

Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex.

Nicolas Dufour, Olivier Clermont, Béatrice La Combe, Jonathan Messika, Sara Dion, Varun Khanna, Erick Denamur, Jean-Damien Ricard, Laurent Debarbieux

▶ To cite this version:

Nicolas Dufour, Olivier Clermont, Béatrice La Combe, Jonathan Messika, Sara Dion, et al.. Bacteriophage LM33_P1, a fast-acting weapon against the pandemic ST131-O25b:H4 Escherichia coli clonal complex.. Journal of Antimicrobial Chemotherapy, 2016, 71 (11), pp.3072-3080. 10.1093/jac/dkw253. pasteur-01539016

HAL Id: pasteur-01539016 https://pasteur.hal.science/pasteur-01539016

Submitted on 14 Jun2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Bacteriophage LM33_P1, a fast weapon against the pandemic ST131-O25b:H4 1 2 *Escherichia coli* clonal complex 3 Running title: LM33 P1, a specific bacteriophage targeting the ST131-O25b:H4 clonal 4 complex. 5 6 Authors list: 7 Nicolas Dufour^{1,2,5}, Olivier Clermont^{2,3}, Béatrice La Combe^{1,2,3}, Jonathan Messika^{1,2}, Sara 8 Dion^{2,3}, Varun Khanna⁴, Erick Denamur^{2,3,5}, Jean-Damien Ricard^{1,2,3}, Laurent Debarbieux^{6*} 9 10 Authors affiliation: 11 ¹ AP-HP, Hôpital Louis Mourier, Service de Réanimation Médico-Chirurgicale, F-92700 12 Colombes, France 13 ² INSERM, IAME, UMR 1137, F-75018 Paris, France 14 ³ Univ Paris Diderot, IAME, UMR 1137, Sorbonne Paris Cité, F-75018 Paris, France 15 ⁴ Institut Pasteur, Hub Bioinformatique et Biostatistique – C3BI, USR 3756 IP CNRS, F-75015 16 Paris, France 17 ⁵ AP-HP, Hôpitaux Universitaires Paris Nord Val-de-Seine, Laboratoire de Génétique 18 Moléculaire, Site Bichat, F-75018 Paris, France 19 ⁶ Institut Pasteur, Department of Microbiology, Molecular Biology of Gene in Extremophiles, 20 21 F-75015 Paris, France 22 Keywords: ST131-O25b:H4, Escherichia coli, antibiotic resistance, phage therapy, 23 bacteriophage, extended spectrum beta-lactamase. 24 25 * Corrresponding author: Laurent Debarbieux (Laurent.debarbieux@pasteur.fr), Institut 26 Pasteur, Département de Microbiologie, 25 rue du Dr Roux, 75015 Paris. 27 28 29 Word count: 3981. 30 31

32 Abstract (253 words)

33

Background and objectives. Amongst the highly diverse *Escherichia coli* population, the ST131-O25b:H4 clonal complex is particularly worrisome as it is associated with a high level of antibiotic resistance. The lack of new antibiotics, the worldwide continuous increase of infections caused by multidrug resistant bacteria and the need for narrow-spectrum antimicrobial agents have revived attention to phage therapy. In this article, we describe a virulent bacteriophage, LM33_P1, which specifically infects O25b strains and provide data related to its therapeutic potential.

41 **Methods.** A large panel of *E. coli* strains (n=283) were used to assess both the specificity and 42 the activity of bacteriophage LM33_P1. Immunology, biochemistry and genetic-based 43 methods confirmed this specificity. Virology methods and sequencing were used to 44 characterize this bacteriophage *in vitro* while three relevant mice models were employed to 45 show its *in vivo* efficacy.

Results. Bacteriophage LM33_P1 exclusively infects O25b *E. coli* strains with a 70% coverage on ST131 and ST69. This specificity is due to an interaction with the lipopolysaccharide mediated by an original tail fiber. LM33_P1 also has exceptional intrinsic properties with a high adsorption constant and produces over 300 virions per cell in less than 10 minutes. Using animal pneumonia, septicemia and urinary tract infection models, we showed the *in vivo* efficacy of LM33_P1 to reduce the bacterial load in several organs.

52 **Conclusions.** Bacteriophage LM33_P1 represents the first weapon that specifically and 53 quickly kills O25b *E. coli* strains. Therapeutic approaches derived from this bacteriophage 54 could be developed to stop or slow down the spread of the ST131-O25b:H4 drug-resistant 55 clonal complex in humans.

57 Introduction

Amongst the highly diverse *Escherichia coli* population¹, the ST131-O25b:H4 clonal complex 58 is of particular concern. Since its first description in 2008 in a limited number of countries, 59 this clone has spread worldwide and shown an uncommon ability to propagate in humans.^{2, 3} 60 Moreover, ST131-O25b:H4 E. coli strains have a high pathogenic potential,⁴ they belong to 61 the B2 phylogroup where most extraintestinal-pathogenic *E. coli* are classified,⁵ they express 62 a large number of virulence factors⁶ and are lethal in a mouse model of sepsis.⁷ Involved in 63 64 community as well as hospital-acquired infections, ST131-O25b:H4 isolates are responsible for a wide range of pathologies, from common cystitis to life threatening meningitis.² Finally, 65 these clones are also particularly worrisome as they are associated with a high level of 66 resistance to betalactams (mainly via the production of CTX-M-15 ESBL but also 67 carbapenemase⁸) and fluoroquinolones.^{9, 10} More recently described, the worrying plasmid-68 mediated colistin resistance gene, *mcr-1*, has been found in an ST131 strain, highlighting the 69 70 propensity of this ST to carry antibiotic resistance genes.¹¹ To a lesser extent, O25b strains 71 may belong to another spreading antibiotic resistant clonal complex with a high extraintestinal pathogenic potential, the ST69 ("clonal group A").¹² 72

The lack of new antibiotics and the worldwide continuous increase of the infections caused by multidrug resistant bacterial pathogens have revived attention to phage therapy,¹³ boosting the search for novel bacteriophages. Numerous experimental data have been published demonstrating the proof of concept of this approach and clinical trials have been reported or are ongoing (<u>http://www.clinicaltrials.gov</u>).

In this work, we characterized a novel virulent bacteriophage, LM33_P1, which only infects *E. coli* O25b strains. The *in vitro* and *in vivo* efficacies of bacteriophage LM33_P1 are
reported, showing its value for therapeutic applications.

- 81
- 82

83 Material and methods

84

85 <u>Bacterial strains and bacteriophages, susceptibility testing</u>

The bacterial strains used in this work belong to previously published collections: human commensal and extraintestinal *E. coli* gathered in France during the 2010s (n=83),¹⁴⁻¹⁶ Spanish extraintestinal *E. coli* (n=16),⁶ North American clinical *E. coli* (n=14),¹⁷, commensal 89 and pathogenic E. coli from various parts of the world (Africa, America, Australia, Europa (n=18),^{18, 19} the ECOR collection (n=8)²⁰ as well as the unpublished ColoColi collection (n=144, 90 an ongoing French multicenter study collecting E. coli strains in the lower respiratory tract of 91 mechanically ventilated patients). The phylogroup and the ST belonging were determined as 92 described in.^{21, 22} The O-type and the *fimH* allele were determined by PCR-based assays as 93 previously described^{18, 23} and as reported in **Supplementary Data - Procedures**, respectively. 94 When needed, we confirmed the O25b phenotype using a monospecific O25 serum designed 95 for *E. coli* serotyping purpose (*E. coli* mono O25, Statens Serum Institut, Denmark). 96

All the strains were grown in lysogeny broth (LB) (Difco[™] Bacto-Tryptone 10 g/L, Difco[™]
Yeast extract Difco 5 g/L, NaCl 5 g/L). Their antibiotic susceptibility was determined using the
disk diffusion method following the EUCAST guidelines.

Some *E. coli* strains, used for lipopolysaccharide (LPS) assays or bacteriophage susceptibility
testing, are detailed below:

- LM33, LM36, AVC02 (ST131-O25b:H4) and AVC03 (O25b, non-ST131) are clinical
 strains responsible for ventilator-associated pneumonia,
- 536 (ST127-O6), LM02 (ST69-O17) and ECOR51 (ST73-O25a) have been used as a
 source of their corresponding LPS,

- 81009 WT (ST131-O25b:H4) and its isogenic rough derivative (a mutant strain
 obtained by deleting the gene encoding for the O-antigen ligase)²⁴ were used to
 prove the LPS-dependent interaction of LM33_P1.

109 The bacteriophages were isolated from sewage, using specific host.²⁵ By convention, 110 bacteriophages are named as follows: "host bacteria_Px" (for example LM33_P1 represents 111 the first bacteriophage isolated using strain LM33). In all experiments, bacteriophage 112 solutions were obtained after purification by using ultracentrifugation on cesium chloride 113 gradient as previously described.²⁶

For bacteriophage susceptibility testing, we used the double spot test technique²⁷ as a screening method and then we calculated the efficiency of plaquing (EOP) for all susceptible strains. EOP was calculated as the ratio of the number of plaques formed by the bacteriophage on the non-host strain to the number of plaques formed on its host, using the same bacteriophage solution. More details are provided in **Supplementary Data** – **Procedures**.

121

122 LPS extraction.

LPS extracts were obtained and purified from the same amount of bacteria using a phenolwater-diethyl ether extraction²⁸ followed by extensive dialysis against sterile pyrolyzed water. High purity LPS was confirmed by performing an agarose gel electrophoresis with ethidium bromide staining (nucleic acids detection), an SDS-PAGE 12% followed by Coomassie blue staining (proteins detection) and a silver staining to visualize the LPS Oantigen pattern (SilverSNAP Stain Kit II, Pierce).

129

130 Plaque inhibition assays with LPS extracts

From a purified stock solution of bacteriophages in TN buffer (Tris-HCl 10 mM, NaCl 150 mM, 131 pH 7.5), 3 solutions of 10⁶, 10⁵ and 10⁴ pfu/mL in TN buffer were prepared. Each of these 132 working solutions was used to prepare final tubes with bacteriophages alone (100 µL of 133 working solution + 100 μ L of pyrolyzed water) and tubes with bacteriophages + LPS (100 μ L + 134 100 µL of undiluted LPS extract). Additional tubes containing bacteriophages and decreasing 135 136 amounts of LPS were also prepared (pyrolyzed water was used to reach an identical final volume). Then, 10 µL of each final bacteriophage tubes, with and without LPS, were spotted 137 138 in triplicate on an agar plate, previously overlaid by the bacteria to test. The plates were incubated for 4 hours at 37°C before the plaque-forming units were counted in each 139 140 condition.

141

142 <u>Characterization of bacteriophage LM33 P1</u>

The adsorption assay and the one-step growth experiment were performed in triplicate as
 described by Hyman and Abedon²⁹ and as detailed in **Supplementary Data - Procedures**.

145

146 Lysis kinetics (with and without LPS extracts) and aggregation assays with O25 antibody

The lysis kinetic was performed as detailed in **Fig. S4**. Briefly, the growth of LM33 with and without LM33_P1 was followed overtime by recording optical density at 600 nm every 15 minutes. The aggregation assays were performed using an O25 *E. coli* anti-serum (see above) and observed under light microscope as detailed in **Fig. S7**.

- 151
- 152

153 Sequencing of strain LM33 and bacteriophage LM33 P1

The sequencing of bacteriophage LM33_P1 and strain LM33 was performed using Illumina sequencing technology (Illumina Inc., San Diego, CA). Genomes annotation was performed by the MicroScope plateform for strain LM33³⁰ and using the RAST server for bacteriophage

- 157 LM33_P1.³¹ See **Supplementary Data Procedures** for more details.
- 158

159 Experimental murine infections models (additional details provided in Supplementary Data -

- 160 **Procedures**)
- 161 The primary experimental outcome was the decrease in bacterial load in relevant organs.

As LM33 was originally responsible for a ventilator-associated pneumonia in an ICU patient, 162 pneumonia was initiated by intranasal administration of 1x10⁸ cfu of strain LM33 on 163 anesthetized mice (n=20) as previously described.³² The septicemia model, essentially used 164 to study intrinsic extraintestinal virulence of *E. coli* isolates,⁷ was carried out with 1x10⁹ cfu 165 of the strain H1659 (ST131-O25b:H4), injected subcutaneously into the nape of the neck 166 (n=12 mice). We used this strain because of its virulence, previously investigated.⁶ The non-167 168 lethal urinary tract infection model consists in a retrograde kidneys infection occurring after an intra-urethral injection of 5×10^7 cfu of strain LM33 into the bladder (n=23 mice), as 169 previously described.³³ In every case, the organs were aseptically removed and mechanically 170 171 homogenized in cold PBS before counting bacterial and bacteriophage content.

172

173 <u>Ethics</u>

The animals were housed in animal facilities in accordance with French and European regulations on the care and protection of laboratory animals. The protocols were approved of by the veterinary staff of the Institut Pasteur and INSERM animal facilities together with the National Ethics Committee regulating animal experimentation (authorization CETEA #2012-0018). Food and drink were provided *ad libitum*.

179

180 <u>Statistical analysis</u>

All the statistical analyses were performed by using GraphPad Prism version 5.00 (Graph-Pad Software, La Jolla, CA). The normal distribution of all the variables was checked using the Kolmogorov-Smirnov test, and the results are then expressed as mean ±SD. In case of a non184 Gaussian distribution, the results are expressed as median [25th, 75th percentile]. The 185 statistical tests (Student t test or Mann-Whitney test) were chosen accordingly.

186

187 **Results**

188

Bacteriophage LM33_P1 targets antibiotic resistant O25b E. coli strains. E. coli strain LM33 189 190 was used to isolate bacteriophage LM33 P1. The characteristics of strain LM33 are as 191 follows: an O25b:H4 serotype, a B2 phylogroup (subgroup I), a ST131 (Warwick scheme)/ST43 (Pasteur Institute scheme)²² sequence-type, a fimH allele H22 as well as a 192 193 multi-drug resistance phenotype with an extended spectrum beta-lactamase, a resistance to 194 aminoglycosides (kanamycin, tobramycin, gentamicin, netilmicin except for amikacin where an intermediate phenotype is found), sulphonamides, chloramphenicol and an intermediate 195 susceptibility to nalidixic acid. The beta-lactam resistance is supported by both a plasmid 196 197 (pLM33) and the bacterial chromosome (Table 1).

198 We determined the host range of bacteriophage LM33 P1 on a panel of 283 E. coli strains 199 belonging to various O-types (Fig. 1 and Data sheet 1 provided separately for O25 and O16 200 strains). One hundred and eighty-three (64%) of these strains were not O25b and none of 201 them was infected by LM33 P1, including twelve O25a strains and six ST131-O16 strains. Among the remaining one hundred O25b strains (encompassing 83 ST131, 4 ST69, 10 ST95 202 203 and 3 other STs), 64 (64%) were infected by LM33_P1 with a median efficiency of plaquing of 0.46 [0.09-1.27] (Fig. S1). Interestingly, LM33 P1 was found to be more efficient on STs 204 205 associated with high antibiotic resistance (ST131 and ST69, n=87) where 61 of these strains 206 (70%) were lysed whereas its efficacy was weak on STs associated with low antibiotic 207 resistance (ST95 and others, n=13) where only 3 of these strains (23%) were susceptible (Fig. 1). Finally, we did not find a correlation between the susceptibility to bacteriophage 208 209 LM33 P1 and the *fimH* allele H30, which is strongly associated with fluoroquinolone resistance among ST131 strains.³⁴ Indeed, considering the two more frequent *fimH* alleles in 210 our O25b strains (H22 and H30, n=83), the proportion of susceptible strains to LM33 P1 was 211 72% (21 out of 29) and 66% (36 out of 54) in the strains displaying respectively the H22 or 212 213 the H30 allele (p=0.6, Fisher's exact test).

Bacteriophage LM33_P1 is a lytic *Podoviridae* distantly related to bacteriophage T7. The genome of bacteriophage LM33_P1 (38 979 bp; GC content of 50.8%; 49 ORFs predicted, accession number PRJEB12445) lacks putative ORFs with homologies to integrase or recombinase.

A BLAST analysis of the genomic sequence revealed that the four closest related 219 bacteriophages were enterobacteria bacteriophages (Table S1): three coliphages called PE3-220 1, K1F,³⁵ EcoDS1 (with 94% identity on \geq 88% of its length for all of them) and bacteriophage 221 Dev2 infecting Cronobacter turicensis (with 83% identity on 85% of its length).³⁶ The 222 alignment of these related bacteriophages with LM33 P1 revealed a similar spatial genome 223 organization and confirmed the high homology between them (Fig. 2). Strikingly, the 5' 224 extremity (the first 650 nucleotides) of the tail fiber gene is highly conserved in each 225 226 bacteriophage genome, while the remaining part is highly divergent. The corresponding Nterminal region (IPR005604 / PF03906, InterPro / Pfam database) of this tail fiber protein is 227 involved in its connection to the tail-tube³⁷ while the C-terminal part, involved in host 228 229 recognition, often carries hydrolase activities such as the endosialidase of bacteriophage K1F used for exopolysaccharide degradation.^{35, 38} BLAST searches on the C-terminal part of the 230 tail fiber of bacteriophage LM33_P1 revealed a homology to a domain belonging to the 231 232 pectin lyase superfamily (IPR011050). Tridimensional structure prediction using Phyre² database³⁹ confirmed its close proximity to the endopolygalacturonase of *Erwinia carotovora* 233 that belongs to the pectin lyase superfamily (100% amino-acid predicted with a confidence 234 235 >90% for the tertiary structure, index of confidence for homologous protein 94.1%, Protein 236 Data Bank entry: 1BHE, Fig. S2).

237

Bacteriophage LM33_P1 is highly efficient and rapid *in vitro*. The adsorption of LM33_P1 bacteriophage on its host is fast with \ge 90% of the viral population attached to cells after 3.5 minutes with an adsorption constant of 1.2×10^{-8} mL/min (Fig. S3-A). Newly produced virions are detected within the bacteria by 7 minutes post-infection (eclipse period) while host lysis occurs in 9 minutes (latent period) with a burst size of 317 (95% confidence interval: 289-345) (Fig. S3-B).

In liquid medium, when LM33_P1 was mixed with its host, the absorbance value of LM33 cells started to decline (a sign of lysis) within 15 minutes at a multiplicity of infection (MOI) of 1. With much fewer bacteriophages (MOI of 10⁻⁶) lysis still occurred within 60 minutes (Fig. S4). On solid medium, LM33_P1 forms clear and large plaques, whose diameter
 increases rapidly overtime with a visible halo around clear areas. This halo suggests the
 presence of a diffusible enzyme that most likely carries a depolymerase activity⁴⁰ (Fig. S5).

250

Bacteriophage LM33_P1 specifically binds to O25b LPS O-antigen. The host range of bacteriophage LM33_P1 strongly suggested that the O-chain of LPS could be involved in its specificity. Using LPS competition assays we observed that purified LPS from strain LM33 was able to inhibit the interaction between bacteriophage LM33_P1 and strain LM33 as well as other O25b strains.

First, we demonstrated that purified LPS reduced the number of plaque-forming units when 256 mixed with bacteriophages before application on a bacterial layer (mean reduction of 1.0 257 258 ±0.23 Log₁₀ from 15 assays with five different O25b strains, Fig. S6-A). Together with the 259 reduction of the number of plaques, we observed a reduction of the plaque diameters, suggesting that the LPS molecules prevented newly released bacteriophages from infecting 260 the surrounding hosts (Fig. 3). These observations are specific of the interaction of 261 262 bacteriophage LM33_P1 with O25b strains since: i) an O25b LPS extract from strain LM33 was not able to affect the interaction of other bacteriophages targeting non O25b strains 263 264 and ii) an LPS extract from non O25b strains (O25a, O6 and O17) was unable to alter the interaction between bacteriophage LM33 P1 and strain LM33 (Table S2). 265

Second, an LPS extract from O25b strain (LM33) also reduced the infectivity of bacteriophage LM33_P1 in liquid medium in a dose dependent manner (**Fig. S6-B**), whereas LPS extracts from O6 and O25a strains had no effect.

Third, using an O-type specific antibody to aggregate O25 strains for serotyping, we found that bacteriophage LM33_P1 prevented the aggregation of strain LM33 (**Fig. S7**).

Fourth, using *E. coli* O25b 81009 and its isogenic rough derivative (an LPS deficient strain obtained by deleting the gene encoding for the O-antigen ligase)²⁴ we observed that bacteriophage LM33_P1 infects the wild type strain 81009 while the LPS deficient strain is resistant. Conversely, we confirmed that bacteriophage LM33_P1 could not adsorb on the LPS defective strain.

276

The adsorption of bacteriophage LM33_P1 is most likely hindered by capsule production.
 The production of exopolysaccharides is a well-known bacteriophage resistance mechanism

and might be involved in the non-adsorption of bacteriophage LM33_P1 observed in five randomly chosen LM33_P1 resistant strains (81009 WT, JJ1886, S242, B-1, C-1). Since, in some cases (type II capsule), the synthesis of exopolysaccharides is temperature dependent, we investigated the susceptibility of LM33_P1 on all the O25b resistant strains (n=36) at 20°C. We observed that nine of them (25%) became susceptible at this temperature (**see Data sheet 1**), supporting this hypothesis.

285

Bacteriophage LM33_P1 efficiently infects its host in vivo. As bacteriophage LM33 P1 286 exhibited impressive in vitro characteristics, we investigated its in vivo activity in three 287 different animal infection models relevant to ST131 clinical epidemiology: pneumonia, 288 septicemia and urinary tract infection (Fig. 4-6). Since strain LM33 was isolated from a 289 290 patient with pneumonia, we first attempted to trigger pneumonia in mice. Using an inoculum 50 times higher than previously reported in such model³² and despite clear 291 292 macroscopic lung lesions, strain LM33 was not lethal, preventing us from using survival as an 293 indicator of the efficacy of the bacteriophage. We therefore evaluated LM33 P1 efficacy by 294 counting the bacteria from lung homogenates collected 17 hours following infection. Three groups of mice were treated 4 hours post-infection either by control solution (PBS), or 295 296 intranasal (MOI 50) or intraperitoneal (MOI 500) bacteriophages. Independently of the administration route, we observed a 3 Log₁₀ reduction in bacterial load when the mice 297 received bacteriophage treatments compared to control group (PBS-treated animal: 5.4x10⁷ 298 cfu/g, intranasally LM33_P1-treated: 2.7x10⁴ cfu/g, intraperitoneally LM33_P1-treated: 299 300 3.3×10^4 cfu/g, p <0.01, Fig. 4). Interestingly, the number of bacteriophages in the lung tissue 301 was similar between the intranasally and intraperitoneally-treated mice despite the fact that 302 the latter had received a 10 times higher dose (Fig. 4).

303 Then, we tested bacteriophage LM33 P1 in a murine model of septicemia previously reported^{6, 7} using the H1659 ST131-O25b:H4 strain⁶ (strain LM33 was not lethal in this 304 305 model), on which LM33_P1 is as efficient as on strain LM33 (EOP = 1). Following a 306 subcutaneous inoculation of 1x10⁹ cfu, septic metastases were rapidly observed in several 307 organs (the first deaths occurred in less than 24 hours). Intraperitoneal administrations of 308 bacteriophage LM33_P1 (MOI 60, a single dose 2 hours post-infection or two doses 2 hours and 12 hours post-infection) were not sufficient to prevent the death of the animals. 309 310 However, in the subset of the animals that died within the same time interval (between 24

311 and 30 hours), the bacteria and bacteriophage content was analyzed in the liver, the spleen and the lung-heart homogenates (Fig. 5). In these organs, the number of bacteria was 312 reduced compared to the control group (untreated infected animals). A two doses regimen 313 appeared to be more efficient than a single one, enabling to reach a significant reduction of 314 approximately 1.4 Log₁₀ (the median bacterial count decreases from 8.5x10⁶ to 2.9x10⁵ in 315 the heart-lungs, from 7.7×10^5 to 3.2×10^4 in the liver and from 3.5×10^5 to 1.4×10^4 cfu/g in the 316 spleen). The bacteriophage counts were in the same order of magnitude in all the organs, 317 but were significantly higher when two doses had been administered (2.0x10¹⁰ versus 318 4.0×10^9 pfu/g, p <0.01). In addition, the amount of bacteriophages was 3 to 6 Log₁₀ higher 319 than the amount of bacteria in each mouse for all the organs. All these observations 320 revealed that bacteriophage LM33_P1 was able to infect and multiply *in vivo* in strain H1659. 321 Finally, as E. coli is a major pathogen in UTIs, we assessed the efficacy of bacteriophage 322 LM33_P1 in a murine UTI model (Fig. 6). Twenty-four hours following intra-urethral injection 323 of 5.10⁷ cfu of strain LM33, the mice received a single bacteriophage treatment 324 intraperitoneally (MOI of 200). Forty-eight hours post-infection, a 2 Log₁₀ reduction of 325 326 bacterial load was observed in the kidneys in the treated group compared to control group $(1.5 \times 10^5 \text{ versus } 8.8 \times 10^2 \text{ cfu/g, p < 0.001}).$ 327

Altogether these data firmly show the ability of bacteriophage LM33_P1 to infect O25b strains *in vivo*.

330

331 **Discussion**

One of the main advantages of bacteriophages which has often been reported is their 332 specificity to infect a few strains only within a species, having then a limited impact on the 333 334 patient's microbiota. Along with monoclonal antibodies (anti-O25b antibodies have been proven to exert a protective effect in mouse septicemia model),⁴¹ bacteriophages are the 335 only anti-infectious tools that could reach such specificity. Using an ST131-O25b:H4 clinical 336 isolate of E. coli (strain LM33), we isolated a bacteriophage, LM33 P1, which was found to 337 exclusively infect O25b strains. Interestingly, O25b O-antigen is present in the archetypal 338 ST131 clonal complex but also in the ST69, another antibiotic resistant spreading clone of E. 339 coli, the "clonal group A".^{12, 42} In a therapeutic projection and taking into account the 340 pandemic lineages of extraintestinal pathogenic *E. coli*,⁴³ we observed a greater 341

susceptibility among both of these STs (70%) compared to less antibiotic-resistant O25b STs
such as ST95 and minor ones (23%).

344 Additionally, a majority of the strains belonging to the ST131 clonal complex display an O25b O-antigen whereas a minor part, less resistant to antibiotics, display an O16 serogroup.¹⁷ The 345 346 specificity of bacteriophage LM33_P1 is linked to the O25b O-antigen and not to the 347 sequence type (*i.e.* none of the non-O25b ST131 strains were susceptible to bacteriophage LM33 P1 while all the O25b-ST69 strains tested were susceptible). Furthermore, the 348 susceptibility of ST131-O25b:H4 strains to bacteriophage LM33 P1 is independent of the 349 *fimH* allele, a marker of the epidemiologic evolution of this clone.³⁴ Besides, bacteriophage 350 LM33 P1 was unable to infect the O25a strains, despite a highly similar O-antigen structure 351 352 where polysaccharides repeated units only differ by one monosaccharide (fucose versus rhamnose), a fine discrimination that is not possible with the classical antibodies used for 353 serotyping until the recent description of O25b monoclonal antibodies.²⁴ 354

Our investigations led us to estimate that the global host coverage of bacteriophage 355 LM33 P1 on O25b strains is 64%. We consider that this coverage is reliable as we first 356 357 avoided sampling bias by screening a large collection obtained from different sources with 358 many serotypes. Second, we assessed strain susceptibility in a rigorous way using EOP determination that excludes atypical results and false positives such as those obtained with 359 lysis from without.^{44, 45} On the other hand, one limitation of our study is the origin of the 360 strains we tested: as most of them originate from European countries (76%), further studies 361 will be required to assess whether coverage of LM33_P1 is higher, equal or lower if 362 submitted to strains originating from Asian, Indian, African or American countries. 363

Finally, compared to the data available in literature, we found that LM33_P1 is the quickest T7-like bacteriophage ever reported, lysing its host within 10 minutes while T7 takes 13 to 16 minutes.^{46, 47} Part of this success is due to its absorption constant (1.2x10⁻⁸ mL/min) which was found to be 10 times higher than that of most bacteriophages⁴⁸⁻⁵¹ and its burst size which is also in the top half of the values usually observed.⁵²

To prevent phage adsorption, bacteria can mask phage receptors by the production of extracellular exopolysaccharides (capsules), which can also help bacteria to escape recognition by immune cells.^{53, 54} We found that 25% of the strains reversed their phenotype towards bacteriophage LM33_P1 from resistant to susceptible, when grown and tested at

20°C, a temperature known to turn off type II capsule production.⁵⁵ Therefore, the 373 bacteriophage LM33 P1 coverage increased to 80% among all the ST131-O25b:H4 strains 374 and to 73% among all the O25b strains tested. It was also previously shown that 375 376 bacteriophages can defeat such an exopolysaccharide shield by using tail fibers that possess depolymerase activities.⁵⁶ We can reasonably assume that the discovery of new 377 bacteriophages and/or the isolation of LM33_P1 variants could provide viruses equipped 378 with such a tail fiber-associated enzyme and thus enable to improve (by restoring the O25b 379 antigen accessibility) the coverage rate of O25b strains.⁵⁷⁻⁵⁹ 380

381 With the goal of using bacteriophages to treat human bacterial infections, the translation from in vitro activity (forming plaques) to in vivo efficacy (curing a disease) is not 382 guaranteed, despite a high success rate.⁶⁰ Our investigation into the *in vivo* curative 383 potential of bacteriophage LM33 P1 revealed indeed that, in the three models tested, this 384 385 bacteriophage was able to infect targeted bacteria in several body compartments and via 386 different administration routes. With all the limits inherent to animal experiments, our data should not be over-translated to the clinical setting. However, these results clearly show that 387 388 bacteriophages, including LM33 P1 as shown in this study, can quickly reduce the load of their host within a complex environment including the gut of mammals.⁶¹ In a therapeutic 389 approach, such bacteriophages could be used as a selective antimicrobial agent to control 390 the passive carriage of ST131-O25b:H4 strains in human gut in order to reduce its 391 dissemination, particularly in healthcare-associated environments. Indeed, E. coli strains 392 393 residing in the digestive tract constitute a well-known reservoir for urinary tract infections 394 but probably also for ventilator-associated pneumonia.¹⁵

395 Beside the classical phage therapy approach, bacteriophage LM33 P1 or its proteins offer 396 opportunities to develop several tools. The tail fiber could be used to specifically kill O25b E. coli strains using bacteriocins, as previously shown for the O104 E. coli strains involved in 397 enterohemorragic colitis.⁶² Other approaches could be considered where bacteriophages are 398 reprogrammed and could suppress antibiotic resistance genes using CRISPR-Cas system⁶³ or 399 express well-chosen beneficial enzymes to fight biofilm.⁶⁴ Deeper investigations on the 400 infectious cycle of this bacteriophage are now required to determine what molecular 401 402 mechanisms are responsible for its fast-killing component. Bacteriophage LM33 P1 could also be used from now as a starting platform to develop highly virulent synthetic
bacteriophages with various host specificity.⁶⁵

406 Acknowledgments

We thank Gabor Nagy for providing strain 81009 and its rough derivative. We thank
Catherine Branger for her helpful discussion concerning antibiotic resistance genotype and
phenotype. We are grateful to David Gordon for providing us with the Australian strains. We
warmly thank Yvonne Cloarec for English language revisions.

411 We are indebted to the following physicians (microbiologists and intensivists) who collected the clinical E. coli strains as part of the Colocoli study: M. Eveillard, A. Kouatchet, S. Lasocki, 412 413 P. Asfar (CHU d'Angers), T. Billard-Pomares, F. Magdoud, G. Barnaud (CHU Louis Mourier, Colombes), S. Corvec, K. Lakhal (CHU de Nantes), L. Armand, M. Wolff (CHU Bichat, Paris), S. 414 415 Bourdon, J. Reignier, S. Martin (CHD de Vendée, La Roche sur Yon), V. Fihman, N. Deprost, (CHU Henri Mondor, Créteil), J. Bador, P-E. Charles (CHU de Dijon), J. Goret, A. Boyer (CHU 416 417 de Bordeaux), F. Wallet, E. Jaillette, S. Nseir (CHU de Lille), L. Landraud, R. Ruimy, P-E. Danin, J. Dellamonica (CHU de Nice), J. Cremniter, J-P. Frat (CHU de Poitiers), F. Jauréguy, C. Clec'h 418 (CHU Avicenne, Bobigny), D. Decré, E. Maury (CHU Saint-Antoine, Paris). 419

420

421 **Funding**

422 This project was supported by a joint research grant from both Institut Pasteur and 423 Assistance Publique–Hôpitaux de Paris (Programme Transversal de Recherche #417 and 424 Poste d'Accueil pour praticien hospitalier).

425

426 **Transparency declarations**

427 None to declare.

429 **References**

430

431 1. Tenaillon O, Skurnik D, Picard B et al. The population genetics of commensal Escherichia coli. 432 Nat Rev Microbiol 2010; 8: 207-17. Nicolas-Chanoine MH, Bertrand X, Madec JY. Escherichia coli ST131, an intriguing clonal 433 2. 434 group. Clin Microbiol Rev 2014; 27: 543-74. 435 Rogers BA, Sidjabat HE, Paterson DL. Escherichia coli O25b-ST131: a pandemic, 3. 436 multiresistant, community-associated strain. J Antimicrob Chemother 2011; 66: 1-14. 437 Russo TA, Johnson JR. Proposal for a new inclusive designation for extraintestinal pathogenic 4. 438 isolates of Escherichia coli: ExPEC. J Infect Dis 2000; 181: 1753-4. 439 5. Picard B, Garcia JS, Gouriou S et al. The link between phylogeny and virulence in Escherichia 440 coli extraintestinal infection. Infect Immun 1999; 67: 546-53. 441 Mora A, Dahbi G, Lopez C et al. Virulence patterns in a murine sepsis model of ST131 6. 442 Escherichia coli clinical isolates belonging to serotypes O25b:H4 and O16:H5 are associated to 443 specific virotypes. PLoS One 2014; 9: e87025. 444 Johnson JR, Porter SB, Zhanel G et al. Virulence of Escherichia coli clinical isolates in a murine 7. 445 sepsis model in relation to sequence type ST131 status, fluoroquinolone resistance, and virulence 446 genotype. Infect Immun 2012; 80: 1554-62. 447 8. Peirano G, Bradford PA, Kazmierczak KM et al. Global incidence of carbapenemase-producing 448 Escherichia coli ST131. Emerg Infect Dis 2014; 20: 1928-31. 449 Coque TM, Novais A, Carattoli A et al. Dissemination of clonally related Escherichia coli 9. 450 strains expressing extended-spectrum beta-lactamase CTX-M-15. Emerg Infect Dis 2008; 14: 195-200. 451 10. Nicolas-Chanoine MH, Blanco J, Leflon-Guibout V et al. Intercontinental emergence of 452 Escherichia coli clone O25:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 2008; 61: 273-81. 453 Hasman H, Hammerum AM, Hansen F et al. Detection of mcr-1 encoding plasmid-mediated 11. 454 colistin-resistant Escherichia coli isolates from human bloodstream infection and imported chicken 455 meat, Denmark 2015. Euro Surveill 2015; 20: 30085. 456 Colomer-Lluch M, Mora A, Lopez C et al. Detection of quinolone-resistant Escherichia coli 12. 457 isolates belonging to clonal groups O25b:H4-B2-ST131 and O25b:H4-D-ST69 in raw sewage and river 458 water in Barcelona, Spain. J Antimicrob Chemother 2013; 68: 758-65. 459 Reardon S. Phage therapy gets revitalized. *Nature* 2014; **510**: 15-6. 13. 460 14. Lefort A, Panhard X, Clermont O et al. Host factors and portal of entry outweigh bacterial 461 determinants to predict the severity of Escherichia coli bacteremia. J Clin Microbiol 2011; 49: 777-83. 462 15. Messika J, Magdoud F, Clermont O et al. Pathophysiology of Escherichia coli ventilator-463 associated pneumonia: implication of highly virulent extraintestinal pathogenic strains. Intensive Care 464 Med 2012; 38: 2007-16. 465 16. Massot M, Daubie AS, Clermont O et al. Phylogenetic, virulence and antibiotic resistance 466 characteristics of commensal strain populations of Escherichia coli from community subjects in the 467 Paris area in 2010 and evolution over 30 years. *Microbiology* 2016; 162: 642-50. 468 17. Johnson JR, Clermont O, Johnston B et al. Rapid and specific detection, molecular 469 epidemiology, and experimental virulence of the O16 subgroup within Escherichia coli sequence type 470 131. J Clin Microbiol 2014; 52: 1358-65. 471 Clermont O, Olier M, Hoede C et al. Animal and human pathogenic Escherichia coli strains 18. 472 share common genetic backgrounds. Infect Genet Evol 2011; 11: 654-62. 473 19. Clermont O, Christenson JK, Daubie AS et al. Development of an allele-specific PCR for 474 Escherichia coli B2 sub-typing, a rapid and easy to perform substitute of multilocus sequence typing. J 475 Microbiol Methods 2014; 101: 24-7.

476 20. Ochman H, Selander RK. Standard reference strains of Escherichia coli from natural 477 populations. J Bacteriol 1984; 157: 690-3. 478 21. Clermont O, Christenson JK, Denamur E et al. The Clermont Escherichia coli phylo-typing 479 method revisited: improvement of specificity and detection of new phylo-groups. Environ Microbiol 480 Rep 2013; 5: 58-65. 481 22. Clermont O, Gordon D, Denamur E. A guide to the various phylogenetic classification 482 schemes for Escherichia coli and the correspondence among schemes. *Microbiology* 2015; 161 (Pt 5): 483 980-8. 484 23. Clermont O, Johnson JR, Menard M et al. Determination of Escherichia coli O types by allele-485 specific polymerase chain reaction: application to the O types involved in human septicemia. Diagn 486 Microbiol Infect Dis 2007; 57: 129-36. 487 Szijarto V, Lukasiewicz J, Gozdziewicz TK et al. Diagnostic potential of monoclonal antibodies 24. 488 specific to the unique O-antigen of multidrug-resistant epidemic Escherichia coli clone ST131-489 O25b:H4. Clin Vaccine Immunol 2014; 21: 930-9. 490 Van Twest R, Kropinski AM. Bacteriophage enrichment from water and soil. Methods Mol Biol 25. 491 2009; 501: 15-21. 492 26. Boulanger P. Purification of bacteriophages and SDS-PAGE analysis of phage structural 493 proteins from ghost particles. Methods Mol Biol 2009; 502: 227-38. 494 27. Saussereau E, Vachier I, Chiron R et al. Effectiveness of bacteriophages in the sputum of 495 cystic fibrosis patients. Clin Microbiol Infect 2014; 20: 0983-90. 496 28. Davis MR, Jr., Goldberg JB. Purification and visualization of lipopolysaccharide from Gram-497 negative bacteria by hot aqueous-phenol extraction. J Vis Exp 2012; (63). 3916. 498 Hyman P, Abedon ST. Practical methods for determining phage growth parameters. Methods 29. 499 Mol Biol 2009; 501: 175-202. 500 30. Vallenet D, Belda E, Calteau A et al. MicroScope--an integrated microbial resource for the 501 curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res 2013; 41: D636-502 47. 503 31. Aziz RK, Bartels D, Best AA et al. The RAST Server: rapid annotations using subsystems 504 technology. BMC Genomics 2008; 9: 75. 505 32. Dufour N, Debarbieux L, Fromentin M et al. Treatment of Highly Virulent Extraintestinal 506 Pathogenic Escherichia coli Pneumonia With Bacteriophages. Crit Care Med 2015; 43: e190-8. 507 33. Vimont S, Boyd A, Bleibtreu A et al. The CTX-M-15-producing Escherichia coli clone O25b: H4-508 ST131 has high intestine colonization and urinary tract infection abilities. PLoS One 2012; 7: e46547. 509 34. Johnson JR, Tchesnokova V, Johnston B et al. Abrupt emergence of a single dominant 510 multidrug-resistant strain of Escherichia coli. J Infect Dis 2013; 207: 919-28. 511 35. Scholl D, Merril C. The genome of bacteriophage K1F, a T7-like phage that has acquired the 512 ability to replicate on K1 strains of Escherichia coli. J Bacteriol 2005; 187: 8499-503. 513 Kajsik M, Oslanecova L, Szemes T et al. Characterization and genome sequence of Dev2, a 36. 514 new T7-like bacteriophage infecting Cronobacter turicensis. Arch Virol 2014; 159: 3013-9. 515 37. Steven AC, Trus BL, Maizel JV et al. Molecular substructure of a viral receptor-recognition 516 protein. The gp17 tail-fiber of bacteriophage T7. J Mol Biol 1988; 200: 351-65. 517 38. Casjens SR, Molineux IJ. Short noncontractile tail machines: adsorption and DNA delivery by 518 podoviruses. Adv Exp Med Biol 2012; 726: 143-79. 519 39. Kelley LA, Mezulis S, Yates CM et al. The Phyre2 web portal for protein modeling, prediction 520 and analysis. Nat Protoc 2015; 10: 845-58. 521 40. Adams MH, Park BH. An enzyme produced by a phage-host cell system. II. The properties of 522 the polysaccharide depolymerase. Virology 1956; 2: 719-36. 523 41. Szijarto V, Guachalla LM, Visram ZC et al. Bactericidal monoclonal antibodies specific to the 524 lipopolysaccharide O antigen from multidrug-resistant Escherichia coli clone ST131-O25b:H4 elicit 525 protection in mice. Antimicrob Agents Chemother 2015; 59: 3109-16. 526 42. Manges AR, Johnson JR, Foxman B et al. Widespread distribution of urinary tract infections 527 caused by a multidrug-resistant Escherichia coli clonal group. N Engl J Med 2001; 345: 1007-13.

528 43. Riley LW. Pandemic lineages of extraintestinal pathogenic Escherichia coli. Clin Microbiol 529 Infect 2014; **20**: 380-90. 530 44. Khan Mirzaei M, Nilsson AS. Isolation of phages for phage therapy: a comparison of spot tests 531 and efficiency of plating analyses for determination of host range and efficacy. PLoS One 2015; 10: 532 e0118557. 533 45. Abedon ST. Lysis from without. *Bacteriophage* 2011; **1**: 46-9. 534 46. Heineman RH, Bull JJ. Testing optimality with experimental evolution: lysis time in a 535 bacteriophage. Evolution 2007; 61: 1695-709. 536 47. Nguyen HM, Kang C. Lysis delay and burst shrinkage of coliphage T7 by deletion of terminator 537 Tphi reversed by deletion of early genes. J Virol 2014; 88: 2107-15. 538 48. Bayer ME. Adsorption of bacteriophages to adhesions between wall and membrane of 539 Escherichia coli. J Virol 1968; 2: 346-56. 540 Olkkonen VM, Bamford DH. Quantitation of the adsorption and penetration stages of 49. 541 bacteriophage phi 6 infection. Virology 1989; 171: 229-38. 542 50. Puck TT, Garen A, Cline J. The mechanism of virus attachment to host cells. I. The role of ions 543 in the primary reaction. J Exp Med 1951; 93: 65-88. 544 Storms ZJ, Smith L, Sauvageau D et al. Modeling bacteriophage attachment using adsorption 51. 545 efficiency. Biochemical Engineering Journal 2012; 64: 22-9. 546 52. De Paepe M, Taddei F. Viruses' life history: towards a mechanistic basis of a trade-off 547 between survival and reproduction among phages. PLoS Biol 2006; 4: e193. 548 53. Labrie SJ, Samson JE, Moineau S. Bacteriophage resistance mechanisms. Nat Rev Microbiol 549 2010; 8: 317-27. 550 54. Jann K, Jann B. Polysaccharide antigens of Escherichia coli. Rev Infect Dis 1987; 9 Suppl 5: 551 S517-26. 552 55. Whitfield C. Biosynthesis and assembly of capsular polysaccharides in Escherichia coli. Annu 553 Rev Biochem 2006; 75: 39-68. 554 56. Pires DP, Oliveira H, Melo LD et al. Bacteriophage-encoded depolymerases: their diversity 555 and biotechnological applications. Appl Microbiol Biotechnol 2016; 100: 2141-51. 556 Born Y, Fieseler L, Klumpp J et al. The tail-associated depolymerase of Erwinia amylovora 57. 557 phage L1 mediates host cell adsorption and enzymatic capsule removal, which can enhance infection 558 by other phage. Environ Microbiol 2014; 16: 2168-80. 559 58. Lin TL, Hsieh PF, Huang YT et al. Isolation of a bacteriophage and its depolymerase specific for 560 K1 capsule of Klebsiella pneumoniae: implication in typing and treatment. J Infect Dis 2014; 210: 561 1734-44. 562 59. Schmerer M, Molineux IJ, Bull JJ. Synergy as a rationale for phage therapy using phage 563 cocktails. PeerJ 2014; 2: e590. 564 60. Henry M, Lavigne R, Debarbieux L. Predicting in vivo efficacy of therapeutic bacteriophages 565 used to treat pulmonary infections. Antimicrob Agents Chemother 2013; 57: 5961-8. 566 61. Galtier M, De Sordi L, Maura D et al. Bacteriophages to reduce gut carriage of antibiotic 567 resistant uropathogens with low impact on microbiota composition. Environ Microbiol 2016. 568 Scholl D, Gebhart D, Williams SR et al. Genome sequence of E. coli O104:H4 leads to rapid 62. 569 development of a targeted antimicrobial agent against this emerging pathogen. PLoS One 2012; 7: 570 e33637. 571 63. Yosef I, Manor M, Kiro R et al. Temperate and lytic bacteriophages programmed to sensitize 572 and kill antibiotic-resistant bacteria. Proc Natl Acad Sci U S A 2015; 112: 7267-72. 573 64. Lu TK, Collins JJ. Dispersing biofilms with engineered enzymatic bacteriophage. Proc Natl 574 Acad Sci U S A 2007; 104: 11197-202. Ando H, Lemire S, Pires DP et al. Engineering Modular Viral Scaffolds for Targeted Bacterial 575 65. 576 Population Editing. *Cell Systems* 2015; 1: 187-96. 577 66. Zankari E, Hasman H, Cosentino S et al. Identification of acquired antimicrobial resistance 578 genes. J Antimicrob Chemother 2012; 67: 2640-4.

Table 1. Main genotypic characteristics of strain LM33 and its plasmid pLM33

Seneral information								
Genome size: 5 450 287 bp	GC content: 51.5 %	Number of genes: 5 276						
Sequence type : ST131	Serotype: O25b:H4	Phylogroup: B2						
(according to the Achtman scheme)		fimH allele: 22						
Genes coding for antibiotic resista	nce [*]							
Aminoglycoside resistance: strB, o	aacA4, strA, aac(6′)-IIc							
Beta-lactam resistance: blaDHA-7	, blaSHV-12, blaTEM-1C							
Quinolone resistance: aac(6')Ib-cr, qnrB4								
	MLS resistance: <i>ere(A)</i>							
MLS resistance: ere(A)								
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop	rim: <i>dfrA18</i>							
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information	rim: <i>dfrA18</i> ber: PRJEB9970)							
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information Plasmid size: 296 909 bp	rim: <i>dfrA18</i> ber: PRJEB9970) GC content: 47.2%	Number of genes: 382						
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information Plasmid size: 296 909 bp Incompatibility group: H	rim: <i>dfrA18</i> ber: PRJEB9970) GC content: 47.2%	Number of genes: 382						
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information Plasmid size: 296 909 bp Incompatibility group: H Genes coding for antibiotic resista	rim: <i>dfrA18</i> ber: PRJEB9970) GC content: 47.2% nce [*]	Number of genes: 382						
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information Plasmid size: 296 909 bp Incompatibility group: H Genes coding for antibiotic resista Aminoglycoside resistance: <i>strA</i> , 5	rim: <i>dfrA18</i> ber: PRJEB9970) GC content: 47.2% nce [*] strB, aacA4, aac(6')-IIc	Number of genes: 382						
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information Plasmid size: 296 909 bp Incompatibility group: H Genes coding for antibiotic resista Aminoglycoside resistance: <i>strA</i> , S Beta-lactam resistance: <i>blaSHV-1</i>	rim: <i>dfrA18</i> ber: PRJEB9970) GC content: 47.2% nce [*] strB, aacA4, aac(6')-IIc 2, blaTEM-1C	Number of genes: 382						
MLS resistance: <i>ere(A)</i> Sulphonamide: <i>sul1</i> ; thrimethop Plasmid pLM33 (accession num General information Plasmid size: 296 909 bp Incompatibility group: H Genes coding for antibiotic resista Aminoglycoside resistance: <i>strA</i> , 3 Beta-lactam resistance: <i>blaSHV-1</i> Quinolone resistance: <i>aac(6')lb-c</i> .	rim: <i>dfrA18</i> ber: PRJEB9970) GC content: 47.2% nce [*] strB, aacA4, aac(6')-IIc 2, blaTEM-1C	Number of genes: 382						

Figure 1: O-type distribution of the 283 *E. coli* strains tested for their susceptibility to bacteriophage LM33_P1. The numbers in brackets represent the number of strains tested, for each O-type. None of the non-O25b strains was infected by bacteriophage LM33_P1. The proportion of O25b strains regarding bacteriophage LM33_P1 susceptibility (S, susceptible or R, resistant) and sequence type is represented on the right part.

589 O25b+INS stands for the strains possessing an O25b genotype based on the *rfb* locus 590 sequence but with an insertion sequence within the *wbbL* gene located at the end of the 591 operon, just upstream the *gnd* gene, and responsible for a non-O25b phenotype.

- 592
- 593
- 594

- 595
- 596
- 597
- 598
- 599

Figure 2. Genome alignment of bacteriophage LM33_P1 with its four closest related bacteriophages and model bacteriophage T7. The homology in nucleotide sequence is color-coded (see scale). The blue arrows correspond to the genes and indicate their transcription direction. Blue arrows correspond to the gene coding for the tail fiber protein. Only the homologies with an E-value $\leq 10^{-3}$ and a nucleotide length ≥ 230 are represented.

605

606

Figure 3. O25b LPS extract inhibits bacteriophage LM33_P1 infection: appearance on agar plates. An LPS extract from strain LM33 was mixed with bacteriophage LM33_P1 (left) or 536_P1 (right) at two different concentrations (10⁵ and 10⁴ pfu/mL) and assayed on two agar plates overlaid with an O25b strain (AVC02) or an O6 strain (536) as control. Enlargements of these two plates are shown to facilitate the observation.

- 613
- 614

Figure 4. Bacteriophage LM33_P1 *in vivo* activity in a lung infection model. Bacterial (panel A) and viral (panel B) counts 17 hours post-infection in lungs homogenates of mice infected with $1x10^8$ cfu of strain LM33. Four hours post-infection, the mice received either PBS (Ctrl, n=8, one half intranasally and the other half intraperitoneally) or bacteriophage LM33_P1 by intranasal route (ϕ IN, MOI 50, n=6) or by intraperitoneal route (ϕ IP, MOI 500, n=6). The results are expressed as individual values with median and interquartile ranges (25th and 75th percentiles). *: p <0.001 compared to control group.

- 637
- 638

- 639
- 640

641

642

Figure 5. Bacteriophage LM33_P1 in vivo activity in a septicemia model. Bacterial (panel A) 644 and viral (panel B) counts 20 hours post-infection in the indicated organs of mice infected 645 with 1x10⁹ cfu of strain H1659 (ST131-O25b:H4). Two hours post-infection, the mice 646 received intraperitoneally either PBS (Ctrl) or bacteriophage LM33_P1 at a MOI of 60 (ϕ X1: 647 one dose 2 hours post-infection, ϕ X2: two doses 2 and 12 hours post-infection). The results 648 are expressed as individual values (4 animals per condition) with median and interquartile 649 ranges (25th and 75th percentiles). §, #: p <0.05 (§) or p=0.057 (#) compared to the control 650 group (panel A) or the single-dose treatment (panel B). 651

652

655

Figure 6. Bacteriophage LM33_P1 *in vivo* activity in a urinary tract infection model. Bacterial (panel A) and viral (panel B) counts 48 hours post-infection in kidneys homogenates of mice infected with $5x10^7$ cfu of strain LM33. Twenty four hours post-infection, the mice received intraperitoneally either PBS (Ctrl, n=13) or bacteriophage LM33_P1 (ϕ , MOI 200, n=10). The results are expressed as individual values with median and interquartile ranges (25th and 75th percentiles). *: p <0.001 compared to control group.

663

664

665

Table S1

Genomic characteristics of bacteriophage LM33_P1, its four closest homologs and the reference bacteriophage T7, all belonging to the *Autographivirinae* subfamily of viruses.

Bacteriophage	Host	Genome size (bp)	ORFs (n)	GC %	Accession number
LM33-P1	E. coli	38 979	49	50.8	PRJEB12445
Т7	E. coli	39 937	60	49.0	NC_001604.1
PE3-1	E. coli	39 093	48	50.4	NC_024379.1
K1F	E. coli	39 704	43	49.8	NC_007456.1
EcoDS1	E. coli	39 252	53	49.9	NC_011042.1
Dev2	C. turicensis	38 966	45	52.6	NC_023558.1

Table S2

Data obtained during plaque test inhibition assays with different LPS extracts and randomly chosen couples of viruses-bacteria. (+)/(-): presence/absence of an inhibitory effect of LPS extract, -: not tested.

Interaction tested		Inhibitory effect of various LPS extracts				
Bacteriophage	Bacteria (serotype)	O25b (LM33)	O6 (536)	O17 (LM02)	O25a (ECOR51)	
LM33_P1	LM33 (O25b)	(+)	(-)	(-)	(-)	
	LM34 (O25b)	(+)	(-)	(-)	(-)	
	LM36 (O25b)	(+)	(-)	(-)	(-)	
	AVC02 (O25b)	(+)	(-)	(-)	(-)	
	AVC03(O25b)	(+)	(-)	(-)	(-)	
536_P1ª	536 (O6)	(-)	(-)	-	-	
423_P1 ^b	H17 (O16)	(-)	-	-	-	
416_P1 ^b	LM49 (O2b)	(-)	-	-	-	
LF82_P2 ^c	LF82 (O83)	(-)	-	-	-	
LF82_P2 ^c	RY09 (O4)	(-)	-	-	-	

^a described in reference 31 in the manuscript, ^b bacteriophages isolated using ventilator-associated pneumonia (VAP) strains (423, 416) and active on others VAP strains (H17, LM49), ^c bacteriophage isolated using an adherent-invasive *E. coli* (LF82) and active on VAP strain RY09.

Distribution of the efficiency of plaquing values of bacteriophage LM33_P1. Dots represent individual values for each of the 64 strains tested whereas median (0.46) and 25th-75th percentiles [0.09-1.27] are indicated by lines. Y-axis is in Log scale.

Predicted tertiary structure of the the C-terminal part of bacteriophage LM33_P1 tail fiber using Phyre², compared to its closest homolog (*Erwinia carotovora* endopolygalacturonase).

A. Adsorption of bacteriophage LM33_P1 on its host LM33. Strain LM33 grown in LB at 37 °C with shaking (100 rpm) was mixed with bacteriophage LM33_P1 at a MOI of 10^{-4} and aliquots were taken at the indicated time points. Dots represent the mean of 3 independent experiments with the standard deviation.

B. Bacteriophage LM33_P1 growth parameters. Bacteriophage LM33_P1 was mixed with strain LM33 (MOI 10⁻¹) at 37 °C with shaking. At the indicated time points, samples were analyzed in absence (grey lines) or in presence (black lines) of chloroform. The continuous lines represent the experimental measurements (mean of 3 independent experiments with standard error) while the dashed lines are the nonlinear regression obtained from these points.

Lysis kinetics of strain LM33 by bacteriophage LM33_P1 at different multiplicity of infection. The panel A displays the first 22 hours of kinetic and the panel B displays a magnification of the first 2 hours. The lysis kinetics of the strain LM33 were performed as described previously (Maura et al., Environ Microbiol, 2012;14(8):1844-1854) in LB, at 37°C and with various multiplicity of infection (MOI). Optical density (600 nm) was followed over time and recorded each 15 minutes on a Glomax plate reader (Promega, Madison, USA). Strain LM33 without LM33_P1 was used as a control. All the conditions were performed in triplicates and the experiment was repeated three times independently (only one representative experiment is shown). For readability purpose, only mean of triplicates are displayed without the corresponding error bars.

Α

A. The size of the plaques made by bacteriophage LM33_P1 increases rapidly over time. LM33_P1 plaque-forming units on strain LM33 as visualized on LB-agar plate after 2 hours of incubation at 37 °C (left picture) and after 6 hours of infection (right picture).

B. A large halo surrounds plaques and area of lysis made by bacteriophage LM33_P1. Three drops of 10 μ L of LM33_P1 (5x10³ pfu/mL) have been dropped off on a bacterial host layer and incubated at 37 °C for 21 (left) and 36 hours (right). A halo is clearly visible at 36 hours, surrounding the area of lysis.

A: An O25b LPS extract inhibits interactions between bacteriophage LM33_P1 and O25b strains. Variations of bacteriophage titers from 15 individual plaque tests in presence or absence of O25b LPS extract are shown. For each individual assay, the same starting bacteriophage solution was titrated in triplicate, without and with LPS extract obtained from strain LM33. Each dot represents therefore the mean titer of the 3 replicates. Four O25b strains and different concentrations of LM33_P1 have been tested (see methods). B: O25b LPS extract inhibits bacteriophage LM33_P1 activity in liquid medium. The growth of strain LM33 in liquid broth was recorded every 15 minutes using optical density (OD600nm) in absence (red curve) or in presence of bacteriophage LM33_P1 (MOI of 10⁻⁶) without (green) or with undiluted (black), 2-fold diluted (dark blue), 4-fold diluted (light blue) O25b LPS extract.

Bacteriophage LM33_P1 prevents O25 antibody-mediated aggregation of strain LM33. A commercially available specific O25 *E. coli* anti-serum, sold to perform O-antigen serotyping, was obtained from the Statens Serum Institut (Copenhagen, Denmark). The tests were performed using old liquid cultures of strain LM33 in stationary phase in LB (in order to slow down and delay bacterial lysis). Four conditions were tested, with the following mixes:

- I- LM33 (5 μL) + Saline (NaCl 0.9%, 5 μL) + TN buffer (2 μL),
- II- LM33 (5 μL) + O25Ab (5 μL, in NaCl 0.9%) + TN (2 μL),
- III- LM33 (5 μ L) pre-incubated 10 min at 20 °C with LM33_P1 (in TN, 2 μ L, MOI of 10) + O25Ab (5 μ L),
- IV- LM33 (5 μ L) pre-incubated 10 min at 20 °C with LM33_P1 (in TN, 2 μ L, MOI of 10) + Saline (5 μ L).

Following the incubation at 37 °C during 30 min, a drop (5 μ L) of each condition was put on a glass slide and covered with a cover slip for direct examination under a phase contrast microscope. The upper line shows original pictures as obtained with a 40x magnification and the lower line represents a binary black and white transformation of the above pictures generated by ImageJ software (rsb.info.nih.gov/ij/).

<u>Allele-specific PCR amplification for the identification of the *fimH* alleles 22, 30 and 41</u>

The primers for the *fimH* allele-specific PCR and the length of the PCR products were as follows:

fimH22.f (5'-TATTGGCGGTGGCAGCGCC-3'), *fimH22*.r (5'-GTTTCGCTGGTAGTAGGGAAA-3'), 234 bp; *fimH30*.f (5'-CCGCCAATGGTACCGCTATT-3'), *fimH30*.r (5'-CAGCTTTAATCGCCACCCCA-3'), 354 bp; *fimH41*.f (5'-TTTATGTAAACCTTGCGCCC-3'), *fimH41*.r (5'-AACATCACAGCCGCCAGTG-3'), 431 bp.

PCR reactions were carried out in a 20- μ l volume containing 4 μ l of 5X buffer (supplied with Taq polymerase), 10 pmol of each primer, 200 μ M each dNTP, 2 U of Taq polymerase (Promega, Charbonnières-les-Bains, France), and 3 μ l of bacterial lysate or 2 μ l of DNA. PCR was performed with an Eppendorf Mastercycler with MicroAm tubes in the following conditions: denaturation 4 min at 94° C, 30 cycles of 5 sec at 94° C and 10 sec at 65°C, and a final extension step of 5 min at 72° C.

PCR products were loaded on 2% agarose gel with SYBR® Safe DNA gel stain (Invitrogen, Cergy-Pontoise, France). Following electrophoresis, gels were photographed under UV light.

The method was validated on a panel of *E. coli* strains from which the *fimH* sequence was available, i.e. 7, 19 and 47 strains exhibiting the *fimH* allele *H22*, *H30* and *H41*, respectively, as well as 67 strains exhibiting none of these alleles (Ochman H, Selander RK. J Bacteriol. 1984 Feb;157(2):690-3 ; Clermont O, Gordon D, Denamur E. Microbiology. 2015 May;161(Pt 5):980-8 ; Johnson JR, Clermont O, Johnston B, Clabots C, Tchesnokova V, Sokurenko E, Junka AF, Maczynska B, Denamur E. J Clin Microbiol. 2014 May;52(5):1358-65.). The sensitivity and the specificity of the method were of 100%.

Bacteriophage susceptibility testing

For bacteriophage susceptibility testing, we used the double spot test technique as screening method and EOP calculation for all susceptible strains. The double spot test consisted in dropping off 10 μ L of a growing liquid culture of the bacterial strain (OD_{600nm} 0.5) on an agar plate. After drying, 1 μ L of the bacteriophage solution (LM33_P1, 10⁷ pfu/mL) was added on one half of the bacterial drop. The plate was then incubated at 37°C during 4-8 hours before reading. A susceptible strain was identified by the presence of a crescent-shaped lysis area on the bacterial drop or the visualization of individualized plaques. Efficiency of plaquing (EOP) was determined for all susceptible strains by titrating the solution of LM33_P1 on both its host (LM33) and the evaluated strain. EOP was calculated as the ratio of the number of plaques formed by the bacteriophage on the non-host strain to

the number of plaques formed on its host, using the same bacteriophage solution. Only the strains for which individualized plaques were observed were considered as susceptible strains. For strain 81009 WT and its rough derivative mutant, tests were performed at 20 °C to turn-off type II capsule expression.

Characterization of bacteriophage LM33_P1

The adsorption assay and the one-step growth experiment were performed in triplicate, using Lysogeny Broth (DifcoTM Bacto-Tryptone 10 g/L, DifcoTM Yeast extract Difco 5 g/L, NaCl 5 g/L), under constant shaking (100 rpm) at 37°C, as described by Hyman and Abedon (Practical methods for determining phage growth parameters, Methods Mol Biol 501:175-202, 2009). A correlation curve was extrapolated from raw data using nonlinear regressions (GraphPad Prism 5.0, GraphPad software, California): a dose-response model was used for the one step growth experiment (Y=Bottom + (Top-Bottom)/(1+10^((LogEC50-X)*HillSlope))) with Y=log(pfu/infected cell) and X=time) and an exponential model with one phase decay for adsorption experiment (Y=(Y0 - Plateau)*exp(-K*X) + Plateau with Y=free phages(%), X=time). The growth parameters (eclipse and latent period, burst size) were then derived from these regressions. The adsorption constant was calculated as -p/N where p is the slope of the straight line obtained after a natural logarithm transform and N the concentration of bacteria at the beginning of the adsorption assay.

Sequencing of the strain LM33 and bacteriophage LM33_P1

The sequencing of bacteriophage LM33_P1 and strain LM33 was performed using Illumina sequencing technology (Illumina Inc., San Diego, CA). The LM33_P1 DNA was extracted from a purified bacteriophage solution, using DNase and RNase pretreatments followed by a phenol-chloroform extraction as described by Pickard (Pickard DJ, 2009, Preparation of bacteriophage lysates and pure DNA. Methods Mol Biol). The LM33 genomic DNA was extracted using a MaxWell Tissue DNA Purification kit (Promega, Madison, WI). Genomes annotation was performed by the MicroScope plateform for strain LM33 (Vallenet D, 2013, MicroScope: an integrated microbial resource for the curation and comparative analysis of genomic and metabolic data. Nucleic Acids Res) and with the RAST server for bacteriophage LM33_P1 (Aziz RK, 2008, The RAST Server: rapid annotations using subsystems technology. BMC Genomics), followed by manual curation.

Murine experimental infections models

The animals were housed in authorized animal facilities in accordance with French and European regulations on the care and protection of laboratory animals. The protocols were approved of by the veterinary staff of the Institut Pasteur and INSERM animal facilities, as well as the National Ethics Committee regulating animal experimentation. The animals were housed in a SPF animal facility rated biosafety level 3 (Institut Pasteur) or 2 (INSERM). Food and drink were provided *ad libitum*. The mice were housed in separate ventilated cages corresponding to each group (control or phage-treated) and were visited at least twice daily to monitor health status. A daily weighing was performed and the mice were euthanized if weight loss greater than 20%, a limit that had never been reached here. The control group was always handled first (before the phage-treated group) to avoid phage contamination of the control group. The period of time between the infection and the treatment (phage or mock) was recorded and was identical between each group.

For each infection model, the results provided are the sum of two or three independent experiments.

The bacteriophage solutions administered in the animal experiments were obtained from purified stock (as described in Material and Methods) and were submitted to an additional purification procedure to reduce endotoxin level using an affinity chromatography-based endotoxin removal kit (EndoTrap blue, Hyglos, Germany).

Pneumonia was initiated by intranasal administration of 1×10^8 cfu of strain LM33 on 20 anesthetized eight-week-old 25 g BALB/cJRj male mice (Janvier, Le Genest Saint Isle, France). The mice were treated using bacteriophage LM33_P1 four hours post-infection (n=12), either by using the intranasal route (multiplicity of infection of 50, *i.e.* a ratio of viruses to bacteria equal to 50) or the intraperitoneal route (MOI of 500). Control mice (n=8) received accordingly an intranasal or intraperitoneal identical volume of PBS (phosphate-buffered saline). The lungs were collected 17 hours post-infection on euthanized animals. An intraperitoneal administration of 1.25 µg (50 µg/kg) of buprenorphine (Buprecare; AST Farma, Oudewater, The Netherlands) was systematically performed on all the mice at 8 hours post infection to limit the pain and the dyspnea.

The septicemia model, as previously described, is essentially used to study the intrinsic extraintestinal virulence of *E. coli* isolates. Twelve four-week-old 17 g OF1 female mice (Janvier, Le Genest Saint Isle, France) were injected subcutaneously into the nape of the neck with 1×10^9 cfu of strain H1659 (ST131-O25b:H4). Because of the high inoculum used, we tested both a single and a double dose of bacteriophages: the single dose (MOI 60) was administered by an intraperitoneal injection 2 hours post-infection (n=4) while the double dose consisted in an injection (MOI 60) administered 2 and 12 hours post-infection (n=4). Control mice (n=4) received an identical volume of PBS. Organs targeted by septic metastasis

(heart-lung, spleen and liver) were collected on the animals that died between 24 to 30 hours post-infection.

The urinary tract infection model consists in a retrograde kidneys infection occurring after an intra-urethral injection of $5x10^7$ cfu of strain LM33 in the bladder (23 mice). Twenty-four hours after the infection, 8-week-old 17 g CBA/j female mice (Charles River, Chatillon-sur-Chalaronne, France) were treated intraperitoneally with LM33_P1 (MOI of 200, n=10) while control mice (n=13) received an identical volume of PBS. The kidneys were collected 48 hours post-infection.

The euthanasia of animals was performed by asphyxiation with rising concentration of CO₂. In every case, the organs were mechanically homogenized in cold PBS using a gentleMACS Octo Dissociator (Milteny Biotec, Bergisch Gladbach, Germany) before being serially diluted and spread on Drigalski agar plates containing appropriate antibiotic to numerate colony, in triplicate. The bacteriophage count was performed in triplicate on supernatant after centrifugation of the homogenates according to routine methods.