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In pre-hearing mice, vesicle exocytosis at cochlear inner hair cell (IHC) ribbon synapses is triggered by spontaneous Ca 2� spikes. At the
onset of hearing, IHC exocytosis is then exclusively driven by graded potentials, and is characterized by higher Ca 2� efficiency and
improved synchronization of vesicular release. The molecular players involved in this transition are still unknown. Here we addressed the
involvement of synaptotagmins and otoferlin as putative Ca 2� sensors in IHC exocytosis during postnatal maturation of the cochlea.
Using cell capacitance measurements, we showed that Ca 2�-evoked exocytosis in mouse IHCs switches from an otoferlin-independent to
an otoferlin-dependent mechanism at postnatal day 4. During this early exocytotic period, several synaptotagmins (Syts), including Syt1,
Syt2 and Syt7, were detected in IHCs. The exocytotic response as well as the release of the readily releasable vesicle pool (RRP) was,
however, unchanged in newborn mutant mice lacking Syt1, Syt2 or Syt7 (Syt1 �/ �, Syt2 �/ � and Syt7 �/ � mice). We only found a defect
in RRP recovery in Syt1 �/ � mice which was apparent as a strongly reduced response to repetitive stimulations. In post-hearing Syt2 �/ �

and Syt7 �/ � mutant mice, IHC synaptic exocytosis was unaffected. The transient expression of Syt1 and Syt2, which were no longer
detected in IHCs after the onset of hearing, indicates that these two most common Ca 2�-sensors in CNS synapses are not involved in
mature IHCs. We suggest that otoferlin underlies highly efficient Ca 2�-dependent membrane-membrane fusion, a process likely essen-
tial to increase the probability and synchrony of vesicle fusion events at the mature IHC ribbon synapse.

Introduction
Before the onset of hearing, cochlear inner hair cells (IHCs) ex-
hibit spontaneous Ca 2� spiking activity that triggers synaptic
exocytosis (Kros et al., 1998; Beutner et al., 2001; Marcotti et al.,
2003; Tritsch and Bergles, 2010) and postsynaptic trains of action
potentials (APs) in cochlear ganglion neurons (Lippe, 1994;
Jones et al., 2007; Tritsch et al., 2007). In mature IHCs, exocytosis
is then driven by sound-evoked fast graded receptor potentials. In
both immature and mature IHCs, neurotransmitter release is
triggered by Ca 2� influx flowing through L-type Ca 2� channels
(Moser and Beutner, 2000; Glowatzki and Fuchs, 2002; Brandt et

al., 2003), and the efficiency of brief Ca 2� currents in evoking
release increases with cell maturation (Beutner and Moser, 2001;
Johnson et al., 2005). Synchronization of the multivesicular re-
lease process (Glowatzki and Fuchs, 2002) also improves with
IHC maturation (Grant et al., 2010), which suggests that con-
comitant, as yet poorly understood changes take place in the IHC
synaptic machinery.

Like in most neurosecretory cells, synaptic exocytosis in
IHCs is thought to involve interactions of SNARE (soluble
N-ethylmaleimide-sensitive-factor attachment protein receptor)
complex proteins attached to synaptic vesicles (synaptobrevin)
with the target plasma membrane (SNAP-25 and syntaxin 1)
(Safieddine and Wenthold, 1999). Synaptotagmins (Syts), a large
family of transmembrane proteins containing tandem Ca 2�-
binding C2-domains, confer Ca 2� sensitivity to SNARE-
dependent vesicle fusion in the CNS (Chapman, 2008), but their
implication in IHC synaptic exocytosis is still unclear. Indeed, the
transcripts encoding Syt1 and Syt2, the major Ca 2� sensors for
fast synchronized transmitter release in central neurons (Geppert
et al., 1994; Sun et al., 2007), have not been detected in mature
IHCs (Safieddine and Wenthold, 1999). Therefore, otoferlin, a
six C2-domain transmembrane protein (Yasunaga et al., 1999),
has been proposed as a major Ca 2� sensor required for Ca 2�-
evoked exocytosis in IHCs (Roux et al., 2006).
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The synaptic active zone of IHCs has been proposed to be
organized in independent Ca 2� nanodomains, where the activity
of one or few Ca 2� channels is sufficient to activate release of a
nearby vesicle (Brandt et al., 2005), allowing the synapse to func-
tion in a linear regime (Johnson et al., 2005; Keen and Hudspeth,
2006; Goutman and Glowatzki, 2007). Recently, Syt4, which does
not bind Ca 2� and is not established as a Ca 2� sensor (von Poser
et al., 1997), has been shown to be required for the linear Ca 2�

dependence of exocytosis (Johnson et al., 2010). Notably, this
latter study also reported the expression of Syt1 and Syt2 in im-
mature and mature IHCs, respectively, but the functional impli-
cation of these findings has not yet been investigated. To clarify
the respective roles of these putative Ca 2� sensors at the IHC
ribbon synapse along the course of cochlear maturation, we stud-
ied their expression and analyzed Ca 2�-dependent exocytosis in
IHCs from Otof�/ �, Syt1�/ �, Syt2�/ � and Syt7�/ � mutant
mice that lack otoferlin, Syt1, Syt2 and Syt7, respectively (Gep-
pert et al., 1994; Roux et al., 2006; Sun et al., 2007).

Materials and Methods
Electrophysiological recordings
Experiments were performed on mice, both male and female, obtained
by interbreeding of heterozygous mutant mice (Otof�/ � or Syt�/ � ani-
mals) and genotyped using PCR. Recordings and analyses were performed in
blind before knowing the genotype of the mice. All experiments were per-
formed in accordance with the European Communities Council Directive of
November 24, 1986 (86/609/EEC). All cares were taken to minimize animals’
pain. Whole-cell recordings were performed on excised apical coils of organs
of Corti as previously described (Beurg et al., 2008). Dissections were done in
a solution containing the following (in mM): 135 NaCl, 5.8 KCl, 1.3 CaCl2,
0.9 MgCl2, 0.7 NaH2PO4, 5.6 glucose, 2 Na-pyruvate, 10 HEPES, pH 7.4.

Borosilicate patch electrodes (World Precision Instruments) were
coated with ski wax (SWIX) to minimize electrode capacitance. Pipette
resistances in solution were 2–3 M�. Experiments were done at room
temperature (20�22°C).

Recordings in otoferlin-null mice were acquired with an Optopatch
amplifier (Cairn Research Ltd) digitized using pClamp10 software and a
Digidata 1320 A (Molecular Devices). Analysis was performed using
Clampfit (Molecular Devices) and Igor software (Wavemetrics). Record-
ings in Syt1 �/ � and Syt7 �/ � mice were performed using an Axopatch
200A digitized using JClamp (SciSoft) and a Micro1401 Interface (Cam-
bridge Electronic Design). Recordings in Syt2 �/ � mice were performed
using an EPC-10 patch-clamp amplifier and the Patchmaster software
(HEKA). Current recordings were corrected for linear leak conductance
measured near �80 mV. All voltages were corrected for liquid junction
potential. For cell capacitance experiments, extracellular solution con-
tained the following (in mM): 115 NaCl, 6 KCl, 5 CaCl2, 1 MgCl2, 30 TEA,
2 Na pyruvate, 8 glucose, 10 Na-HEPES, pH 7.4. Tetrodotoxin (1 �M)
and apamin (1 �M) were added to the extracellular solution. Pipette
solution for cell membrane capacitance (Cm) experiments contained the
following (in mM): 142 CsCl, 1.5 MgCl2,5 TEA, 1 EGTA, 5 creatine phos-
phate, 10 Cs-HEPES, pH 7.2. ATP was omitted to minimize activation of
purinergic receptors, reported in IHCs after P4 (Tritsch and Bergles,
2010). No noticeable difference was observed in changes in cell mem-
brane capacitance (�Cm) measurements performed in the presence or
absence of the nucleotide (data not shown). When EGTA was increased
to 5 mM, osmolarity was kept constant to 290 mOsm/L by reduction of
CsCl. For experiments in Syt2 �/ � mice, dissections were done in a solu-
tion containing the following (in mM): 143 NaCl, 6 KCl, 1.3 CaCl2, 0.9
MgCl2, 0.7 NaH2PO4, 8 glucose, 2 Na-pyruvate, 10 Na-HEPES, pH 7.4.
Extracellular recording solution was (in mM): 119 NaCl, 6 KCl, 5 CaCl2,
1 MgCl2, 27 TEA, 2 Na pyruvate, 8 glucose, 10 Na-HEPES, pH 7.4.
Tetrodotoxin (1 �M) and apamin (1 �M) were also added to the extra-
cellular solution for Cm measurements. Pipette solution for Cm ex-
periments in Syt2 �/ � mice contained the following (in mM): 140
Cs-gluconate, 4 MgATP, 0.3 Na2GTP,20 TEA-Cl, 0.5 EGTA, 5 creat-
ine phosphate, 10 HEPES pH 7.2.

For action potential and afferent fiber recordings, the internal solution
contained the following (in mM): 140 KCl, 3.5 MgCl2, 0.1 CaCl2, 5 EGTA,
HEPES 5, pH 7.2.

Capacitance measurement. Changes in cell membrane capacitance
(�Cm) were used to monitor fusion of synaptic vesicles during exocyto-
sis. Cm was measured according to the Lindau-Neher technique (Lindau
and Neher, 1988), using the tracking circuitry of the Optopatch (exper-
iments on otoferlin-null mice) or implemented in the JClamp (Scisoft,
New Haven, CT) (Syt1-null or Syt7-null mice recordings), or the Patch-
master softwares (Syt2-null mice). A 20 mV amplitude sine wave from a
holding potential of �80 mV was used; for recording of Syt2-null mice,
the sine wave had an amplitude of 30 mV from a holding potential of �90
mV. The resulting maximal depolarizations to ��60 mV were suffi-
ciently small to avoid activation of Ca 2� current (ICa). The command
sine wave (781.3–1600 Hz) was blanked during the duration of the volt-
age step and resumed immediately upon repolarization to capture the
capacitance before and after the pulse. �Cm was estimated as the mean
Cm measured 150 ms after the end of the voltage step (to discard capac-
itance changes due to ICa tail currents) over a period of 50 ms and the
prepulse Cm averaged over 50 ms. Only cells with stable series resistance
below 10 M� (uncompensated) were included in the study.

Afferent fiber recordings. EPSCs were recorded using the whole-cell
patch-clamp technique, digitized at 50 kHz, and low pass filtered at 5–10
kHz. Patch pipettes had a resistance of �10 M�.

Curve fitting and statistical analyses. Curve fitting and analysis were
done using Igor Pro (WaveMetrics). The criterion for statistical signifi-
cance was chosen to be p � 0.05 using unpaired Student’s t test. Variabil-
ity is reported as mean � SEM.

Single-cell reverse transcription PCR
Inner hair cells were collected from excised organs of Corti (of P1 and P7
mice). Single-cell reverse transcriptase (RT)-PCR was done as previously
described (Michalski et al., 2007). Synthesis of cDNA was performed
using the SuperScript II Reverse Transcriptase kit (Invitrogen). For each
cell, we used the extracellular fluid as a negative control. A multiplex
nested PCR was performed using specific primers for the tested syn-
aptotagmin (Syt) transcripts (see supplemental Table, available at
www.jneurosci.org as supplemental material, for primer sequence)
and for two control transcripts, namely myosin VIIa [Myo7A, ex-
pressed in both outer hair cells (OHCs) and IHCs] and prestin (only in
OHCs) (same primers reported by Michalski et al., 2007). PCR products
were sequenced to confirm their specificity. The PCR consisted of 20
amplification cycles (40 s at 95°C, 45 s at 58°C, and 50 s at 72°C). Ampli-
fied DNA fragments had a molecular weight ranging between 300 and
500 bp. The nested PCR was performed in a 25 �l mix containing 2 �l of
the first PCR mix and only one set of inner primers at a time through 35
cycles (40 s at 95°C, 45 s at 58°C, and 50 s at 72°C).

Twenty IHCs were collected for each developmental stage. Only IHCs
that showed the myosin VIIa-positive and prestin-negative expression
profiles were taken into account for result analysis (n � 13). The number
of Syt-positive cells was then counted for each Syt and compared statis-
tically to the number of extracellular fluid control samples (n � 20) that
abnormally scored positive for the presence of cDNA amplification, us-
ing the � 2 test (with Yates correction for small samples) to check for
significance ( p � 0.05).

Whole-mount immunohistochemistry
Cochleae were fixed with 4% paraformaldehyde in PBS for 1 h at 4°C, and the
external bone was removed. The organ of Corti was isolated and the tectorial
membrane was removed. The tissue samples were permeabilized with 0.3%
Triton X-100 in PBS containing 20% normal goat serum for 1 h at room
temperature. After PBS washes, they were incubated with the primary anti-
bodies, diluted in PBS containing 10% goat serum (or horse serum) and
0.1% Triton X-100, overnight at 4°C. Omission of the primary antibody was
used as a negative control. Primary antibodies were used at the following
dilutions: anti-Syt1 (1: 200, rabbit polyclonal, Synaptic Systems; 1:500
mouse monoclonal (C141.1), Synaptic Systems; 1:500 rabbit polyclonal,
Abcam), anti-Syt7 (1:200, rabbit polyclonal, Synaptic Systems), anti-Syt2
(znp-1 1:200, mouse monoclonal, ZIRC; or 1:200, rabbit polyclonal against
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Syt2, Synaptic Systems), anti-neurofilament NF-200 (1:1000, mouse mono-
clonal, a gift from Dr. D. Dahl, Harvard Medical School, Boston, MA), anti-
synaptophysin (1:200 mouse monoclonal, Sigma; 1:200 rabbit polyclonal,
Synaptic Systems), anti-CtBP2 (1:200, goat polyclonal, Santa Cruz Biotech-
nology). Tissue samples were washed in PBS, and incubated with secondary
antibodies for 2 h at room temperature. Dilutions of secondary antibodies
were as follows: goat anti-rabbit IgG coupled to Alexa Fluor 488 (1:500); goat
anti-mouse IgG antibody conjugated with Cy3 fluorophore (Jackson Immu-
noResearch Laboratories); goat anti-mouse IgG coupled to Alexa Fluor 488
(1:500), chicken anti-goat IgG coupled to Alexa Fluor 488 (1:1000). The
nuclear dye DAPI was added to aid in hair cell visualization. The samples
were analyzed using a confocal laser scanning microscope LSM510 Meta
(Zeiss, Pasteur Institute, Imagepole) or a Leica confocal upright microscope
(Leica DMR TCS SP2 AOBS, Bordeaux Imaging Center). The images were
taken with a step size of 0.4 �m.

Specificity of anti-Syt antibodies was determined by the lack of resid-
ual Syt-immunostaining in the organ of Corti of the respective Syt-null
mutant mice. The persistence of the IHCs immunostaining observed in
Syt2-null mice when using anti-Syt2 polyclonal antibody (from Synaptic
Systems) indicated the nonspecificity of this labeling (data not shown).
Therefore, the Syt2 distribution in the organ of Corti was only docu-
mented using the znp-1 monoclonal antibody. Similarly, the distribution
of Syt7 could not be reliably analyzed since the immunostaining of the
organ of Corti obtained with the anti-Syt7 polyclonal antibody (Synaptic
Systems) was still detected in Syt7 �/ � mutant mice (data not shown). In
contrast, the specificity of the IHC immunolabeling that was observed in

wild-type mice using polyclonal anti-Syt1
(Synaptic Systems) and monoclonal anti-Syt2
(ZIRC) antibodies could be established by the
lack of staining in the Syt1 �/ � or Syt2 �/ � mu-
tant mice that lack Syt1 and Syt2, respectively
(supplemental Fig. 2, available at www.
jneurosci.org as supplemental material). The
same Syt1 immunostaining was observed in
the organ of Corti from wild-type mice using
any of the three antibodies directed against this
protein (data not shown).

Results
Exocytosis in IHCs from early postnatal
mice is otoferlin independent
Otoferlin is critical for Ca 2�-triggered
synaptic exocytosis in IHCs from P6 on-
wards (Roux et al., 2006). However, IHC
exocytosis has not been explored at earlier
developmental stages. We thus character-
ized the Ca 2�-dependent exocytosis in
IHCs from Otof�/ � mice and control lit-
termates from postnatal days 1– 8 (P1–
P8). To this purpose, we monitored �Cm

in response to voltage activation of ICa.
Electrophysiological data obtained from
Otof�/� and Otof�/ � IHCs were pooled
and referred to as “controls”, after check-
ing that there was no statistical difference
between the two groups (unpaired t test,
p � 0.01).

In P1 control and Otof�/ � IHCs, sub-
stantial �Cm responses could be recorded
(Fig. 1A,B). In P1 Otof�/ � IHCs, the
mean �Cm evoked by a 100 ms voltage-
step to �10 mV (ICa peak) was 17.5 � 1.7
fF (n � 25), a value similar to that found
in control IHCs (14.9 � 3.1 fF, n � 12; p �
0.12) (Fig. 1C). These �Cm responses
were abolished by 50 �M nifedipine (data
not shown, n � 2), indicating that this

otoferlin-independent exocytosis is also triggered by L-type Ca 2�

channels. The �Cm responses in Otof�/ � IHCs dramatically de-
creased at P4, and became undetectable from P5 on (Fig. 1C,F),
as previously reported (Roux et al., 2006). Notably, a gradual
increase of otoferlin immunolabeling in IHCs was observed dur-
ing the first week of postnatal development: the staining was weak
at P0, maximal at P6 (Fig. 1E) and remained constant thereafter
(Roux et al., 2006). In Otof�/ � IHCs, the biophysical properties
of Ca 2� current (kinetics, voltage activation) and developmental
increase in Ca 2� channel density were similar to those of control
mice (data not shown and Fig. 1B–D). During the first postnatal
week, we observed a parallel increase of the ICa density and the
triggered membrane capacitance (�Cm) in control IHCs (Fig.
1A,C,D), while the Ca 2� efficiency of exocytosis, defined here as
(�Cm/ICa) remained identical (Fig. 1F), in agreement with pre-
vious results showing that the Ca 2� efficiency only starts to in-
crease after P6 (Beutner and Moser, 2001; Johnson et al., 2005).
Up to P3, the Ca 2� efficiency of exocytosis in Otof�/ � IHCs was
similar to that in control IHCs (Fig. 1F).

Spontaneous firing activity (sensitive to nifedipine) was
present with similar event frequencies in P1–P3 IHCs from
Otof�/ � and control mice (supplemental Fig. 1, available at
www.jneurosci.org as supplemental material). This spontaneous

Figure 1. Ca 2�-evoked exocytosis in IHCs during early postnatal development: an otoferlin-independent process before P4. A,
B, Examples of ICa and corresponding �Cm responses in P1 and P6 control and Otof �/ � IHCs. Cells were stimulated by a 100 ms
voltage step from a holding potential of �80 mV to �10 mV. C, D, �Cm response average (C) and corresponding ICa density (D)
from IHCs at different postnatal stages. E, Otoferlin (red) and CTBP2 (green) immunolabelings in IHCs from P0 and P7 mice. Note the
increase in otoferlin immunoreactivity at P7. F, Ca 2� efficiency (�Cm/ICa) of exocytosis as a function of development for the cells
tested in C and D.
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IHC spiking is likely to be at the origin of
the EPSCs and spontaneous APs that we
recorded in afferent fibers from Otof�/ �

and control mice, with similar amplitudes
and event frequencies (supplemental Fig.
1, available at www.jneurosci.org as sup-
plemental material). These results suggest
that exocytosis triggered by spontaneous
APs in P1–P3 IHCs does not require ot-
oferlin either.

We further characterized the otoferlin-
independent synaptic exocytosis in early
postnatal IHCs by studying the synaptic
transfer function, that is, the relationship
between Ca 2� entry and exocytosis. The
voltage-evoked �Cm responses (100 ms
step ranging from �60 to �10 mV) were
plotted against the corresponding ICa am-
plitudes (Fig. 2A,B). The Ca 2� depen-
dence of transmitter release in central
synapses, notably at the large calyx of Held
nerve terminals, is described by a nonlin-
ear model of cooperative Ca 2� binding to
the sensor (Schneggenburger and Neher,
2000; Wölfel and Schneggenburger, 2003).
Considering that Ca 2�-evoked vesicle fu-
sion (�Cm) in IHCs is also intrinsically
cooperative (Beutner et al., 2001), the data
were fitted using the equation �Cm � g
[ICa]

N, with ICa varying both as a function
of open Ca2� channels (number increasing
with depolarization) and Ca 2� flux per
channel (the Ca 2� driving force decreas-
ing with depolarization). In IHCs from
both control and Otof�/ � P1–P3 mice,
the synaptic transfer function displayed a
mean power N � 1.7 � 0.2 (parameters
fitted separately to each cell) (Fig. 2B).
Moreover, the otoferlin-independent
(P1–P3) and otoferlin-dependent (P7)
synaptic transfer functions were similar
in the control mice (N � 1.6 � 0.5 for
P7 IHCs, n � 7; p � 0.8) (Fig. 2C). These
results suggest that otoferlin-dependent and otoferlin-independent
exocytosis in immature IHCs display comparable Ca2� dependen-
cies, notably with a similar cooperative index.

We compared the dynamics of vesicle pool depletion in IHCs
from Otof�/ � and control newborn mice (P1) by using a con-
stant depolarizing step (from �80 to �10 mV) of duration in-
creasing from 10 to 3000 ms (Fig. 2D–F). Both in control and
Otof�/ � mice, data points (�Cm vs time) were best fitted by two
exponentials, suggesting the presence of two vesicular pools: a
readily releasable pool (RRP) and a slowly releasable pool (SRP)
that may arise from vesicles docked at the active zones and vesi-
cles located further from the Ca 2� channels, respectively. The
RRP component of control and Otof�/ � P1 IHCs, spanning be-
tween 10 and 200 ms, was fitted using a single-exponential with
time constants � � 48 and 63 ms, and �Cm(max) � 21 fF and 16 fF,
respectively (Fig. 2 D, inset) (not statistically different, with
p � 0.5, in comparing individual cell fit values). Assuming a
�Cm of 37 aF per vesicle (Lenzi et al., 1999), RRP sizes were
estimated at 562 and 434 vesicles, respectively. For longer
stimuli, control and Otof �/ � P1 IHCs displayed similar SRP

components (� � 1363 and 1739 ms, maximal �Cm � 167 fF
and 138 fF, respectively; Fig. 2 D).

In P7 Otof�/ � IHCs, we confirmed the absence of vesicular
release from the RRP (no �Cm �500 ms voltage-steps), but
found a residual slow exocytosis for longer stimuli (Fig. 2F), as
previously reported (Roux et al., 2006).

To address the issue of the relative spatial organization of
the Ca 2� channels and Ca 2� sensor, we measured the sensi-
tivity of the RRP and SRP components to various intracellular
Ca 2� buffer concentrations. Raising the intracellular concen-
tration of the slow Ca 2� buffer EGTA from 1 to 5 mM, a way to
limit intracellular Ca 2� spread to within the microdomains,
suppressed the SRP-release but not the RRP-release in IHCs
from both control and Otof �/ � P1 mice (Fig. 2 E). This indi-
cates that Ca 2� channels and non-otoferlin Ca 2� sensors trigger-
ing RRP vesicular release work in close vicinity in P1 IHCs. This
result also suggests that SRP release results from vesicles located
farther from the Ca 2� channels, or, alternatively, might reflect a
Ca 2�-dependent recovery of the RRP. Furthermore, repetitive
exocytosis of the RRP (evoked by a train of 50 ms depolarizing

Figure 2. Properties of otoferlin-independent exocytosis in immature IHCs. A, ICa–voltage relationship and corresponding �Cm

in IHCs from control (triangles) and Otof �/ � (circles) P1 mice. B, Corresponding synaptic transfer function plot (�Cm against ICa

amplitude, up to ICa peak). Lines are power function fits with N �1.6 and N �1.8 in control (dashed line) and Otof �/ � (solid line)
IHCs. C, Synaptic transfer function for IHCs from P7 control mice (power fit: N �1.6), plotted on log scales. D, Kinetics of vesicle pool
depletion in P1 IHCs. �Cm is plotted as a function of the stimulus duration for a step to �10 mV, from a holding potential of �80
mV. Solid lines correspond to a single exponential fit of RRP (inset, between 0 and 200 ms) and dashed lines to another single
exponential fit of SRP (500 –3000 ms). Fit parameters were for RRP, � � 48 and 63 ms, �Cm(max) � 20.8 fF and 16.2 fF, and for
SRP, � � 1363 and 1739 ms, �Cm(max) � 167 fF and 138 fF in control (black) and Otof �/ � (red) IHCs, respectively. E, Kinetics of
exocytosis in the presence of 5 mM EGTA in P1 IHCs. Note the block of SRP in the presence of EGTA. Fit values were as follows: � �
77 ms, �Cm(max) � 13 fF (control) and � � 45.5 ms, �Cm(max) � 11 fF (Otof �/ �). F, Absence of fast exocytosis in IHCs from
Otof �/ � P7 mice, while residual slow vesicular release was still observed. Fit values for IHCs from control mice � � 29 ms,
�Cm(max) � 56 fF for RRP, and � � 1000 ms, �Cm(max) � 526 fF for SRP. Black and red lines are fits for IHCs from control and
Otof �/ � mice, respectively.
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steps) was similar in control (see Fig. 4G) and Otof�/ � P1 IHCs
(data not shown), with an average cumulative �Cm response of
21.8 � 0.5 fF (n � 6) and 18.4 � 4.1 fF (n � 4), respectively,
which suggests that the recruitment of synaptic vesicles to main-
tain a constant RRP in P1 IHCs is not affected in the absence of
otoferlin. In summary, all parameters of exocytosis tested in
P1–P2 Otof�/ � mice were unchanged compared with their con-
trol littermates.

Expression of synaptotagmins in IHCs
The persistence of Ca 2�-dependent exocytosis in IHCs from
P0 –P3 Otof�/ � mice raises the question of the molecular identity
of the Ca 2� sensors involved at early postnatal stages. Since sev-
eral Syts are regarded as Ca 2� sensors regulating exocytosis in the
CNS, we used single-cell RT-PCR to detect Syt transcripts in

IHCs. We investigated the expression of eight different Syts, Syt1,
2, 3, 5, 6, 7, 9 and 10, all known for their Ca 2�-binding properties
(Südhof, 2002), in P1 and P7 IHCs. Six different Syts were found
to be expressed in P1 IHCs, of which Syt 1, 2, 6, and 7 displayed
the highest expression levels. In P7 IHCs, Syt1, Syt6 and Syt7 still
were strongly expressed, whereas the expression of Syt2 was
markedly decreased (Fig. 3G).

These results were further substantiated by immunolabeling
experiments and confocal imaging of the organ of Corti before
(P1, P6, P8) and after (P15 and P21) the onset of hearing. Whole-
mount preparations were double-immunostained for Syt1 or
Syt2, and for the synaptic vesicle protein synaptophysin. This
latter protein is a marker of lateral efferent presynaptic terminals,
that form axodendritic synapses with afferent dendrites below
IHCs, and medial efferent synapses contacting OHCs (Gil-

Figure 3. Syts expression in cochlear hair cells. Confocal microscopy images of whole mounts of the organ of Corti at P1, P6, P8, and P15, double-labeled either for Syt1 and synaptophysin (Syphy)
(A, F ), or for Syt1 and Syt2 (B–E). DAPI staining (blue) was used to stain cell nuclei. Dashed lines outline IHCs and OHCs (based on the reconstructed z-stack, data not shown). A–D, Left and right
panels are cross-section views in the x,z and y,z plans, respectively. At P1 and P6, a Syt1 staining can be seen along the membrane of IHCs (arrows in A and B, top) and in the terminals of efferent fibers
stained for Syphy (A, middle, arrowheads). The merge image (A, bottom) shows an overlapping of Syt1 and Syphy stainings at the efferent fibers below IHCs (arrowheads). No Syphy labeling was
seen in IHCs. Syt2 labeling is predominantly cytoplasmic (B, C, middle), compared with that of Syt1, which is mainly located along the basolateral membrane of the cell (B, C, top). At P8, a Syt1
staining is still present in IHCs and OHCs (D, top), while Syt2 is no longer detected in these cells (D, middle panels). E, F, At P15, neither Syt2 nor Syt1 are detected in IHCs and OHCs (E, left and middle).
Both proteins are, however, still present in the efferent fibers stained for Syphy (F, middle). Scale bars, 5 �m. G, Single cell RT-PCR was performed in IHCs harvested at P1 and P7. Only IHCs expressing
the proper control transcripts (positive for myosin VIIA, and negative for prestin) were computed in the histograms. Data were expressed as a percentage of positive samples [(number of samples
containing the Syt transcript/total number of samples tested)*100)]. Asterisks indicate IHCs with significant positive levels of Syt transcripts (� 2 test, p � 0.05). Transcripts for Syts 1, 2, 6, 7 and Syts
1, 6, 7 were the most abundant Syt transcripts in P1 (n � 13) and P7 (n � 13) IHCs, respectively. Note the drastic decrease in Syt2 mRNA expression at P7.
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Loyzaga and Pujol, 1988; Safieddine and Wenthold, 1999). From
P1 to P6, Syt1 and Syt2 labelings were present in both IHCs and
OHCs (Fig. 3A–C), but the two proteins displayed different sub-
cellular distributions as shown by double-labeling experiments
(Fig. 3B,C). The strongest Syt1-immunolabeling was observed
along the basolateral membrane that lines the IHC presynaptic
region (Fig. 3A,B), whereas the Syt2-immunolabeling was
mainly cytoplasmic (Fig. 3B,C). In addition, Syt1 and Syt2 dis-
played different temporal profiles in the IHCs, as expected from
our single-cell RT-PCR results. The Syt2-immunolabeling was no
longer observed in IHCs from P8 onward, while Syt1 could still be
detected up to P10 through all the cochlear spiral (Fig. 3D; sup-
plemental Fig. 3, available at www.jneurosci.org as supplemental
material), but vanished at P15 in the IHCs of the cochlear middle
turn (Fig. 3E,F) and at P21 in those of the apical turn (data not
shown). Finally, at all stages investigated (from P1 to P21), Syt1
and Syt2 immunolabelings were detected in the efferent,
synaptophysin-immunoreactive, nerve fibers (Fig. 3A–F; data
not shown).

In Otof�/ � IHCs, Syt1 and Syt2 had the same distributions
and developmental patterns, as in control littermates (data not
shown). Furthermore, Syt2 was present in P0 Syt1�/ � IHCs and
Syt1 was present in P0 and P6 Syt2�/ � IHCs (data not shown),
suggesting that the lack of one Ca 2� sensor does not influence the
expression of the other.

Syt1 �/� IHCs exhibit a RRP release unchanged but a
diminished RRP recovery
We next assessed the role of Syt1 in IHC exocytosis by measuring
Cm changes in response to ICa in P0 Syt1�/ � mice. The short
postnatal survival of these mice (�24 h) (Geppert et al., 1994)
restricted measurements to newborn mice. No morphological
anomalies were observed in the IHCs and OHCs of the Syt1�/�

newborn mice. Indeed, we found presynaptic ribbons and proper
innervation contacting the hair cells, with no decrease in the
number of cochlear ganglion neurons (Fig. 4A).

In Syt1�/ � P0 IHCs, ICa-evoked �Cm responses were similar
to those in Syt1�/� (wild-type) IHCs (Fig. 4B,C), with a mean
amplitude of 25.6 � 6.1 fF (n � 11) and 28.5 � 8.8 fF (n � 11),
respectively ( p � 0.9) for a 100 ms voltage-step close to ICa peak.
The corresponding ICa amplitudes were 87 � 9 pA and 86 � 9 pA
( p � 0.8) (Fig. 4C). The synaptic transfer function in Syt1�/ �

IHCs was evaluated as described above, by plotting �Cm against
ICa (100 ms voltage-step ranging from �60 mV to �10 mV, from
a holding potential of �80 mV) (Fig. 4D). In wild-type and
Syt1�/ � IHCs, the synaptic transfer function was best fitted using
N � 2.1 � 0.6 (n � 11) and N � 2.0 � 0.2 (n � 10), respectively
( p � 0.4), indicating that exocytosis evoked in the absence of
Syt1 has an unchanged cooperative index in P0 IHCs. The kinet-
ics of RRP exocytosis (�10 mV voltage-steps of various dura-
tions) were also similar in Syt1�/ � mice and control littermates
(� � 60 � 20 ms and 65 � 14 ms, respectively; p � 0.8; Fig. 4E).
This suggested that release from the RRP was unchanged in new-
born Syt1�/ � mice.

We observed, however, that depolarizing stimuli had to be
separated by at least 1 min intervals to trigger reproducible �Cm

responses in Syt1�/ � IHCs. This long time requirement after
each Ca 2� stimulation suggested that the recovery of RRP vesi-
cles might be affected in Syt1�/ � IHCs. To further investigate the
vesicle recruitment and refilling of the RRP, we stimulated IHCs
with a train of brief (50 ms) voltage steps spaced by 100 ms at the
holding potential of �80 mV, during which sine wave for Cm

measurements was applied (Fig. 4F, top). In wild-type mice, a 50

ms-depolarizing train evoked a linear increase of the cumulative
�Cm values (Fig. 4F,G), indicating that the RRP was able to be
rapidly refilled in-between successive stimuli. In contrast, in
Syt1�/ � IHCs, the RRP recruitment was affected after the second
test pulse, despite a stable ICa amplitude (Fig. 4F,G). The �Cm at

Figure 4. Ca 2�-dependent exocytosis in IHCs from Syt1 �/ � newborn mice. A, The organ
of Corti of Syt1 �/ � P0 mice has a normal arrangement of hair cells (green, anti myosin-VIIA
labeling) and afferent nerve fibers (red, neurofilament labeling). Scale bar, 10 �m. B, Example
of ICa with its corresponding �Cm response in an IHC from a Syt1 �/ � P0 mouse. C, Histograms
showing the mean ICa peak amplitude and its corresponding �Cm for Syt1 �/ � and Syt1�/�

IHCs (100 ms voltage step to �10 mV). D, Average �Cm plotted against ICa elicited by 100 ms
voltage steps ranging from �60 to �10 mV (in 5 mV increments). Lines correspond to a power
function fit with N � 2.0 and 2.1 in Syt1�/� (dashed line) and Syt1 �/ � (solid line) IHCs,
respectively. E, Kinetics of Ca 2�-dependent exocytosis. �Cm is plotted against stimulus dura-
tion at a constant voltage (�10 mV). Lines are single exponential fits for Syt1 �/ � (solid line)
and Syt1�/� (dashed line) IHCs. F–H, Recruitment of vesicles from the fast synaptic vesicular
pool. ICa and corresponding �Cm elicited by a train of 25 successive 50 ms voltage steps to �10
mV, separated by 100 ms time intervals. F, Examples are shown for the first four steps. G,
Average cumulative �Cm responses obtained for 25 consecutive voltage steps. H, Plot of indi-
vidual �Cm measured after each voltage step.
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each step, when plotted against the cumulative number of stim-
uli, showed a constant value in wild-type IHCs, while this value
rapidly decreased to zero after a few steps in Syt1-null IHCs (Fig.
4H). In summary, these results indicated that in P0 Syt1�/ �

IHCs, the RRP release is normal but the process of RRP recovery
is strongly affected.

Ca 2�-dependent exocytosis is not affected in IHCs from
Syt2 �/ � or Syt7 �/ � mice
Syt2�/ � mice generally survive up to 3 weeks, but exhibit severe
motor dysfunction after the second week (Pang et al., 2006).
Given the selective expression of Syt2 in IHCs during the first few
postnatal days (Fig. 3), we first studied exocytosis in P2–P3
Syt2�/ � IHCs (Fig. 5), but we failed to detect deficits in exocyto-
sis. In Syt2�/� or Syt2�/ � control mice, a 100 ms voltage step to
�10 mV evoked a Ca 2� current (ICa) of 172 � 19 pA, which
elicited a �Cm step of 6.8 � 1.3 fF (n � 17). In Syt2�/ � IHCs, a
same voltage stimuli elicited an average �Cm response of 6.3 �
1.3 fF (n � 10), which was indistinguishable from the one mea-
sured in the control mice ( p 	 0.5). The Ca 2� current was 125 �
23 pA (n � 10); which was slightly, but not significantly smaller
than the one measured in control mice ( p � 0.13). In plots of the
exocytotic �Cm response versus the length of the depolarizing
pulses, the release kinetics was not substantially modified in
Syt2�/ � mice compared with control littermates (Fig. 5C). Using
a train of brief (50 ms) voltage steps to �10 mV (close to peak of
ICa), a sustained vesicular release, similar to controls, could be

observed in IHCs from P2–P3 Syt2�/ � mice, indicating that the
RRP was rapidly refilled between voltage pulses (Fig. 5D).

Since Syt2 has been recently proposed to underlie the Ca 2�

dependence of vesicle release in mature IHCs (Johnson et al.,
2010), we also investigated the properties of exocytosis in near-
mature, P15–P17 IHCs from Syt2�/ � mice (Fig. 6). Again, we did
not detect any obvious exocytotic defect. In Syt2�/ � P15–P17
IHCs, 100 ms voltage steps to ICa peak evoked �Cm with a mean
amplitude of 27.1 � 2.3 fF for ICa peak of 183 � 11 pA (n � 15).
These values were similar to those obtained in the wild-type lit-
termates [27.4 � 4.7 fF and 182 � 23 pA, n � 8 ( p 	 0.5 for both
comparisons)]. In P15–P17 IHCs from Syt2�/ � mice, both the
kinetics of exocytosis (Fig. 6C) and vesicle recruitment (Fig. 6D)
were similar to those in the control littermates. Furthermore, the

Figure 5. Ca 2�-evoked exocytosis in IHCs from P2–P3 Syt2 �/ � mice. A, Examples of
Ca 2�-evoked exocytosis in P2–P3 Syt2�/� and Syt2 �/ � IHCs. Cells were stimulated by a 100
ms voltage step to �10 mV from a holding potential of �90 mV. B, Bar graph of average and
individual ICa peak amplitudes and their corresponding �Cm values for Syt2�/� (n � 17) and
Syt2 �/ � (n � 10) IHCs. C, Kinetics of Ca 2�-dependent exocytosis. Only cells with large �Cm

responses were included for the analysis in this graph. D, Average cumulative �Cm responses
from P2–P3 Syt2 �/� and Syt2 �/ � IHCs elicited using 50 ms repetitive voltage steps to �10
mV (interstep intervals of 100 ms).

Figure 6. Ca 2�-evoked exocytosis in IHCs from P15–P17 Syt2 �/ � mice. A, Examples of
Ca 2�-evoked exocytosis in P15–P17 Syt2�/� and Syt2 �/ � IHCs. Cells were stimulated by a
100 ms voltage step from a holding potential of �90 to �10 mV. B, Bar graph of average and
individual ICa peak amplitudes and their corresponding �Cm values, for Syt2�/� (n � 8) and
Syt2 �/ � (n � 15) IHCs. C, Kinetics of Ca 2�-dependent exocytosis. �Cm is plotted against
stimulus duration for pulses to �10 mV. Note that the Syt2�/� and Syt2 �/ � data points are
overlaid in inset. D, Average cumulative �Cm responses from P15–P17 Syt2 �/� and Syt2 �/�

IHCs elicited by 50 ms repetitive voltage steps to �10 mV (interstep interval of 100 ms). E, Left,
�Cm and ICa peak amplitude for an IHC from a P16 Syt2 �/ � mouse, plotted for different
voltages following a 100 ms voltage step from a holding potential of �90 mV. Gray points
indicate voltages beyond the ICa peak which were not taken into account to calculate the �Cm-
ICa slope. Middle, Corresponding �Cm versus ICa plot. The logarithmized data were fitted by a
line, giving a slope of 0.89. Right, Average and individual slope values for P15–P17 Syt2�/�

(n � 7) and Syt2 �/ � (n � 6) IHCs.
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synaptic transfer function showed similar linear relationships in
P15–P17 wild-type and Syt2�/ � mice (Fig. 6E).

In Syt7�/ � mice, we did not find any defect of Ca 2�-evoked
exocytosis (RRP component) induced by ICa activation in imma-
ture (P2–P8) or post-hearing onset (P15–P30) IHCs (Table 1,
Fig. 7). In these mice, Ca 2�-evoked exocytosis underwent a nor-
mal postnatal maturation, with an increase in Ca 2� efficiency
and a linearization of its Ca 2� dependency after hearing onset. A
train of short depolarizations was also able to induce sustained
vesicular release, which is indicative of a normal RRP refilling
(data not shown).

Discussion
The here uncovered switch from an
otoferlin-independent to an otoferlin-
dependent exocytosis, reveals an as yet
unknown maturation step of the IHC syn-
apse that takes place around P4 in the
mouse. At this developmental transition,
the spontaneous Ca 2�-driven spiking ac-
tivity of IHCs rises to its highest frequency
(Marcotti et al., 2003), and is generated
both intrinsically and extrinsically
through ATP-dependent excitation of
IHCs (Tritsch and Bergles, 2010). The rise
in IHC spike frequency and resulting in-
crease in glutamate release, are supposed
to be important for IHC synaptic matura-
tion (Seal et al., 2008) and for proper mat-
uration of the central auditory pathway
(Rubel and Fritzsch, 2002; Leake et al.,
2006; Leao et al., 2006). Notably, this pe-
riod of postnatal cochlear development
corresponds to an intense period of syn-
aptic reorganization, refinement and re-
traction of type I and type II afferent
neurites contacting IHCs (Lenoir et al.,
1980; Huang et al., 2007). Our results show that before P4, im-
mature IHCs make use of other Ca 2� sensors than otoferlin to
drive Ca 2�-dependent exocytosis. In that respect, it is notewor-
thy that a �Cm response has been recorded in IHCs from hypo-
thyroid rats, in which otoferlin could not be detected (Brandt et
al., 2007; Sendin et al., 2007). The otoferlin-independent exocy-
tosis phase reported here may account for this observation. In-
deed, it has been shown that the maturation of the auditory
neuroepithelium is delayed in thyroid hormone-deficient mice
(Sendin et al., 2007).

Before P3, a period during which IHC exocytosis is otoferlin-
independent, Syt1, Syt2 or Syt7 were found to be dispensable for
vesicle fusion, indicating that other, as yet unknown Ca 2� sen-
sors, are involved in IHCs. Interestingly, we found that in re-
sponse to repetitive stimulation, IHC exocytosis was seriously
affected in Syt1�/ � mice, suggesting that Syt1 is involved in the
recruitment of synaptic vesicles to the RRP, possibly by ensuring
fast Ca 2�-dependent vesicle replenishment of the ribbon syn-
apse. In CNS nerve terminals, Syt1 is also known to regulate the
rate of endocytosis of synaptic vesicles that have undergone fu-
sion (Poskanzer et al., 2003; Nicholson-Tomishima and Ryan,
2004). The replenishment defect of the RRP observed in Syt1�/ �

IHCs could therefore result from an impaired clearance of re-
cently exocytosed vesicles from release sites (Hosoi et al., 2009).

The absence of Syt1 immunolabeling in IHCs after the onset
of hearing, however, suggests that this Ca 2� sensor is not in-

volved in mature IHCs. Furthermore, post-hearing-onset IHCs
from Syt2�/ � or Syt7�/ � mice display normal exocytosis, indi-
cating that Syt2 and Syt7 are also not essential for exocytosis in
mature IHCs. This result is consistent with the absence of Syt2 in
IHCs beyond the first postnatal week. Since several Syt isoforms
are expressed in immature IHCs, we cannot exclude at present
that the lack of a strong phenotype in single Syt-null mice may be
due to functional redundancy between Syts, although we note
that a redundancy between Syt isoforms has not been shown so
far in other synapses. Complexins, that are also known to bind to
the SNARE complex and regulate fast exocytosis in conjunction
with Syts in most neurosecretory synapses, are also dispensable at
the mature IHC ribbon synapse (Strenzke et al., 2009). Together,
these results suggest that the mature IHC makes use of an uncon-
ventional synaptic machinery, which includes otoferlin, to con-
trol exocytosis. The recent report of a temperature-sensitive form
of deafness caused by an otoferlin mutation, that manifests a
sudden hearing impairment provoked by fever in otherwise nor-
mal hearing children, further argues in favor of otoferlin playing
a critical role at the synapses of mature IHCs (Marlin et al., 2010).

Surprisingly, exocytosis of P7 immature IHCs, while
otoferlin-dependent, still showed a low Ca 2� efficiency com-
pared with mature IHCs (Fig. 7). Indeed, the Ca 2� threshold
(minimum ICa required to evoke a release of vesicles 	5 fF) was
similar in P1 IHCs (otoferlin not required) and P7 IHCs (otofer-
lin required), while it is much lower in post-hearing onset (P15–

Figure 7. Comparative Ca 2� thresholds triggering exocytosis in IHCs during postnatal development. A, Comparative IHC
synaptic transfer functions (�Cm vs ICa) plotted on a double log scale, for P1-Otof�/ � (open triangle), P1-Otof �/ � (black circle)
(data from Fig. 2 B), P0-Syt1 �/ � (gray circle; data from Fig. 4 D), P7-Otof�/ � (green triangle), adult (P15–P30) Syt7�/�(open
square) and adult (P16 –P30) Syt7�/� (blue square) IHCs. The ICa thresholds necessary to evoke significant �Cm (	5 fF) were
extrapolated by fitting (line) the slope of the initial Cm increase. B, Synaptic vesicular release in adult IHCs has a higher Ca 2�

sensitivity (4- to 5-fold) than in P0 –P1 and P7 IHCs. This increase in Ca 2� sensitivity in mature IHCs is most likely not due to
otoferlin on its own, since P7 IHCs, which still have low Ca 2� sensitivity of exocytosis, already require otoferlin for synaptic
vesicular release.

Table 1. Ca 2�-dependent exocytosis is not affected in Syt7�/� IHCs

Age

RRP component

Genotype �Cm (max) (fF) �Cm /ICa (fF pA �1)
Ca 2� dependency
N power

P2–P3 Syt7�/� 12.5 � 1.9 (n�3) 0.13 � 0.02 (n�3) –
Syt7�/� 11 � 0.2 (n�3) 0.12 � 0.02 (n�3) 2.1 � 0.2 (n�2)

P6 –P8 Syt7�/� 20 � 4 (n�6) 0.12 � 0.02 (n�6) 2.2 � 0.2 (n�4)
Syt7�/� 24.3 � 6 (n�8) 0.17 � 0.04 (n�8) 2.2 � 0.1 (n�6)

P15–P30 Syt7�/� 66 � 11 (n�6) 0.28 � 0.05 (n�6) 0.9 � 0.1 (n�5)
Syt7�/� 69 � 11 (n�5) 0.37 � 0.08 (n�5) 1.1 � 0.2 (n�5)

13288 • J. Neurosci., October 6, 2010 • 30(40):13281–13290 Beurg et al. • Calcium Sensors and Cochlear Hair Cells



P30), mature IHCs (Fig. 7). Likewise, the slopes of the synaptic
transfer function were steep for all genotypes at P7 or younger (N
�2), while they were less steep (N �1) in P15–P30 wild-type
mice (Fig. 7A). One might hypothesize that as yet undefined
otoferlin partners (such as specific SNAREs, or other Syts) are
lacking to set a linear, highly Ca 2�-sensitive, synaptic function in
P6 IHCs. Synaptotagmin 4, present in mature IHCs only, might
be one of the otoferlin partners, since it has been shown to be
required for the linearization of the synaptic transfer function
(Johnson et al., 2010). A different distribution of Ca 2� channels
at the synaptic active zones between immature and mature IHCs
is also expected to change of the synaptic transfer function. In P6
IHCs, Ca 2� channels are not exclusively located at the active zone
(Zampini et al., 2010), and the extrasynaptic location of some
Ca 2� channels may contribute to the lower “Ca 2�efficiency” of
exocytosis in immature IHCs.

Otoferlin is a member of the ferlin protein family, which in-
cludes fer-1, dysferlin and myoferlin. When defective, dysferlin
and myoferlin are responsible for muscular dystrophies (Bansal
and Campbell, 2004). In Caenorhabditis elegans, Fer-1 is required
for Ca 2�-dependent vesicle fusion in spermatids during sper-
miogenesis (Achanzar and Ward, 1997; Washington and Ward,
2006). Based on the muscular phenotypes of the dysferlin and
myoferlin knock-out mice, a role of these proteins in Ca 2�-
dependent membrane repair processes and myoblast membrane
fusion, respectively, has been proposed (Bansal et al., 2003;
Doherty et al., 2005). Otoferlin, whose C2 domains bind to
SNARE proteins in a Ca 2�-dependent manner (Roux et al.,
2006), is critically involved in membrane vesicle fusion in IHCs
from �P4 –P5 onwards. In an in vitro fusion assay, otoferlin ac-
celerates membrane fusion with higher Ca 2� affinity than Syt1
(C. Johnson and E. R. Chapman personal communication). In
vestibular hair cells, otoferlin has been shown to be essential for a
high affinity Ca 2� sensor function that allows fast exocytosis dur-
ing brief cell depolarizations and low Ca 2� stimuli (Dulon et al.,
2009). The requirement for otoferlin at the mature IHC synapse
is likely due to a constraint specific to the auditory ribbon synapse
organization, and/or its mode of exocytosis that involves mul-
tivesicular release (Glowatzki and Fuchs, 2002). It is possible that
the larger number of C2 domains in otoferlin than in Syt1 (six vs
two) enables more complex interactions between otoferlin and
SNARE proteins, perhaps controlling the supply of vesicles to the
release sites, as recently suggested in pachanga mice (Pangrsic et
al., 2010) and/or allowing a variety of vesicle fusion modes. In the
mature IHC, which does not contain Syt1 or Syt2, the proportion
of coordinated multivesicular fusion events at the ribbon synapse
has been shown much higher than in Syts-expressing IHCs from
pre-hearing animals (Grant et al., 2010). We thus suggest that
otoferlin has a synchronizing effect on the multivesicular fusion
events, an effect that could be attenuated by the coexistence of
Syts, notably Syt1, in immature IHCs.
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