S. Argimon, J. A. Wishart, R. Leng, S. Macaskill, A. Mavor et al., Developmental regulation of an adhesin gene during cellular morphogenesis in the fungal pathogen Candida albicans, Eukaryot. Cell, vol.6, pp.682-692, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02146803

C. J. Barelle, C. L. Manson, D. M. Maccallum, F. C. Odds, N. A. Gow et al., GFP as a quantitative reporter of gene regulation in Candida albicans, Yeast, vol.21, pp.333-340, 2004.

C. J. Barelle, C. L. Priest, D. M. Maccallum, N. A. Gow, F. C. Odds et al., Niche-specific regulation of central metabolic pathways in a fungal pathogen, Cell. Microbiol, vol.8, pp.961-971, 2006.

A. J. Brown, G. Bertram, P. J. Feldmann, M. W. Peggie, and R. K. Swoboda, Codon utilisation in the pathogenic yeast, Candida albicans, Nucleic Acids Res, vol.19, p.4298, 1991.

R. Calderone, Candida and candidiasis, 2002.

C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson et al., Photonic detection of bacterial pathogens in living hosts, Mol. Microbiol, vol.18, pp.593-603, 1995.

B. P. Cormack, G. Bertram, M. Egerton, N. A. Gow, S. Falkow et al., Yeast-enhanced green fluorescent protein (yEGFP): a reporter of gene expression in Candida albicans, Microbiology, vol.143, pp.303-311, 1997.

T. C. Doyle, K. A. Nawotka, C. B. Kawahara, K. P. Francis, and P. R. Contag, Visualizing fungal infections in living mice using bioluminescent pathogenic Candida albicans strains transformed with the firefly luciferase gene, Microb. Pathog, vol.40, pp.82-90, 2006.

T. C. Doyle, K. A. Nawotka, A. F. Purchio, A. R. Akin, K. P. Francis et al., Expression of firefly luciferase in Candida albicans and its use in the selection of stable transformants, Microb. Pathog, vol.40, pp.69-81, 2006.

B. Enjalbert, D. M. Maccallum, F. C. Odds, and A. J. Brown, Nichespecific activation of the oxidative stress response by the pathogenic fungus Candida albicans, Infect. Immun, vol.75, pp.2143-2151, 2007.
URL : https://hal.archives-ouvertes.fr/hal-02146800

W. A. Fonzi and M. Y. Irwin, Isogenic strain construction and gene mapping in Candida albicans, Genetics, vol.134, pp.717-728, 1993.

C. Fradin, M. Kretschmar, T. Nichterlein, C. Gaillardin, C. Enfert et al., Stage-specific gene expression of Candida albicans in human blood, Mol. Microbiol, vol.47, pp.1523-1543, 2003.

A. A. Gaspari, R. Burns, A. Nasir, D. Ramirez, R. K. Barth et al., CD86 (B7-2), but not CD80 (B7-1), expression in the epidermis of transgenic mice enhances the immunogenicity of primary cutaneous Candida albicans infections, Infect. Immun, vol.66, pp.4440-4449, 1998.

N. A. Gow, Y. Knox, C. A. Munro, and W. D. Thompson, Infection of chick chorioallantoic membrane (CAM) as a model for invasive hyphal growth and pathogenesis of Candida albicans, Med. Mycol, vol.41, pp.331-338, 2003.

S. Goyard, P. Knechtle, M. Chauvel, A. Mallet, M. C. Prevost et al., The Yak1 kinase is involved in the initiation and maintenance of hyphal growth in Candida albicans, Mol. Biol. Cell, vol.19, pp.2251-2266, 2008.

C. B. Green, X. Zhao, and L. L. Hoyer, Use of green fluorescent protein and reverse transcription-PCR to monitor Candida albicans agglutinin-like sequence gene expression in a murine model of disseminated candidiasis, Infect. Immun, vol.73, pp.1852-1855, 2005.

J. B. Harry, B. G. Oliver, J. L. Song, P. M. Silver, J. T. Little et al., Drug-induced regulation of the MDR1 promoter in Candida albicans, Antimicrob. Agents Chemother, vol.49, pp.2785-2792, 2005.

R. Hay, The management of superficial candidiasis, J. Am. Acad. Dermatol, vol.40, pp.35-42, 1999.

M. Hutchens and G. D. Luker, Applications of bioluminescence imaging to the study of infectious diseases, Cell. Microbiol, vol.9, pp.2315-2322, 2007.

A. Y. Koh, J. R. Kohler, K. T. Coggshall, N. Van-rooijen, and G. B. Pier, Mucosal damage and neutropenia are required for Candida albicans dissemination, PLoS Pathog, vol.4, p.35, 2008.


S. A. Lachke, T. Srikantha, and D. R. Soll, The regulation of EFG1 in white-opaque switching in Candida albicans involves overlapping promoters, Mol. Microbiol, vol.48, pp.523-536, 2003.

A. T. Lloyd and P. M. Sharp, Evolution of codon usage patterns: the extent and nature of divergence between Candida albicans and Saccharomyces cerevisiae, Nucleic Acids Res, vol.20, pp.5289-5295, 1992.

M. C. Lorenz, J. A. Bender, and G. R. Fink, Transcriptional response of Candida albicans upon internalization by macrophages, Eukaryot. Cell, vol.3, pp.1076-1087, 2004.

D. M. Maccallum and F. C. Odds, Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice, Mycoses, vol.48, pp.151-161, 2005.

W. Magliani, S. Conti, A. Salati, S. Arseni, R. Frazzi et al., New strategies for treatment of Candida vaginal infections, Rev. Iberoam. Micol, vol.19, pp.144-148, 2002.

S. R. Mays, M. A. Bogle, and G. P. Bodey, Cutaneous fungal infections in the oncology patient: recognition and management, Am. J. Clin. Dermatol, vol.7, pp.31-43, 2006.

E. Moreno-ruiz, G. Ortu, P. W. De-groot, F. Cottier, C. Loussert et al., The GPI-modified proteins Pga59 and Pga62 of Candida albicans are required for cell wall integrity, Microbiology, vol.155, pp.2004-2020, 2009.

J. Morschhauser, S. Michel, and J. Hacker, Expression of a chromosomally integrated, single-copy GFP gene in Candida albicans, and its use as a reporter of gene regulation, Mol. Gen. Genet, vol.257, pp.412-420, 1998.

A. M. Murad, P. R. Lee, I. D. Broadbent, C. J. Barelle, and A. J. Brown, CIp10, an efficient and convenient integrating vector for Candida albicans, Yeast, vol.16, pp.325-327, 2000.

K. K. Myers, W. A. Fonzi, and P. S. Sypherd, Isolation and sequence analysis of the gene for translation elongation factor 3 from Candida albicans, Nucleic Acids Res, vol.11, pp.1705-1710, 1992.

M. G. Netea, N. A. Gow, C. A. Munro, S. Bates, C. Collins et al., Immune sensing of Candida albicans requires cooperative recognition of mannans and glucans by lectin and Toll-like receptors, J. Clin. Investig, vol.116, pp.1642-1650, 2006.

Q. T. Phan, C. L. Myers, Y. Fu, D. C. Sheppard, M. R. Yeaman et al., Als3 is a Candida albicans invasin that binds to cadherins and induces endocytosis by host cells, PLoS biology, vol.5, p.64, 2007.

D. Pietrella, R. Mazzolla, P. Lupo, L. Pitzurra, M. J. Gomez et al., Mannoprotein from Cryptococcus neoformans promotes T-helper type 1 anticandidal responses in mice, Infect. Immun, vol.70, pp.6621-6627, 2002.

M. A. Santos and M. F. Tuite, The CUG codon is decoded in vivo as serine and not leucine in Candida albicans, Nucleic Acids Res, vol.23, pp.1481-1486, 1995.

S. P. Saville, A. L. Lazzell, C. Monteagudo, and J. L. Lopez-ribot, Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection, Eukaryot. Cell, vol.2, pp.1053-1060, 2003.

M. Schaller, M. Bein, H. C. Korting, S. Baur, G. Hamm et al., The secreted aspartyl proteinases Sap1 and Sap2 cause tissue damage in an in vitro model of vaginal candidiasis based on reconstituted human vaginal epithelium, Infect. Immun, vol.71, pp.3227-3234, 2003.

I. Serganova, E. Moroz, M. Moroz, N. Pillarsetty, and R. Blasberg, Non-invasive molecular imaging and reporter genes, Centr. Eur. J. Biol, vol.1, pp.88-123, 2006.

F. Sherman, Getting started with yeast, Methods Enzymol, vol.194, pp.3-21, 1991.

J. Sobel, Pathogenesis and treatment of recurrent vulvovaginal candidiasis, Clin. Infect. Dis, vol.14, pp.148-153, 1992.

J. Sobel, Pathogenesis of recurrent vulvovaginal candidiasis, Curr. Infect. Dis. Rep, vol.4, pp.514-519, 2002.

T. Srikantha, A. Klapach, W. W. Lorenz, L. K. Tsai, L. A. Laughlin et al., The sea pansy Renilla reniformis luciferase serves as a sensitive bioluminescent reporter for differential gene expression in Candida albicans, J. Bacteriol, vol.178, pp.121-129, 1996.

J. F. Staab, C. A. Ferrer, and P. Sundstrom, Developmental expression of a tandemly repeated, proline-and glutamine-rich amino acid motif on hyphal surfaces on Candida albicans, J. Biol. Chem, vol.271, pp.6298-6305, 1996.

S. L. Stroschein-stevenson, E. Foley, P. H. O'farrell, and A. D. Johnson, Identification of Drosophila gene products required for phagocytosis of Candida albicans, PLoS Biol, vol.4, p.4, 2006.

B. A. Tannous, D. E. Kim, J. L. Fernandez, R. Weissleder, and X. O. Breakefield, Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo, Mol. Ther, vol.11, pp.435-443, 2005.

S. Thewes, M. Kretschmar, H. Park, M. Schaller, S. G. Filler et al., In vivo and ex vivo comparative transcriptional profiling of invasive and non-invasive Candida albicans isolates identifies genes associated with tissue invasion, Mol. Microbiol, vol.63, pp.1606-1628, 2007.

M. A. Uhl and A. D. Johnson, Development of Streptococcus thermophilus lacZ as a reporter gene for Candida albicans, Microbiology, vol.147, pp.1189-1195, 2001.

M. Verhaegent and T. K. Christopoulos, Recombinant Gaussia luciferase. Overexpression, purification, and analytical application of a bioluminescent reporter for DNA hybridization, Anal. Chem, vol.74, pp.4378-4385, 2002.

A. Walther and J. Wendland, An improved transformation protocol for the human fungal pathogen Candida albicans, Curr. Genet, vol.42, pp.339-343, 2003.

R. B. Wilson, D. Davis, and A. P. Mitchell, Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions, J. Bacteriol, vol.181, pp.1868-1874, 1999.

K. Zakikhany, J. R. Naglik, A. Schmidt-westhausen, G. Holland, M. Schaller et al., In vivo transcript profiling of Candida albicans identifies a gene essential for interepithelial dissemination, Cell. Microbiol, vol.9, pp.2938-2954, 2007.