether (i) the deformation
and its contributions are determined for the whole tissue or
(i1) the deformations and their respective contributions are
determined first for each subnetwork individually and the
resulting quantities are then averaged. This property holds
at most approximately for alternative approaches that use
nonlinearities [14,18]. Furthermore, in the work presented
here, large-scale tissue deformation can be determined from
the deformation of the tissue margin alone [Eqs. (4) and (11)].
Note that because of these coarse-graining properties, we could
identify the significance of correlation contributions to tissue
shear in the developing fly wing [Eq. (34)].

Our approach can separate the precise contributions of
different types of topological transitions to tissue shear. Recent
work also has this property [18], but another, qualitatively
different, approach currently does not provide such a separa-
tion [15,16]. The approach in Refs. [15,16] accounts for cell
rearrangements (i.e., T1 transitions) by a tensor that quantifies
the continuous sliding of cells relative to each other. As a
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consequence, the deformation contribution of a T1 transition
to tissue shear is not associated with the precise time point
of the topological transition, but is typically distributed over
a short time interval. In contrast, the method of Ref. [18] and
the triangle method presented here associate the contribution
of a topological transition to deformations with the time point
at which the transition occurs. There exists an analogy of
tissue deformations to plasticity of complex materials. Cell
deformations correspond to elastic material deformations and
topological transitions correspond to changes of a stress-free
reference state of a plastic material. Both elastic and plastic
stress events contribute to the overall material deformation.
Plastic contributions are associated with the time points when
the reference state defining elastic stresses changes. The
precise definition of such reference state changes permits the
exact decomposition of overall deformations in contributions
stemming from specific reference changes.

In the main text of our paper, we have developed our frame-
work for the case of infinitesimal time intervals. However,
our approach can also be applied to finite time intervals as
discussed in Appendix B 1. The essential idea is to integrate
the infinitesimal quantities over the finite time interval. When
in experiments only network configurations at discrete time
points are available, this can be done by linearly interpolating
the cell positions between frames. Alternative approaches
decompose finite tissue deformations in a nonlinear manner
which does not require this interpolation [13,18]. Note that the
equations presented in the main text are valid for infinitesimal
time intervals between subsequent states. However, they hold
for arbitrary cell shapes.

The frameworks based on infinitesimal time intervals,
in Refs. [14-16] and in our work, have the property that
contributions of cell shape changes to tissue deformations can
be expressed as a difference or a material time derivative of a
state quantity [Eqs. (23), (32), and (42)]. This directly reflects
the fact that cellular shape only depends on the geometry
of a tissue at a given time point. This property is somewhat
obscured in approaches that use nonlinearities to account for
finite time intervals [18].

[1] L. Wolpert, R. Beddington, T. M. Jessell, P. Lawrence, E. M.
Meyerowitz, and J. Smith, Principles of Development (Oxford
University Press, Oxford, 2001).

[2] J. T. Blankenship, S. T. Backovic, J. S. Sanny, O. Weitz, and
J. A. Zallen, Developmental Cell 11, 459 (2006).

[3] B. Aigouy, R. Farhadifar, D. B. Staple, A. Sagner, J.-C. Roper,
F. Jilicher, and S. Eaton, Cell 142, 773 (2010).

[4] F. Bosveld, I. Bonnet, B. Guirao, S. Tlili, Z. Wang, A. Petitalot,
R.Marchand, P.-L. Bardet, P. Marcq, F. Graner, and Y. Bellaiche,
Science 336, 724 (2012).

[5] M. Merkel, A. Sagner, F. S. Gruber, R. Etournay, C. Blasse,
E. Myers, S. Eaton, and F. Julicher, Curr. Biol. 24, 2111
(2014).

[6] R. Etournay, M. Popovi¢, M. Merkel, A. Nandi, C. Blasse, B.
Aigouy, H. Brandl, G. Myers, G. Salbreux, F. Jilicher, and S.
Eaton, eLife 4, 07090 (2015).

[7] P. J. Keller, A. D. Schmidt, J. Wittbrodt, and E. H. Stelzer,
Science 322, 1065 (2008).

[8] R. Etournay, M. Merkel, M. Popovi¢, H. Brandl, N. A. Dye, B.
Aigouy, G. Salbreux, S. Eaton, and F. Julicher, eLife 5, e14334
(2016).

[9] V. Wiesmann, D. Franz, C. Held, C. Miinzenmayer, R.
Palmisano, and T. Wittenberg, J. Microsc. 257, 39 (2015).

[10] K. R. Mosaliganti, R. R. Noche, F. Xiong, I. A. Swinburne,
and S. G. Megason, PLoS Computat. Biol. 8, 1002780
(2012).

[11] P. Barbier de Reuille, A.-L. Routier-Kierzkowska, D.
Kierzkowski, G. W. Bassel, T. Schiipbach, G. Tauriello, N.
Bajpai, S. Strauss, A. Weber, A. Kiss, A. Burian, H. Hothuis,
A. Sapala, M. Lipowczan, M. B. Heimlicher, S. Robinson,
E. M. Bayer, K. Basler, P. Koumoutsakos, A. H. Roeder,
T. Aegerter-Wilmsen, N. Nakayama, M. Tsiantis, A. Hay,

032401-23


https://doi.org/10.1016/j.devcel.2006.09.007
https://doi.org/10.1016/j.devcel.2006.09.007
https://doi.org/10.1016/j.devcel.2006.09.007
https://doi.org/10.1016/j.devcel.2006.09.007
https://doi.org/10.1016/j.cell.2010.07.042
https://doi.org/10.1016/j.cell.2010.07.042
https://doi.org/10.1016/j.cell.2010.07.042
https://doi.org/10.1016/j.cell.2010.07.042
https://doi.org/10.1126/science.1221071
https://doi.org/10.1126/science.1221071
https://doi.org/10.1126/science.1221071
https://doi.org/10.1126/science.1221071
https://doi.org/10.1016/j.cub.2014.08.005
https://doi.org/10.1016/j.cub.2014.08.005
https://doi.org/10.1016/j.cub.2014.08.005
https://doi.org/10.1016/j.cub.2014.08.005
https://doi.org/10.7554/eLife.07090
https://doi.org/10.7554/eLife.07090
https://doi.org/10.7554/eLife.07090
https://doi.org/10.7554/eLife.07090
https://doi.org/10.1126/science.1162493
https://doi.org/10.1126/science.1162493
https://doi.org/10.1126/science.1162493
https://doi.org/10.1126/science.1162493
https://doi.org/10.7554/eLife.14334
https://doi.org/10.7554/eLife.14334
https://doi.org/10.7554/eLife.14334
https://doi.org/10.7554/eLife.14334
https://doi.org/10.1111/jmi.12184
https://doi.org/10.1111/jmi.12184
https://doi.org/10.1111/jmi.12184
https://doi.org/10.1111/jmi.12184
https://doi.org/10.1371/journal.pcbi.1002780
https://doi.org/10.1371/journal.pcbi.1002780
https://doi.org/10.1371/journal.pcbi.1002780
https://doi.org/10.1371/journal.pcbi.1002780

MATTHIAS MERKEL et al.

D. Kwiatkowska, I. Xenarios, C. Kuhlemeier, and R. S. Smith,
eLife 4, e05864 (2015).

[12] R. Cilla, V. Mechery, B. Hernandez de Madrid, S. Del Signore,
1. Dotu, and V. Hatini, PLOS Computat. Biol. 11, ¢1004124
(2015).

[13] G. W. Brodland, D. I. L. Chen, and J. H. Veldhuis, Int. J. Plast.
22, 965 (2006).

[14] F. Graner, B. Dollet, C. Raufaste, and P. Marmottant, Eur. Phys.
J. E 25, 349 (2008).

[15] G. B. Blanchard, A. J. Kabla, N. L. Schultz, L. C. Butler, B.
Sanson, N. Gorfinkiel, L. Mahadevan, and R. J. Adams, Nat.
Methods 6, 458 (2009).

[16] A. Kabla, G. Blanchard, R. Adams, and L. Mahadevan, Cell
Mechanics: From Single Scale-Based Models to Multiscale
Modeling (CRC Press, Boca Raton, FL, 2010), pp. 351-377.

[17] A. D. Economou, L. J. Brock, M. T. Cobourne, and J. B. A.
Green, Development (Cambridge, UK) 140, 4740 (2013).

[18] B. Guirao, S. U. Rigaud, F. Bosveld, A. Bailles, J. Lopez-Gay,
S. Ishihara, K. Sugimura, F. Graner, and Y. Bellaiche, eLife 4,
e08519 (2015).

[19] The polygonal network is introduced just for the sake of clarity
here. All of our results are equally applicable for a much broader
class of cellular networks where cell outlines may be curved.

[20] As long as the initial triangle has nonzero area.

[21] This is because from Eqs. (6) and (8) follows that if Eq. (7) holds
for one corner of n, it also holds for the other two corners.

[22] M. Merkel, From cells to tissues: Remodeling and polarity
reorientation in epithelial tissues, Ph.D. thesis, Technische
Universitat Dresden, 2014.

[23] Note that Eq. (15) defines the triangle orientation angle & modulo
27 /3 because of the different possible associations of the corners

PHYSICAL REVIEW E 95, 032401 (2017)

of the reference triangle to the corners of triangle n. We require
the associations between the triangle corners to be made going
around both triangles in the same order, either clockwisely or
counterclockwisely.

[24] R. B. Bird, O. Hassager, R. C. Armstrong, and C. F. Curtiss,
Dynamics of Polymeric Liquids, Volume 2: Kinetic Theory, 2nd
ed. (Wiley, New York, 1987).

[25] For such an average, the cellular quantities gj; and ¥{; have to
be weighted by the summed area a% = ), a”" of all triangles
n belonging to the respective cell «. Up to boundary terms,
these averages then respectively correspond to the large-scale
quantities Q; ; and \Z -

[26] More precisely, here and in the following, we consider topologi-
cal transitions occurring in bulk. For a discussion of topological
transitions occurring at the margin of the polygonal network,
i.e., topological transitions altering the sequence of cell centers
that forms the margin of the triangulation, see [22].

[27] Note that this is a convention and that different choices are
possible as well (see Appendix A 6).

[28] T. Bittig, O. Wartlick, A. Kicheva, M. Gonzélez-Gaitan, and F.
Jilicher, New J. Phys. 10, 063001 (2008).

[29] J. Ranft, M. Basan, J. Elgeti, J.-F. Joanny, J. Prost, and F.
Julicher, Proc. Natl. Acad. Sci. USA 107, 20863 (2010).

[30] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevE.95.032401 for movies of patterns of tissue
shear and contributions to it (M1-M3), the four subregions of
the wing blade (M4), and an illustration of the shear-induced
rotation effect (M5).

[31] L. D. Landau and E. M. Lifshitz, Theory of Elasticity, Course
of Theoretical Physics, Vol. 7 (Pergamon, Oxford, UK, 1970),
pp. 438-442.

032401-24


https://doi.org/10.7554/eLife.05864
https://doi.org/10.7554/eLife.05864
https://doi.org/10.7554/eLife.05864
https://doi.org/10.7554/eLife.05864
https://doi.org/10.1371/journal.pcbi.1004124
https://doi.org/10.1371/journal.pcbi.1004124
https://doi.org/10.1371/journal.pcbi.1004124
https://doi.org/10.1371/journal.pcbi.1004124
https://doi.org/10.1016/j.ijplas.2005.05.002
https://doi.org/10.1016/j.ijplas.2005.05.002
https://doi.org/10.1016/j.ijplas.2005.05.002
https://doi.org/10.1016/j.ijplas.2005.05.002
https://doi.org/10.1140/epje/i2007-10298-8
https://doi.org/10.1140/epje/i2007-10298-8
https://doi.org/10.1140/epje/i2007-10298-8
https://doi.org/10.1140/epje/i2007-10298-8
https://doi.org/10.1038/nmeth.1327
https://doi.org/10.1038/nmeth.1327
https://doi.org/10.1038/nmeth.1327
https://doi.org/10.1038/nmeth.1327
https://doi.org/10.1242/dev.096545
https://doi.org/10.1242/dev.096545
https://doi.org/10.1242/dev.096545
https://doi.org/10.1242/dev.096545
https://doi.org/10.7554/eLife.08519
https://doi.org/10.7554/eLife.08519
https://doi.org/10.7554/eLife.08519
https://doi.org/10.7554/eLife.08519
https://doi.org/10.1088/1367-2630/10/6/063001
https://doi.org/10.1088/1367-2630/10/6/063001
https://doi.org/10.1088/1367-2630/10/6/063001
https://doi.org/10.1088/1367-2630/10/6/063001
https://doi.org/10.1073/pnas.1011086107
https://doi.org/10.1073/pnas.1011086107
https://doi.org/10.1073/pnas.1011086107
https://doi.org/10.1073/pnas.1011086107
http://link.aps.org/supplemental/10.1103/PhysRevE.95.032401



