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Abstract
The Prion Protein (PrP) is an ubiquitously expressed glycosylated membrane protein

attached to the external leaflet of the plasma membrane via a glycosylphosphatidylinositol

anchor (GPI). While the misfolded PrPSc scrapie isoform is the infectious agent of prion dis-

ease, the cellular isoform (PrPC) is an enigmatic protein with unclear function. Of interest,

PrP localization in polarized MDCK cells is controversial and its mechanism of trafficking is

not clear. Here we investigated PrP traffic in MDCK cells polarized on filters and in three-

dimensional MDCK cysts, a more physiological model of polarized epithelia. We found that,

unlike other GPI-anchored proteins (GPI-APs), PrP undergoes basolateral-to-apical trans-

cytosis in fully polarized MDCK cells. Following this event full-length PrP and its cleavage

fragments are segregated in different domains of the plasma membrane in polarized cells in

both 2D and 3D cultures.

Introduction
The cellular isoform of the prion protein (PrPC) is a glycosylphosphatidylinositol-anchored
protein (GPI-AP) ubiquitously expressed in different tissues, with high levels in the nervous
and lymphoid tissues, and lower levels in muscles, heart, digestive tract and skin [1]. The physi-
ological function of PrPC is still elusive [2]. Prion protein has received considerable attention
due to its central role in the development of Transmissible Spongiform Encephalopathies
(TSEs), in animals and humans [1,3]. In these neurodegenerative disorders, PrPC converts into
a pathological conformation, called PrPSc (where Sc stands for Scrapie), which results in con-
siderable toxicity to cells of the central nervous system, with neurons being, progressively, the
most damaged. Additionally, several studies have previously reported that the alteration of
intracellular trafficking of PrP affects the conversion of PrPC to PrPSc, and therefore PrP physi-
ological function [4–6]. It has also been shown that in prion-infected cells, post-Golgi transport
of PrPC and other proteins are impaired, thereby possibly contributing to pathophysiology [7].
PrP at steady state undergoes post-translational processing generating N-ter and C-ter frag-
ments [8–11]. For instance, in the sciatic nerve PrP cleavage fragment C1 is enriched in the
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axonal membrane where it is necessary to maintain surrounding myelin [12]. Different PrP
cleavage fragments such as C1, C2, N1 and N2 have been shown to trigger different cell
responses and to be of importance in the prion disease pathogenesis [6,10,13–15]. Thus, under-
standing the trafficking, the processing and degradation of PrP is of fundamental importance
in order to unravel the mechanism of PrPSc mediated pathogenesis, its spreading and cytotox-
icity. Neurons are a group of highly polarized cells with axons and dendrites exhibiting distinct
structures and functions. Cell polarity is characterized by the development of asymmetry in the
plasma membrane resulting from vectorial transport of proteins and lipids to create plasma
membrane domains. The mechanisms of polarity establishment and plasma membrane
domain biogenesis have been most extensively studied in epithelial cell models, thus providing
a solid base upon which trafficking studies of individual proteins like PrP can be built in this
context. Furthermore epithelial cells and neurons share common features regarding the mecha-
nism of protein sorting [16,17]. It was proposed in 1990 that the mechanisms of protein sorting
of viral proteins such as VSV and HA are similar in both Madin-Darby canine kidney
(MDCK) and neurons [18–20]. Additionally, our current understanding of the sorting and
trafficking of GPI-APs, including PrP, results mostly from studies performed in epithelial cells
with a prevalence in MDCK cells [21–27].

We therefore focused on polarized PrP trafficking in MDCK cells as a relevant model in
which to dissect trafficking and sorting mechanisms of PrP. Additionally, previous work
addressing this issue [28–31] has also been carried out in MDCK cells stably transfected with
the human or mouse PrP cDNA. Several studies from our group have also elucidated the traf-
ficking of GPI-APs in MDCK, including the exceptional PrP [23–27, 29].

Pioneering work demonstrated that GPI-APs localize on the apical membrane in MDCK
cells [21,22,32] as well as in other epithelial cell lines [25,32]. It was shown that GPI-APs which
are preferentially sorted from the trans-Golgi network (TGN) to the apical surface follow a
direct route from the Golgi apparatus to the plasma membrane [33]. Later work from our and
other laboratories has unraveled the mechanism of apical sorting of GPI-APs, demonstrating
that both association of GPI-APs with detergent resistant membranes (DRMs) and cholesterol
dependent clustering in high molecular weight (HMW) complexes in the Golgi are necessary
for this process [24,34–36].

The one exception to direct apical sorting of native GPI-APs in MDCK cells is represented
by the prion protein. In 2002, work from our laboratory showed that mouse PrP localizes on
the basolateral membrane of fully polarized MDCK cells [29]. Several groups later addressed
the distribution and intracellular trafficking of PrP in polarized MDCK cells [28,30,31,37] but
the data did not reach a clear resolution. While De Keukeleire and collaborators [28] as well as
Christensen and Harris [37] found PrP at the apical membrane of MDCK cells, Uelhoff and
colleagues [31] confirmed our findings showing a basolateral localization of PrP. The reason
for these contradictory results has never been explained. The two major differences in these
studies are in the PrP sequence and the anti-PrP antibodies used. While De Keukeleire worked
with human PrP, the other studies employed mouse PrP. In addition, Christensen and Harris
used the C-terminal PrP antibody SA65, while our laboratory used the N-terminal antibody
SAF32. Uelhoff and colleagues introduced a 3F4 tag into the N terminal region of mouse PrP
and used a 3F4 antibody, thereby also recognizing the region of the α-cleavage (aa 108–111 in
mouse PrP). Of note, none of these publications took into account the posttranslational proteo-
lytic processing of PrP. Because PrP at steady state undergoes extensive proteolytic modifica-
tion, called α-cleavage [8–11], differential α-cleavage could also explain the contradictory
localization of PrP in polarized MDCK cells.

In this work, we addressed PrP trafficking in MDCK cells, taking into account its proteolytic
processing. Furthermore, we used MDCK cells polarized on filters and a three-dimensional
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(3D) culture system of MDCK cells cysts embedded in Matrigel™. 3D MDCK cysts recapitulate
numerous features of epithelial tissues in vivo [38,39] and therefore provide a good model to
study polarized protein trafficking under physiological conditions. We report here that full-
length PrP and its cleavage fragments are segregated in different domains of the plasma mem-
brane in polarized cells in both 2D and 3D cultures and that the ratio of the C-terminal frag-
ment to PrP full-length increases upon MDCK polarization. We found that unlike other
GPI-APs, PrP undergoes basolateral-to-apical transcytosis in fully polarized MDCK cells.

This study not only reconciles and explains the different findings in the previous literature
but also provides a better picture of PrP trafficking and processing, which has been shown to
have major implications for its role in prion disease [4,6,40–42].

Material and Methods

Reagents and antibodies
Cell culture media were purchased from Sigma-Aldrich (St. Louis, MO). Antibodies were pur-
chased as follows: anti-actin, polyclonal α-GFP and monoclonal α-GFP from Invitrogen
(Eugene, OR), SAF32 and SHA31 from Bertin pharma, France. Matrigel™ was purchased from
Corning (France), Phalloidine-Alexa647 from Thermo; all other reagents were purchased from
Sigma-Aldrich. Cycloheximide (CHX) was purchased fromMillipore (Billerica, MA, USA).

Cell culture
MDCK cells were grown in DMEM containing 5% fetal bovine serum. MDCK cells stably
expressing mouse PrP has been described previously [29]. Cells were grown on coverslips for
24 hours (non-polarized condition) or plated for 5 days on transwell filters to obtain fully
polarized cells. 3D cyst formation was performed as described in [43]. Briefly, 8 well chambers
and pipette tips were cooled down, chambers were coated with 15 μl Matrigel™ freshly melted
on ice. The gel coating was solidified for 15 min at 37°C. A low-density cell suspension (20 000
cells /ml of media) was prepared in DMEM containing Penicillin/streptomycin 5ml (100x), 5%
FBS and 2%Matrigel™. 200 μl of cell suspension was plated in each well. Media containing 2%
Matrigel™ was changed every 3 days.

Deglycosylation assay andWestern Blotting
For deglycosylation, cells were lysed in NP-40 lysis buffer (25mM Tris pH 7.5, 150 mMNaCl,
1% NP-40), and protein concentration in the cell lysate was quantified with Pierce BCA Protein
Assay Kit (Thermo scientific). 40 μg of protein was treated with 50 units of PNGase (New
England Biolabs, MA) at 37°C for 1h with agitation. Samples were mixed with SDS-loading dye
and run on a 4–12% Criterion™ XT Bis-Tris Gel (Biorad). Western blots were carried out with
SHA31 antibody (1:10000), SAF32 (1:2000), actin (1:10000). Peroxidase-conjugated secondary
antibodies to mouse were used (GE Healthcare) and blots were revealed with ECL 2Western
Blot detection reagent (Thermo).

Immunofluorescence
MDCK cells, grown either on coverslips, on transwell filters, or in Matrigel™ were washed with
phosphate-buffered saline containing CaCl2 and MgCl2 (PBS++) and then fixed. Cysts were
fixed for 30 minutes at room temperature in 2% paraformaldehyde + 0,02% glutaraldehyde,
while coverslips and transwell filters were fixed with 4% paraformaldehyde + 0,02% glutaralde-
hyde. After 15 minutes of incubation with 50 mMNH4Cl, 2 washes with PBS+/+ cells were
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saturated in non-permeabilizing buffer (PBS +/+, 20% Goat Serum) or permeabilizing buffer
(0,2% Triton, 0,04% Tween 20, 20% Goat serum in PBS +/+) for 1 hour. Primary antibodies
used in immunofluorescence SHA31 (1:500), SAF32 (1:200), were detected with Alexa-488 or
Alexa-546 conjugated secondary antibodies (1:500). Phalloidin-Alexa647 (1:100) was used to
stain actin. For 3D cultures an additional incubation with glycine (7,5 g/l in PBS +/+) for 15–
30 minutes was performed before adding primary antibodies and 2 additional glycine incuba-
tions 15–30 minutes each before addition of the secondary antibodies [44]. All treatments of
the 3D cysts were performed with continuous gentle agitation. Nuclei were stained with DAPI
for 5 min, chambers were removed and the slides were mounted with Mowiol. The images
were acquired using a laser scanning confocal microscope (LSM 700; Zeiss) equipped with a
Plan Apo 63× oil immersion (NA 1.4) objective lens.

Antibody transcytosis assay
For the transcytosis assay in 2D, cells grown on polycarbonate filters for 5 days were incubated
3h on ice with primary anti-PrP antibodies SHA31 (1:500) and SAF32 (1:200) in basolateral
media. Cells were then washed 3 times with cold DMEM and incubated at 37°C for 3 hours.
Cells were then fixed with 4% paraformaldehyde + 0,02% glutaraldehyde for 30 minutes at
room temperature, washed 15 minutes with 50 mMNH4Cl and an immunofluorescence was
performed with the appropriate Alexa-labeled secondary antibody, DAPI and Phalloidin-
Alexa647.

For the transcytosis assay in 3D, MDCK cysts grown in Matrigel™ for 5–10 days were incu-
bated for 3h or overnight at 37°C with primary anti-PrP antibodies SHA31 (1:500) and SAF32
(1:200) in the growth media. Incubation at 4°C for 3h was used as a control condition. Cysts
were fixed with 2% paraformaldehyde + 0,02% glutaraldehyde for 30 minutes at room temper-
ature, washed 15 minutes with 50 mMNH4Cl and the immunofluorescence was performed
with appropriate Alexa-labeled secondary antibody, DAPI and Phalloidin-Alexa647.

Colocalization assay
After fixation and immunofluorescence Z-stack images were acquired using a Zeiss LSM700
confocal microscope with a 63x oil plan apochromat objective (NA 1.4) to eliminate chromatic
aberration. Colocalization analysis was performed using the Coloc 2 plugin on ImageJ software
[45] (http://fiji.sc/Coloc_2).

Biotinylation and Streptavidin Precipitation
Biotinylation was performed according to the standard protocol [46,47] with modifications.
Biotinylation of monolayers on Transwell™ filters with s-NHS-biotin was carried out twice con-
secutively for 20 min at 4°C with 0.5 ml for the apical chamber and 1 ml for the basolateral
chamber. Free biotin was blocked with 50 mMNH4CI in PBS containing MgCI2 and CaCI2.
After washes 0.5 ml of DMEM was placed in apical and basolateral chambers and cells were
incubated 3h at 37°C. Media was harvested; centrifuged 5 min 5000 rpm to remove cell debris,
supernatants were supplied with 150 mM of NaCl and protease inhibitors. Media were incu-
bated for 12 h with Streptavidin-sepharose (GE). After incubation, the beads were washed
(PBS, 150mMNaCl, 0,2% BSA) 3 times consecutively (1 hour each wash) at 4°C. After the
washes the beads were treated with PNGase and subjected to Western Blot.
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Statistical analysis
All graphs show the mean+/- S.E.M. from at least 3 independent experiments. Mann–Whitney
U test was used to evaluate the significance of nonparametric data. Paired two-tailed t tests
were used for the apical vs basolateral signal distribution �p< 0.05, �� p< 0.01

Results

N- and C-terminal antibodies reveal different PrP localization in 2D and
3D polarized MDCK cultures
Polarized epithelial MDCK cells were previously used to characterize the exocytic pathway of
PrP [28–31,37]. The localization and intracellular traffic of PrP in stably transfected MDCK
cells is contradictory as some studies reported PrP to be apical [28,37] while others have shown
PrP to be basolateral [29–31]. Since in epithelial cells protein localization depends directly on
the polarity state of the cells [48] we decided to compare PrP localization in non-polarized and
fully polarized MDCK cells grown on filters (hereafter referred to as a two-dimensional (2D)
system), as well as in polarized 3DMDCK cysts growing in Matrigel™. We assessed PrP locali-
zation using 2 different antibodies to PrP: the C-terminal-targeting SHA31 (recognizing epi-
tope 148–159) and the N-terminal-targeting SAF32 (recognizing epitope 59–89) (Fig 1A and
S1 Fig). As expected, in non-polarized cells both SHA31 and SAF32 antibodies recognize the
same distribution of PrP at the cell surface with an almost complete overlap of signal (Fig 1B)
(Pearson’s R coefficient for SAF32/SHA31 colocalization, R = 0.9; Fig 1E). Surprisingly, in
polarized cells grown on filters in 2D the SAF32 and SHA31 staining clearly segregate (Fig 1C)
(Pearson’s R drops to 0.3; Fig 1E). While SAF32 antibody reveals PrP staining mostly on the
basolateral surface (65±2%), confirming our earlier results [29] SHA31 antibody reveals PrP
enrichment at the apical membrane (72±2%) (Fig 1F), as previously shown in similar condi-
tions in polarized MDCK cells [37]. Interestingly, in 3D cysts, SAF32 signal concentrates in the
cyst lumen while SHA31 is enriched at the apical surface (66±2%), similar to 2D culture (Fig
1D and 1E; Pearson’s R value in cysts is 0.63).

C-terminal fragment accumulates during the establishment of monolayer
polarity
The immunofluorescence data show that the apparent localization of PrP depends on the anti-
body used and its epitope recognition site (Fig 1A). To explain the difference in localization
obtained with two different antibodies we hypothesize that PrP in MDCK cells is proteolyti-
cally processed and truncated fragments are sorted differently from PrP FL (full-length).
Indeed SAF32 and SHA31 antibodies should recognize not only the full length PrP but also dif-
ferent cleavage products respectively (Fig 1A). The most common proteolytic processing of
PrP are α and β cleavages [10,49,50]. α-cleavage has already been shown to occur in ovine PrP
expressed in MDCK cells [51], generating two distinct products, the N- and C-terminal frag-
ments. However, PrP is a heavily glycosylated protein, which in SDS PAGE migrates as several
bands (1 diglycosylated, 2 monoglycosylated and 1 non-glycosylated band) [1] making bio-
chemical distinction between PrP FL and sugar-bearing truncated fragments difficult. There-
fore, to clearly distinguish full-length and cleavage fragments biochemically the different
samples were treated with PNGase to deglycosylate PrP.

To follow the presence and levels of PrP FL and its cleavage fragments during polarity estab-
lishment (Fig 2A), cells were plated on 6-well filters at a density of 2 million per well. Filters
were lysed at day 0 (6 hours post plating), 1 and 3 days; cell lysates were PNGase treated and
subjected to Western Blotting. Full length PrP could be detected (corresponding to a band of
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Fig 1. Different localization of PrP in non-polarized and polarized MDCK cells in 2D and 3D, revealed by using different antibodies. (A)
Schematic representation of mouse PrP α-cleavage site and the recognition sites of antibodies used in this paper. The C-terminal part of PrP (orange)
is membrane-attached via GPI-anchor; it has 2 independently occupied glycosylation sites (orange circles). Proteolytic α-cleavage occurs at the
position 109*110. After the cleavage C-terminal fragment (C-ter) stays on the plasmamembrane. C-ter as well as PrP full-length (FL) is recognized by
SHA31 antibody (orange). The N-terminal part (blue), becomes a soluble N-terminal fragment (N-ter) upon cleavage. N-ter and PrP FL are recognized
by SAF32 antibody (blue). (B), (C) and (D) Immunofluorescence images of MDCK cells stably expressing PrP (MDCK PrPwt cells). Non-polarized
cells—plated for 24 hours on Matek (B), polarized MDCK -5 days on Transwell filters (C) 3D polarized cyst- 5 days in Matrigel™ (D) were fixed and
immunostained for PrP using SAF32 antibody (red) and SHA31 antibody (green) and nuclei are stained with DAPI (blue). Scale bars 10 μm. In (C)
serial confocal sections of 0,3 μmwere collected from the top to the bottom of the cell monolayer. (E) Pearson’s R values revealing colocalization of
SAF32 and SHA31 signal in non-polarized, 2D and 3D polarized states. (**p� 0.01, Mann-Whitney test) (F)Quantification of apical vs. basolateral
distribution of SAF32 and SHA31 in 2D polarized MDCK cells (left panel) and in 3D polarized MDCK cysts (right panel). These experiments were
performed 3 independent times (20 cells quantified per experiment) and a total of 60 cells were used for the final quantification. (** p� 0.01, paired t-
test).

doi:10.1371/journal.pone.0157991.g001
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Fig 2. PrP cleavage through establishment of polarity in 2DMDCK cells. (A)MDCK PrP wt was plated in Transwell™ filters, then lysed at 6 hours
(0 days), 1, and 3 days post plating. Cell lysates were PNGase treated and analyzed by western blot, revealed with SAF32 (upper panel) or SHA31
(lower panel) antibodies. (B) Left: Quantification of C-ter/PrP FL ratio through time. Right: normalization (using Coomassie blue staining) of C-ter and
PrP levels with time. 4 independent experiments were quantified. (C)MDCK PrP wt was plated on Transwell™ filters for 5 days. At 1, 3 and 5 days
post plating growth media was replaced by serum-free media for 3 h. This media was collected and secreted proteins were methanol precipitated from
the apical or basolateral media. Precipitated media was subjected to PNGase treatment and western blotting with SHA31 antibody (left) and SAF32
antibody (right). Of note, we detect 2 different bands around 15 kDa in the apically secreted C-terminal fragment, while we detect a single band of C-ter
in the basolateral media. (D)Quantification of PrP FL revealed with either SAF32 or SHA31 (left panel), C-ter revealed with SHA31 (middle panel)
secretion and N-ter revealed with SAF32 (right panel). All densitometry quantifications were normalized to day 1. 3 independent experiments were
quantified. (*p� 0.05; **p� 0.01, Mann-Whitney test).

doi:10.1371/journal.pone.0157991.g002
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~ 27 kDa) by both SAF32 antibody and SHA31 antibody (Fig 2A). SHA31 further detected a
truncated PrP form around 15 kDa, which appears to correspond to C-ter fragment revealing
that PrP undergoes proteolytic processing, releasing fragments that can be differentially
detected by the two antibodies[8, 9, 11].

Interestingly, while in non-polarized conditions (0 dpp) PrP FL and C-terminal fragment
(C-ter) are present in comparable amounts, in fully polarized cells (3 dpp) C-ter appears to be
5 times more abundant than full-length PrP (Fig 2A lower panel). The ratio of C-ter to PrP FL
increases with monolayer maturation on filter (Fig 2B left). Interestingly the ratio of C-ter to
the total protein load (evaluated with Coomassie blue) is stable over the polarization process,
while the PrP FL level constantly decreases as shown by both the use of SAF32 and SHA31
antibodies (Fig 2A and 2B right). There are at least two hypotheses that could explain the
increase of C-ter/FL ratio through polarity establishment. PrP might be subject to differential
cleavage over time as polarity establishes. Alternatively, PrP FL and C-ter may have different
lifetimes in non-polarized versus polarized conditions. Therefore, we next investigated whether
PrP FL and C-ter fragments have a different lifetime in non-polarized and polarized condi-
tions. To this end, non-polarized and polarized MDCK cells were incubated in absence or in
presence of a protein synthesis inhibitor cycloheximide (CHX) for 1, 4 and 6h. Cell lysates
were PNGase treated, and subjected to Western Blotting with SHA31 antibody. In non-polar-
ized MDCK cells, PrP FL was not detectable after 4h of incubation with CHX while C-ter is
decreased but still detectable after 6h of incubation. We could estimate that in non-polarized
conditions, the lifetime of PrP FL is less than 2h and that of C-ter is around 4.5 hours. Interest-
ingly in polarized conditions, we calculated that the estimated lifetime of PrP FL is roughly 90
minutes while that of C-ter is around 5.5 hours, indicating that the lifetime of C-ter is longer in
polarized MDCK cells compared to non-polarized conditions (S2 Fig) and that C-ter lifetime is
longer than FL lifetime in both conditions.

N-terminal fragment is apically secreted
As the C-terminal fragment is a membrane-bound and relatively stable fragment (S2 Fig)
[8,10] in order to understand if PrP cleavage increases along with the monolayer maturation
process, we decided to monitor the kinetics of secretion of the soluble N-terminal (N-ter) frag-
ment that directly reflects the occurrence of the cleavage process. To this end we analyzed PrP
secretion in the filter culture medium during the establishment of the polarized monolayer. 1,
3, and 5 days post plating serum-free media was added to the cells for 3h, then the conditioned
media was harvested for analysis. Proteins were methanol-precipitated from the media and
loaded on the gel or subjected to PNGase treatment, western blot and revealed with SHA31 or
SAF32 (Fig 2C). We found that PrP FL and soluble N-ter are secreted exclusively in the apical
media throughout the process of monolayer maturation (Fig 2C right and Fig 2D left and
right). Interestingly, the greatest amount of N-ter secretion is at 1 day post plating (Fig 2D
right). This might indicate that PrP cleavage is most active in non-polarized conditions or in
the beginning of polarity program activation. Alternatively, if the cleavage occurs only at the
apical surface one explanation is that more PrP goes directly to the forming apical surface in
early polarity stages rather than in late polarity stages, as a possible result of PrP trafficking
changes during the establishment of the polarized phenotype. Consistent with apical cleavage
in polarized cells (3 dpp and 5 dpp) C-ter is secreted in larger amounts into the apical media
than into the basolateral one (Fig 2C left and Fig 2D center). Basolateral secretion of C-ter
occurs mainly at 1 dpp, and then it decreases dramatically (Fig 2D center), in agreement with
the apical enrichment of C-ter during polarity establishment of the MDCKmonolayer (Fig 1C
and S1 Fig).
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We then characterized the dynamics of PrP cleavage fragment, localization and secretion in
3D culture during cyst maturation. We analyzed PrP localization by immunofluorescence
using SHA31 and SAF32 antibodies on 1, 2, 3 and 4 day-old cysts (Fig 3). At early time points
(1 and 2dpp) SAF32 and SHA31 colocalize (R = 0,86 ± 0,06). At the earliest stage of 1 dpp,
when the apical membrane is not yet established SAF32 and SHA31 distribution is similar to
the non-polarized cells growing on coverslips. As soon as membrane polarity is established,
PrP is enriched on the apical membrane as revealed by both antibodies. In the 4-day old cysts

Fig 3. PrP distribution changes upon cyst maturation.MDCK PrP wt cells were plated in 2%Matrigel™, and then fixed at 1 day (1 dpp), 2 days (2
dpp), 3 days (3 dpp) and 4 days (4 dpp) post plating. Cysts were co-stained with SAF32 (red), SHA31 (green), phalloidin-Alexa-647 (white) and DAPI
(blue). Scale bar 10 μm. Representative images are shown from a total of 3 experiments.

doi:10.1371/journal.pone.0157991.g003
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however, SAF32 and SHA31 signals segregate from each other, (Pearson’s R decreases up to
0,67 ± 0,1). Specifically, we observed different dynamics for the two antibodies. Figs 1D and 3
demonstrate that SAF32 signal is mainly luminal at later stages of cyst maturation (4 and 5
dpp). However, at day 2, an early stage of cyst development, we could detect staining on the
basolateral surface, which progressively disappeared with time until day 4 when the entire sig-
nal was observed in the cyst lumen. On the contrary, SHA31 distribution does not significantly
change from day 2 to day 4, as it is enriched at the apical membrane from day 2 and its basolat-
eral staining is stable with time (Fig 3).

PrP undergoes basolateral-to-apical transcytosis in fully polarized
MDCK cells
The progressive enrichment of SAF32 signal in the apical lumen concomitant with its progres-
sive disappearance from the basolateral membrane prompted us to investigate whether PrP
undergoes basolateral to apical transcytosis that progressively increases with maturation of the
epithelium.

To sustain this hypothesis, we directly investigated the occurrence of basolateral-to-apical
transcytosis in MDCK cells fully polarized in 2D and in 3D. To this aim, we first performed an
antibody-based transcytosis assay on MDCK cells grown on filters (Fig 4). Polarized monolay-
ers grown on filters for 5 days were incubated with SHA31 and SAF32 antibodies in the baso-
lateral chamber for 2 hours at +4°C (to saturate basolateral PrP with antibodies). Then filters
were washed to remove unbound antibody and placed for 3h at +4°C (to prevent antibody
internalization and transcytosis) or at +37°C. After fixation, cells were permeabilized and
stained using fluorescently labelled secondary antibodies, and DAPI. As shown in Fig 4 at +4°C
both SHA31 and SAF32 staining are restricted to the basolateral membrane (Fig 4B left). After
the incubation at 37°C SHA31 signal is significantly enriched on the apical membrane, (Fig 4B
right, 66±4% of SHA31 is detected at the apical surface), indicating occurrence of transcytosis.
We did not observe a similar apical signal for SAF32. Instead after 3 hours of incubation with
SAF32 antibody at 37°C, SAF32 signal on the basolateral membrane becomes weaker com-
pared to the signal at +4°C and is abundantly revealed in intracellular vesicles (S3 Fig). These
results are consistent with antibody internalization from the basolateral membrane and with
the cleavage occurring on the way to the apical surface or at the apical surface, releasing N-ter
into the apical medium, thereby explaining why SAF32 signal is undetectable on the apical
surface.

To confirm these results, we investigated the occurrence of PrP transcytosis in fully polar-
ized cysts in 3D culture. 5 to 10 days polarized cysts were incubated with the mix of SHA31
and SAF32 antibodies at 37°C for different times, while incubation at +4°C for 3h was used as a
control. After fixation cysts were permeabilized and the localization of these antibodies visual-
ized with respect to the apical and basolateral membranes (Fig 5). We found that both antibod-
ies were able to bind the basolateral surface, and progressively transcytose towards the apical
membrane. However, while SHA31 signal gradually enriches the apical rim of the apical
lumen, SAF32 fluorescence is found mostly in the lumen where it accumulates with time (over-
night incubation). Interestingly, during the transcytosis experiment we do not detect any
SHA31 antibody signal in the lumen, suggesting that there is no or very little secretion of PrP
FL or C-ter in the lumen. Upon transcytosis, PrP is cleaved and membrane-bound C-ter frag-
ments remains at the apical surface, while N-ter is secreted into the lumen. These combined
experiments show clearly that PrP undergoes basolateral-to-apical transcytosis and indicate
that cleavage occurs upon arrival to the apical membrane.
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Fig 4. PrP wt undergoes basolateral to apical transcytosis in 2D polarized MDCK. (A). After 5 days of
polarization MDCK cells were incubated with SHA31 (green) and SAF32 (red) in the basal media for 2 hours
on ice, then filters were washed and incubated for +4°C as a control (left column) or for 3h at 37°C (right
column). After fixation cells were permeabilized and stained with secondary antibodies and DAPI (blue). (B).
Quantification of the apical vs basolateral antibody distribution for 3h of incubation at 4°C (left) or at 37°C
(right). Note that after the 3h of incubation SAF32 is present in intracellular sub-apical vesicles contributing to
the quantification. The experiment was repeated 5 times, and a total of 100 cells were included in the
analysis. (*p� 0.05; ***p� 0.001 Paired t test).

doi:10.1371/journal.pone.0157991.g004
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Fig 5. PrP wt undergoes basolateral to apical transcytosis in 3D polarized MDCK cysts. (A) Fully polarized, mature cysts
were incubated with the mix of SHA31 (green) and SAF32 (red) antibodies for the indicated time. Incubation at +4°C was used as a
control. After fixation, cysts were permeabilized and stained with secondary antibodies, phalloidin-Alexa647 (gray) and DAPI
(blue). (B)Quantification of the apical vs basolateral antibody distribution in case of 3h of incubation at 4°C (left), 3h at 37°C
(center) and overnight at 37°C (right). Note that starting at 3h and especially after an overnight incubation, SAF32 is present in
intracellular vesicles and in the lumen, contributing to the quantification. The experiment was repeated 3 times, and a total of 120
cells were included in the analysis. (*p� 0.05; **p� 0.01; *** p� 0.001 Paired t test).

doi:10.1371/journal.pone.0157991.g005
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To rule out the possibility that antibody binding induces the observed transcytosis and to
confirm that PrP undergoes transcytosis in physiological conditions (i.e., in the absence of anti-
body) we used a biotinylation assay [52]. MDCK PrP wt cells were fully polarized on filters for
5 days and the basolateral membrane was biotinylated on ice. After washing to remove
unbound material, serum-free culture media was added and filters were placed at +4°C (as a
control) or at 37°C for the transcytosis assay. At the end of 3h apical and basolateral media
were recovered and biotinylated proteins were precipitated from the media by incubation with
immobilized streptavidin. Recovered proteins were deglycosylated, run on SDS-PAGE and
revealed by western blot with SHA31 antibody (Fig 6). We observed that PrP initially residing
in basolateral membrane could be detected in the apical media. This is likely due to transcytosis
of the biotinylated PrP, as in control experiments where we incubated the filters at +4°C instead
of 37°C, secretion of PrP was dramatically decreased (Fig 6A). Additionally, all the PrP that
was apically secreted at +4°C was not biotinylated (Fig 6B), confirming that apical secretion of
PrP biotinylated on the basal membrane is an active process. We compared the amount of
transcytosed and secreted PrP, using as a positive control the secretion of PrP after apical bioti-
nylation. We found that 17±4% of secreted PrP comes from the basolateral membrane (Fig
6C). This data combined with the data from the antibody transcytosis assays confirms that PrP
undergoes transcytosis in steady state conditions.

Discussion
In the present work, we used both C-terminal (SHA31) and N-terminal (SAF32) antibodies to
study PrP localization and intracellular trafficking in fully polarized MDCK cells. We observed
that in polarized MDCK cells SAF32, which recognizes PrP FL and the soluble N-terminal frag-
ment, stains intracellular vesicles (S3 Fig) and the basolateral membrane in agreement with our
and other previous findings [29–31]. On the other hand when using the SHA31 antibody,
which recognizes PrP FL and membrane-anchored C-terminal fragment we obtained a clear
apical signal for PrP, as shown before by Christensen and Harris [37]. Apical SHA31 signal is
most likely due to recognition of C-ter, which is not recognized by SAF32 antibody. We found
that C-ter segregates from PrP FL both in 2D and in 3D polarized cells. An advantage of 3D
culture is the presence of the isolated apical lumen that is physically separated from the basolat-
eral media. Using SAF32 antibody we could detect a strong luminal signal that most probably
results from luminally trapped soluble N-ter, although we cannot exclude that N-ter is capable
of membrane binding, as previously reported [53–56]. Thus by combining the use of the two
different antibodies our data reconcile and explain the conflictual results in the literature on
PrP localization in MDCK cells.

We next used a biochemical approach to study PrP cleavage in MDCK cells (Fig 2). C-ter-
minal fragment is present both in non-polarized and polarized MDCK cells; interestingly, in
polarized cells C-ter is 5 times more abundant than PrP FL. At least two scenarios could
explain the increase of C-ter/PrP ratio during the establishment of epithelial polarity; either an
increase of PrP cleavage though polarity maturation and/or a difference in the lifetime of PrP
FL and C-ter in polarized versus non polarized cells. Our results indicate that the lifetime of C-
ter is longer in polarized versus non-polarized conditions (S2 Fig). However, by assessing the
presence of cleavage fragments in the media, we could show that secretion of PrP and its cleav-
age fragments is polarized: PrP FL, N-ter and C-ter are secreted apically while only C-ter is
found in the basolateral media. Basolateral secretion of C-ter significantly decreases during
monolayer maturation and this could result from an increase of the efficiency of protein sorting
during polarity establishment in correlation with a decrease of missorting protein [57,58]. This
hypothesis also implies that C-ter bears a potent apical sorting signal. Nevertheless our data
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Fig 6. PrP follows a transcytotic route at steady state. (A) After 5 days of polarization MDCK cells were biotinylated on the basolateral or apical
membrane. After surface biotinylation cells were allowed to secrete in serum-free media for 3 hours. Media was collected, streptavidin-precipitated,
PNGase treated and then analyzed by western blot using SHA31 antibody. (B) 1/10 of cell lysate and 1/5 of media before the streptavidin-precipitation
was deglycosylated and run on western blot. (C) Transcytosis quantification. The relative amount of PrP, biotinylated on the basolateral membrane and
streptavidin-precipitated in the apical membrane was normalized to the amount of PrP biotinylated on the apical membrane and precipitated from the
apical media. Quantification was done on 4 independent experiments.

doi:10.1371/journal.pone.0157991.g006
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show that there is a decrease of N-ter secretion in the apical medium (Fig 2C right panel and
Fig 2D right panel); C-ter stability in polarized cells is higher than in non-polarized MDCK
cells (S2 Fig) and PrP transcytoses from the BL to the AP surface (Figs 4 and 5).

Collectively, our data strongly indicate that the fraction of basolateral-sorted PrP is redi-
rected towards the apical surface thereby explaining the decrease of basolaterally secreted C-
ter. Furthermore our findings suggest that while apically sorted PrP is secreted as full length
protein into the apical media, it can also undergo cleavage, releasing the fragments. This is con-
sistent with, and explains, our previous data [29] showing that newly synthesized PrP is sorted
to both apical and basolateral surfaces, but then, while the signal was stable on the basolateral
membrane, it quickly disappeared from the apical surface [29]. This is sustained and explained
by the fact that while the N-terminal antibody does not recognize the protein on the apical
domain, this latter is recognized by the C terminal antibody (reacting against the C-terminal
cleaved fragment on the apical surface). Consistently, the fact that SHA31 reveals high signal at
the apical surface (Fig 1C and 1D and S1 Fig) indicates that there is an enrichment of C-ter on
the apical membrane over the full-length, a situation reinforced by the longer lifetime of C-ter
in polarized cells.

Interestingly we found that while in the apical media there were 2 forms of a C-terminal
fragment previously described in BHK cells as “membrane-anchored” and “devoid-of-GPI
anchor” C1 [59], in the basolateral media we revealed only one form of C-terminal fragment. It
seems probable that, in MDCK cells as well as in BHK [59] there are at least 2 mechanisms of
shedding and release of PrP into the medium. The unidirectional secretion of PrP and several
cleavage fragments in MDCK indicates that PrP cleavage in our model occurs either on the api-
cal membrane or in an intracellular compartment on the way to the apical surface; this is also
in agreement with data showing that GFP-PrP and its cleavage fragments are secreted from the
apical side of polarized MDCK [51].

Next, we investigated the dynamics of the secretion during the polarity establishment. We
observed that in cell lysate C-ter/PrP FL ratio gradually increases throughout polarization (Fig
2D). Because the secretion of soluble N-terminal fragment is maximal at early stages of polari-
zation it is not likely that cleavage increases throughout the process of polarization. Rather, it
appears that the increasing ratio is due to a progressive decrease of PrP FL upon polarization
coupled with the greater stability of C-ter (Fig 2A and S2 Fig). In support of this hypothesis, an
immunofluorescence of the early polarization stage reveals significant apical signal of PrP full-
length detected by SAF32 antibody (S1 Fig). Further experiments will be required to investigate
this mechanism.

PrP full-length is basolateral and C-terminal fragment is apical, but how is this steady state
distribution maintained? We previously demonstrated through pulse-chase experiments that
PrP-FL reaches the apical and basolateral membranes simultaneously (40/60 respectively).
Interestingly, we further revealed that the protein was unstable on the apical surface [29]. The
results presented here allowed us to hypothesize that the re-localizion of PrP FL to the apical
membrane is due to transcytosis. As PrP is a non-conventional GPI-AP, exhibiting features dif-
ferent from other GPI-APs [60], we investigated if PrP takes a transcytotic route in polarized
MDCK cells. We found that in both 2D and 3D cultures of polarized MDCK cells PrP effi-
ciently undergoes basolateral-to-apical transcytosis. To monitor transcytosis we have used N-
terminal and C-terminal antibodies that can cluster PrP, therefore mimicking a ligand binding.
In these conditions, transcytosis of PrP is very efficient: at the end of 3 hours C-terminal anti-
body SHA31 from the basolateral membrane is significantly enriched in the apical membrane
(Fig 4B). When we monitor transcytosis with SAF32 we did not observe any significant apical
enrichment, however we observe it enriched in intracellular vesicles. We hypothesize that this
may be because PrP cleavage occurs, releasing the N-terminal fragment (containing the SA32
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Fig 7. Model of PrP trafficking in MDCK cells. In fully polarized epithelial cells PrP is exported from the
Golgi to both apical and basolateral surfaces (40/60) [29].(1) A significant part of PrP sorted from TGN to the
apical membrane undergoes cleavage in the vesicular compartment or at the apical cell surface. (2) PrP
sorted from TGN to the basolateral membrane stays intact. (3) Basolateral PrP is transcytosed and a part of it
is cleaved on the way to the apical membrane. (4) Soluble N-terminal fragment is released to the apical
media; full-length PrP as well as C-terminal fragment are shed from the apical media.

doi:10.1371/journal.pone.0157991.g007
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epitope) by secretion from the apical surface. Consistent with this hypothesis we can clearly see
apical secretion of SAF32 in 3D polarized cells (Fig 5); thus, most likely SAF32 luminal signal is
due to the proteolytic removal of the epitope from the cell surface. Our data are consistent with
PrP full-length being endocytosed from the basolateral membrane and undergoing cleavage
either inside the intracellular vesicular compartment on its way to the apical surface or at the
apical surface. Here we did not investigate the cellular localization of post-translational pro-
cessing of PrP that could occur either on its way to the apical surface or at the apical surface.
However, a previous study suggested that PrP is most likely cleaved in the intracellular secre-
tory compartment [61]. Another intriguing question is as to whether ligand binding stimulates
PrP transcytosis, making PrP behave like IgA receptor in MDCK cells [62]. A recent article by
Pflanzner and colleagues has shown that amyloid-β (1–40) transcytosis through the blood-
brain barrier depends on PrP [63]. Here, using antibody binding, we show that PrP itself
undergoes transcytosis; therefore PrP could potentially play the role of shuttle for its ligands
and PrP-interacting molecules.

Our work showed that PrP in polarized cells is cleaved on its way to the apical membrane
or at the apical membrane, and that it undergoes basal-to-apical transcytosis. To summarize
the data of PrP in polarized MDCK cells we propose the following model (Fig 7): first, a simi-
lar amount of PrP is sorted in TGN to apical and basolateral membranes; 1. During the traf-
fic to the apical surface a fraction of PrP molecules undergoes cleavage; 2. Basolaterally
sorted PrP reaches the cell membrane intact; 3. PrP is transcytosed from the basolateral to
the apical membrane where part of PrP molecules are cleaved; 4. PrP FL reaching the apical
surface is shed to the media, soluble N-terminal fragment is secreted to the apical media, the
C-terminal fragment is stabilized on the apical surface, and part of it is shed to the apical
media.

Our findings are of fundamental importance for the GPI-AP trafficking in polarized cells.
Further studies of PrP trafficking (eg., by using deletion mutants) could identify signal
sequences in PrP responsible for the transcytosis and allow for a better characterization of the
underlying mechanisms. By shedding some light on the polarized trafficking of PrP and its
cleavage fragments, this study could help to explain the role of cleavage fragments in PrPSc for-
mation, as for example in the case of the dominant negative effect observed for C1 fragment in
this process [13].

Supporting Information
S1 Fig. Localization of PrP in early stage of polarization in 2D. Immunofluorescent pictures
of MDCK PrPwt cells plated for 24 hours on Transwell filters. Cells were fixed and immunos-
tained for PrP using SAF32 antibody (left column) and SHA31 antibody (middle column) and
nuclei are stained with DAPI (right column). Scale bars 10 μm. Serial confocal sections of
0,3 μmwere collected from the top to the bottom of the cell monolayer.
(TIF)

S2 Fig. Kinetic of PrP degradation in polarized and non-polarized MDCK cells.MDCK PrP
wt was plated sparsely either for 1 day (A) in 6 well plate or for 5 days at 2 million/filter in
Transwell™ filters (B), then treated with 150 μM cycloheximide and lysed after 0, 1, 4 and 6
hours of treatment. Cell lysates were PNGase treated and analyzed by western blot, revealed
with SHA31 antibody. Quantifications of PrP FL and C-terminal fragment normalized to actin
through cycloheximide treatment are shown on the right of the panel. 3 independent experi-
ments were quantified.
(TIF)
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S3 Fig. Intracellular SAF32 vesicles. Transcytosis assay from Fig 4 (transcytosis experiment in
2D). A high magnification of a single cell after 3h of transcytosis, red arrows mark SAF32 intra-
cellular vesicles that localize subapically and therefore contribute to the apical signal quantifica-
tion.
(TIF)
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