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Abstract The hair bundles of cochlear hair cells play a central
role in the auditory mechano-electrical transduction (MET)
process. The identification of MET components and of asso-
ciated molecular complexes by biochemical approaches is
impeded by the very small number of hair cells within the
cochlea. In contrast, human and mouse genetics have proven
to be particularly powerful. The study of inherited forms of
deafness led to the discovery of several essential proteins of
the MET machinery, which are currently used as entry points
to decipher the associated molecular networks. Notably, MET
relies not only on the MET machinery but also on several
elements ensuring the proper sound-induced oscillation of the
hair bundle or the ionic environment necessary to drive the
MET current. Here, we review the most significant advances
in the molecular bases of the MET process that emerged from
the genetics of hearing.
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MAGI1 Membrane-associated guanylate kinase
inverted 1

MAGUK Membrane-associated guanylate kinase
MET Mechano-electrical transduction
MKKS McKusick–Kaufman syndrome
Mks1 Meckel syndrome, type 1
NHERF1/2 Na+/H+ exchanger regulatory

factor 1/2
NKCC1 Na+–K+–2Cl− cotransporter
OHC Outer hair cell
PDZ Postsynaptic density protein (PSD95),

Drosophila disc large tumor suppressor
(Dlg1) and zonula occludens-1 protein
(ZO-1)

PDZD7 PDZ domain containing 7
PMCA2 Plasma membrane Ca2+ ATPase 2
PST Proline-serine-threonine rich domain
PTK7 Protein tyrosine kinase 7
PTPRQ Protein tyrosine phosphatase receptor Q
rdx Radixin
ror2 Receptor tyrosine kinase-like orphan

receptor 2
scrib Scribbled
sec24b Sec24 family member B
smurf1/2 SMAD-specific E3 ubiquitin protein

ligase 1/2
TJP2 Tight junction protein 2
TRIOBP TRIO and F-actin binding protein
TTC8 Tetratricopeptide repeat domain 8
USH Usher syndrome
vangl1/2 vang-like 1/2
VLGR1 Very large G-coupled receptor 1
ZO-1 Zonula occludens 1

Introduction

The ability of vertebrates to maintain their balance and sense
sound vibrations is decisive for their survival. Although ver-
tebrates live in various environments, they all make use of the
same organelle, the hair bundle, that transduces mechanical
information into an electrical signal in sensory hair cells. Hair
cells are present in the neuromasts of lateral lines in fish and
amphibian larvae, where they detect water movement; in the
vestibular end organs, where they detect linear and angular
acceleration; and in the auditory organs, where they detect
sound pressure waves (Fig. 1a). Hair cells are also present in
non-vertebrate organisms. For instance, the sea anemone,
which belongs to the cnidarian phylum, uses hair cells located
on its tentacles to detect zoo-plankton [228, 229]. The hair
bundle is located at the apex of hair cells and is comprised of
several rows of rigid, actin-filled microvilli, known as

Fig. 1 Auditory organ and MET. a Schematic cross-section of the
cochlea. IHC inner hair cell, OHC outer hair cell. b Illustration of the
stimulation of a mature OHC hair bundle. Stereocilia are maintained
cohesive by top connectors (purple). The tallest row of stereocilia is
anchored into the tectorial membrane. Upon hair bundle displacement
towards this row (excitatory direction), high tension in the tip-links results
in MET channel opening, leading to the entry of K+ and Ca2+ ions to the
hair cell. c Left Example of transduction current recordings in an IHC,
voltage clamped at −80 mV, of a P7 mouse while applying different
displacement steps with a glass probe in the excitatory direction and a
180-nm step in the inhibitory direction (calibrated voltage command of
the stimulator at the top left). Right Corresponding current–displacement
plot fitted with a three-state Boltzmann relation
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stereocilia, which are organised in a staircase pattern and
maintained together by different types of links. One link,
called the tip link, plays a major role in mechano-electrical
transduction (MET). This oblique link connects the tip of each
sterocilium to the lateral wall of the adjacent taller stereocili-
um. Upon mechanical stimulation of the hair bundle in the
direction of the tallest stereocilia, i.e. the excitatory direction,
tension in the tip links increases resulting in a higher proba-
bility of METchannel opening and cell depolarisation [87, 86,
164, 67, 10] (Fig. 1b, c). The biophysical features of these
MET channels have been extensively studied. These cationic
non-selective channels [23, 41, 154] have a large unitary
conductance in the 100 pS range [43, 71, 154] and an ex-
tremely fast activation time constant [42, 205, 172], and are
permeant to large organic cations such as choline and TEA
[62, 154].

The first physical description of hair bundle functioning was
reported in the late 1970s. However, the small number of hair
cells in the inner ear (a few thousands) hampered molecular
advances, as opposed to other sensory organs like the eye, which
contains more than 100 million photoreceptor cells. In the early
1990s, human genetics, the efficiency of which is independent
from the number of hair cells, emerged as the best approach to
identify molecules involved in MET. Studies focused largely on
the cochlea, the mammalian auditory organ, rather than on the
vestibular organs because vestibular defects in humans are often
compensated by the visual and proprioceptive systems. In addi-
tion, deafness is the most frequent sensory defect at birth (ap-
proximately one out of 700 newborns is affected by severe or
profound hearing impairment). Currently, more than 120 deaf-
ness loci have been characterised, and around 80 genes respon-
sible for isolated (non-syndromic) forms of sensorineural deaf-
ness have been identified (see the Hereditary Hearing Loss
Homepage: http://hereditaryhearingloss.org). In addition, many
more genes are involved in syndromic forms of sensorineural
deafness. Pathophysiological studies rely on multidisciplinary
approaches that include invasive exploration techniques in
animal models. Mouse models offer substantial possibilities for
genetic manipulation and have proven to be highly relevant for
the understanding of human auditory defects because mutations
in mouse orthologues of the genes associated with deafness in
humans faithfully mimic the sensory defect in most cases.

The auditory sensory epithelium of mammals, which is
called the organ of Corti (Fig. 1a), is comprised of the hair
cells and of various types of supporting cells that are
sandwiched between the underlying basilar membrane and
the overlying tectorial membrane. Upon sound stimulation,
the shearing movement between the basilar membrane and the
tectorial membrane deflects the hair bundles of hair cells at the
frequency of the stimulus. Each hair cell along the cochlear
longitudinal axis is tuned to be highly sensitive to a particular
frequency, called its characteristic frequency. Together, the
hair cells form a tonotopic map from the base to the apex of

the cochlea. There are two types of hair cells in the cochlea:
the inner hair cells (IHCs), which are organised in one row,
and the outer hair cells (OHCs), which are organised in three
rows (Figs. 1a and 2a). IHCs are the genuine sensory cells that
transduce the sound stimuli into an electrical signal in the
primary auditory neurons, whereas OHCs carry out frequency
dependent mechanical amplification of sound-evoked vibra-
tions of the organ of Corti.

As more and more genes involved in MET are identified, a
major challenge is to elucidate the physiological roles of the
encoded proteins. More than 80 molecules have already been
shown to be essential to MET (see Table 1). However, only a
small proportion of these molecules have been identified as
components of the MET machinery, based on electrophysio-
logical data and relevant biophysical models. In particular, the
molecular identity of the MET channel is still a matter of
debate. The molecular motor myosin-VIIa was the first ‘deaf-
ness’ gene to be discovered [231, 72]; however, its role in
auditory transduction and in particular, its role as a molecular
conveyor and as a mechanical tensor has not yet been clari-
fied. Some molecules play several roles at different positions
in the hair bundle or at different stages in the development of
the transduction apparatus [117, 35]. For instance, abnormal
morphogenesis of the hair bundle in knock-out mice defective
for such proteins may mask subsequent morphological or
functional defects arising at late stages of development.
Delayed conditional knock-outs in specific cochlear cell types
are useful to examine the possible role of these molecules in
the mature hair bundle [35, 160].

Any defect of the hair bundle is expected to have an effect on
MET, including defects of hair bundle development, the tectorial
membrane, which is involved in its deflection, the endocochlear
fluid homeostasis, or the MET machinery itself. In this review,
we examine knowledge gathered through neurogenetics regard-
ing the molecules involved in these four aspects of hair bundle
functioning, and discuss alternative strategies to complete the
molecular picture of molecules involved in MET.

Hair bundle development

Positioning and orienting the hair bundle

Unlike humans that can detect sounds from the sixth month of
embryonic development, mice start to hear on postnatal day
12 (P12) because their cochlear sensory epithelium continues
to develop after birth. At birth, the first steps of hair bundle
growth have already occurred. All the V- or U-shaped hair
bundles are aligned, and their vertices point towards the
cochlear abneural edge (see [131, 61] for review) (Fig. 2a).
Planar polarisation of the hair bundles is essential for their
coordinated deflection upon sound stimulation. Between em-
bryonic day 14.5 (E14.5) and E15.5, a specialised primary
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cilium called the kinocilium, emerges at the centre of the
hair cell apical surface, surrounded by microvilli, and
migrates towards the cell’s abneural edge. Microvilli
then grow differentially in a staircase pattern, eventually
forming three stereocilia rows of increasing height. The
position of the kinocilium marks the vertex of the hair
bundle. Therefore, mutations in genes involved either in
planar cell polarisation (PCP) or in kinocilium migration
are expected to affect the final polarity of the hair
bundle (see Table 1).

Core PCP molecules were originally identified from stud-
ies onDrosophila. Vangl2was the first orthologous gene to be

implicated in the orientation of the hair bundle in the mouse
[143]. Vangl2Lp/Lp mutants have normally shaped, but
misoriented hair bundles. Defects in several other core PCP
molecules including vangl1 [211], frizzled-3 [226], frizzled-6
[226], and disheveled-1, disheveled-2 and disheveled-3 [225,
58] also result in abnormally oriented hair bundles. These core
PCP molecules are asymmetrically distributed within the cell
and are mostly located at the junctions between hair cells and
supporting cells. For example, vangl2 is highly abundant at
the adherens junction on the supporting cell side [73, 227].
Mutations in non-core PCP genes including Cthrc1 [239],
Ror2 [239], Scrib [143], PTK7 [123, 158, 115], Fat4 [180],

Fig. 2 Hair bundle polarity and morphology. a Left Scanning electron
micrograph (SEM) of the organ of Corti in a P6 wild-type mouse. The U-
and V-shaped hair bundles of IHCs and OHCs are aligned and their
vertices point towards the cochlear abneural edge. Scale bar, 5 μm.
Right Examples of OHC and IHC hair bundles in a P6 wild-type mouse.
Scale bars, 1 μm. b Left SEM of OHC hair bundles in a sans-null mutant
mouse at P5 (Jackson shaker). Right SEM of a basal IHC hair bundle in a
sans cKO (Myo15-cre+/−x Ush1gfl/fl) mouse and in a control mouse at P8.
The white frame highlights the presence and absence of prolate shapes of
representative stereocilia tips for the control and the cKO genotype,
respectively. Scale bars, 1 μm. c Left SEM of IHC hair bundles in a

myo7a-null mosaic mouse mutant. In this mouse, Myo7a was expressed
transgenically on the X-chromosome of myo7a-null mutants, enabling
direct comparison, within the same organ of Corti, between myosin VIIa-
deficient (single asterisk) and -complemented (double asterisk) hair cells
due to random X-chromosome inactivation among hair cells [167]. Note
that the stereocilia of the tallest row are longer in the myosin VIIa-
deficient (single asterisk) IHC than in the myosin VIIa-complemented
(double asterisk) IHC. Right SEM of an IHC hair bundle in a whirlin-null
(whirler) mouse and in a control mouse. Note the abnormally short
stereocilia in the whirlin-null IHC; as a result, the kinocilium (arrowhead)
is taller than the stereocilia. Scale bars, 1 μm
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Table 1 List of molecules involved in MET

Gene Protein Human deafness form Mouse mutant

Core PCP protein

VANGL2 vangl2 Vangl2Lp; Vangl2LpcKO/cKO

VANGL1 vangl1 Vangl1gt

FZD3 frizzled-3 Fz3−/−

FZD6 frizzled-6 Fz6−/−

DVL1 disheveled-1 Dvl1−/−

DVL2 disheveled-2 Dvl2−/−

DVL3 disheveled-3 Dvl3cKO/cKO

Non-core PCP protein

ROR2 ror2 Ror2−/−

CTHRC1 cthrc1 Cthrc1LacZ/LacZ

SCRIB scribble ScribCrc/Crc

PTK7 PTK7 Ptk7Gt(Betageo)1Matl

FAT4 fat4 Cystic kidney disease Fat4−/−

DCHS1 dchs1 Dchs1cKO/cKO

SEC24B sec24b Sec24bY613

SMURF1 smurf1 Smurf1−/−

SMURF2 smurf2 Smurf2−/−

GNAI3 Gai3 (Gnai3) Gai3−/−

GPSM2 GPSM2 (LGN) DFNB82/Chudley-McCullough syndrome GPSM2cKO/cKO

PRKCZ Prkcz (aPKC)

Proteins involved in ciliopathies

BBS1 BBS1 Bardet–Biedl form 1 Bbs1−/−

BBS4 BBS4 Bardet–Biedl form 4 Bbs4−/−

MKKS BBS6 Bardet–Biedl form 6 Mkks−/−

TTC8 BBS8 Bardet–Biedl form 8 Bbs8−/−

MKS1 mks1 Meckel–Gruber syndrome Mks1del64-323

ALMS1 alms1 Alström syndrome Alms1−/−

IFT88 Ift88 Ift88cKO/cKO

KIF3A Kif3a Kif3acKO/cKO

Cell-cell junction proteins

CLDN14 claudin-14 DFNB29 Cldn14−/−

CLDN9 claudin-9 Cldn9nmf329

CLDN6 claudin-6

ZO1 ZO-1

TJP2 TJP2 DFNA51

VEZT vezatin VeztcKO/cKO

Actin, actin-binding and actin-interacting proteins

ACTB β–actin Deafness, dystonia ActbcKO/cKO

ACTG1 γ-actin DFNA20/26 Actg1cKO/cKO

DIAPH1 diaphanous-related formin 1 DFNA1

DIAPH3 diaphanous-related formin 3 AUNA1 Diap3line771; Diap3line924

ESPN espin DFNB36 Jerker (je)

EPS8 eps8 DFNBn Eps8−/−

EPS8L2 eps8L2 Eps8L2−/−

RDX radixin DFNB24 Rdx−/−

TRIOBP TRIOBP DFNB28 Triobptm1Tbf

TPRN taperin DFNB79

FSCN2 fascin-2 B6.D2-Fscn2R109H
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Table 1 (continued)

Gene Protein Human deafness form Mouse mutant

TWF2 twinfilin-2 Twf2−/−

GSN gelsolin Gsntm1Djk

Molecular motors

MYO1C myosin-Ic Myo1cY61G

MYO3A myosin-IIIa DFNB30 Myo3atm1.1Mckg

MYO3B myosin-IIIb

MYO6 myosin-VI DFNB37, DFNA22 Snell’s waltzer (sv); twist (Twt)

MYO7A myosin-VIIa DFNB2, DFNA11/USH1B Shaker-1 (sh1); headbanger (hdb); Myo7a6J; Myo7a4626SB

MYO15A myosin-XV DFNB3 Shaker-2 (sh2)

Hair bundle links and associated proteins

USH1C harmonin DFNB18/USH1C Deaf circler (dfcr); Ush1c−/−

CDH23 cadherin-23 DFNB12/USH1D Waltzer (v)

PCDH15 protocadherin-15 DFNB23/USH1F Ames waltzer (av)

USH1G sans USH1G Jackson shaker (js), sanscKO

USH2A usherin USH2A Ush2a−/−

GPR98 VLGR1 USH2C Gpr98del7TM; Gpr98−/−

DFNB31 whirlin DFNB31/USH2D Whirler (wi)

PDZD7 PDZD7 Pdzd7−/−

PTPRQ PTPRQ DFNB84 Ptprq−/−

STRC stereocilin DFNB16 Strc−/−

LHFPL5 TMHS DFNB66/67 Hurry-scurry (hscy); THMS−/−

TMC1 TMC1 DFNB7/11, DFNA36 Deafness (dn); Beethoven (bth); Tmc1−/−

TMC2 TMC2 Tmc2−/−; Tmc2tm1Lex

Other stereociliary proteins

MPP5 MAGUK p55

EPB41 4.1R

CLRN1 clarin-1 USH3A Clrn1−/−

CIB2 CIB2 DFNB48/USH1J

CLIC5 CLIC5 Jitterbug (jbg)

SLC9A3R1 NHERF1 Nherf1−/−

SLC9A3R2 NHERF2 Nherf2−/−

ATP2B2 PMCA2 Deafwaddler (dfw); Atp2b2−/−

MAGI1 MAGI1

TBC1D24 TBC1D24 DFNB86

ELMOD1 ELMOD1 roundabout (rda); roundabout-2J (rda(2J))

ELMOD3 ELMOD3 DFNB88

LOXHD1 LOXHD1 DFNB77 samba

ATP8B1 ATP8b1 Atp8b1G308V/G308V

Tectorial membrane proteins

TECTA α-tectorin DFNB21, DFNA8/12 TectaDENT/DENT; TectaY1870

TECTB β-tectorin Tectb−/−

OTOG otogelin Overlaps DFNB18 Otogtm1Prs

OTOGL otogelin-like Overlaps DFNB84

CEACAM16 ceacam16 DFNA4 Ceacam16−/−

OTOL1 otolin

OTOA otoancorin DFNB22 Otoancorin−/−

Proteins involved in K+ homeostasis

KCNJ10 Kcnj10 (Kir4.1) Kcnj10−/−

KCNQ1 Kcnq1 Jervell and Lange–Nielsen syndrome Kcnq1−/−
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Dchs1 [128], Sec24b [139], Smurf1 and Smurf2 [148] also
result in hair bundle misorientation. Mutations in these genes
give rise to variable phenotypes that are usually less severe
than those of mutations in the core PCP genes. Mutations in
the genes causing ciliopathies, which are syndromes that
result from defects of the primary cilium, also lead to defects
of hair bundle polarity. They include some of the genes
responsible for Bardet–Biedl syndrome (BBS1 [175], BBS4
[175],MKKS (BBS6) [175] and TTC8 (BBS8) [132]) (see [66]
for review), genes responsible for Meckel–Gruber syndrome
(Mks1 [44]), and genes responsible for Alström syndrome
(Alms1 [89]). The conditional knock-out of genes involved
in intraflagellar transport, Ift88 or Kif3a, results in loss of the
kinocilium and is associated with PCP defects in mice, pro-
viding further evidence for the involvement of the kinocilium
in hair bundle orientation [95, 200].

GTP-binding protein αi subunits (Gαi) control mitotic
spindle orientation and are associated with GPSM2, which is
a protein implicated in deafness [221, 53]. Gαi subunits were
recently found to be involved in kinocilium migration and in
hair bundle shape and orientation [60, 206]. These proteins are
located in the apical region of the hair cell on its abneural side,
between the cell junction and the hair bundle, forming a
crescent-shaped domain. The role of Gαi in hair bundle shape
was confirmed in Gαi3 mutant mice that display flattened hair
bundle shapes and mislocalised kinocilia [60]. A complemen-
tary domain to that of Gαi at the apical surface of hair cells on
the neural side of hair bundles is also defined by the expres-
sion of atypical protein kinase C (aPKC) [60, 206]. Thus, the
boundary between the Gαi- and aPKC-containing areas may

participate in defining the apical surface subregion where the
hair bundle emerges [60, 206].

The hair bundle, a cohesive structure

The formation of the hair bundle and the maintenance of its
cohesiveness are orchestrated by several types of links that
come into play at different developmental stages. Prior to their
molecular description, these links were categorised according
to both their location and sensitivity to proteases/calcium
chelators (Fig. 3) [19, 75]. In the newborn mouse (P0), nu-
merous interstereociliary lateral links interconnect stereocilia
across and between rows in different directions. From P2
onwards, three types of lateral links take over, namely ankle
links that are located at the base of stereocilia and shaft
connectors that are located along stereocilia, and kinocilial
links that connect the kinocilium to adjacent stereocilia of the
tallest row. In mature cochlear hair cells, only the tip links
remain, together with putative lateral links in IHCs and apical
top connectors in OHCs [75]. Several molecular components
of these links have been identified (see Table 1). Mutations in
the corresponding genes in mice lead to congenital hearing
impairment and hair-bundle disorganisation, indicating that
each link type contributes critically to the building or the
maintenance of the hair bundle.

The study of the genes responsible for Usher syndrome has
been especially informative for our understanding of hair-
bundle development. Usher syndrome (USH) is an autosomal
recessive disorder that associates congenital hearing impair-
ment with delayed onset retinitis pigmentosa eventually

Table 1 (continued)

Gene Protein Human deafness form Mouse mutant

KCNE1 Kcne1 (Isk) Jervell and Lange–Nielsen syndrome Isk−/−

NKCC1 NKCC1 (Slc12a2) Slc12a2−/−

GJB2 connexin-26 DFNB1A/Vohwinkel syndrome Gjb2cKO/cKO

KCNQ4 Kcnq4 DFNA2A Kcnq4dn/dn; Kcnq4−/−

SLC12A6 KCC3 Anderman syndrome Kcc3−/−

SLC12A7 KCC4 Kcc4−/−

For each entry, the name of the human gene, the associated protein, the corresponding forms of human deafness, and the main/historical mouse lines are
listed (see references in the text). Several additional proteins with possible roles in MET have been included in the table. The membrane-associated
guanylate kinase (MAGUK) protein MAGI1 was identified as a binding partner of cadherin-23. MAGI1 has a distribution similar to that of cadherin-23
in stereocilia and has been proposed to connect the MET machinery and the cytoskeleton [237]. Mutations in TBC1D24, previously known to cause
epilepsy without reported hearing impairment, can also cause nonsyndromic deafness [246, 15, 169]. The function of the protein in hair cells is still
unknown. The protein was detected in the hair bundle of P3 but not P7 OHCs, and patients were reported to have abnormal otoacoustic emissions, which
indicate OHC dysfunction [246]. ELMOD1 and ELMOD 3 belong to the engulfment and cell motility (ELMO) protein family. Mutations in ELMOD3
and Elmod1 cause deafness in humans and mice, respectively [90, 93]. Both proteins have GTPase activating activity and could participate to actin
dynamics in stereocilia through the Ras superfamily of small regulatory GTPases [90, 93]. Mutations in the ATP8b1 gene also cause deafness in humans
and mice, and the encoded protein localises in stereocilia. In the mutant mice, sensory cells eventually degenerate, but the existence of normal ABR
thresholds at P16 indicates that ATP8b1would initially not be necessary forMET [203].Mutations in the LOXHD1 gene cause progressive deafness and
progressive degeneration of hair cells. The encoded protein has been detected in the developing and mature hair bundle [78]. DFNA and DFNB denote
autosomal dominant and autosomal recessive isolated deafness forms, respectively
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leading to blindness. This disorder has three clinical sub-
types. USH1, the most severe form, is characterised by
severe to profound congenital deafness, constant vestibular
dysfunction and prepubertal onset retinitis pigmentosa. By
contrast, USH2 involves only moderate to severe hearing
impairment and no vestibular dysfunction. USH3 is distin-
guished from USH2 by the progressiveness of the hearing
impairment and the occasional presence of vestibular dys-
function (see [163] for review). Six genes have been impli-
cated in USH1, three in USH2 and one in USH3. USH1 has
been associated with mutations in the genes encoding
cadherin-23 (USH1D) [29, 31], protocadherin-15
(USH1F) [6, 8], the PDZ domain-containing protein
harmonin (USH1C) [216, 25], the ankyrin repeat- and ster-
ile α motif-containing protein sans (USH1G) [232]
(Fig. 2b), the unconventional myosin myosin-VIIa
(USH1B) [231] and the calcium and integrin-binding pro-
tein CIB2 (USH1J) [171]. USH2 has been associated with
mutations in two genes encoding proteins containing a long
extracellular domain, the very large G-coupled receptor
(VLGR1) (USH2C) [233] and the transmembrane protein
usherin (USH2A) [59], and with mutations in the gene
encoding the PDZ domain-containing protein whirlin
(USH2D) [57]. The gene encoding the four-transmembrane
domain protein clarin-1 (USH3A) is the only identified gene
associated with USH3 [91, 3, 64]. Genetics brought the first
evidence that proteins involved in the various genetic forms of
each Usher clinical subtype interact in vivo [26, 117]. In vitro

binding experiments then demonstrated their direct interac-
tion. These proteins are either components of the
interstereociliary links or are submembrane scaffold proteins
that presumably participate in the anchoring of these links to
the actin cytoskeleton (Fig. 3). For instance, early transient
lateral links, kinocilial links and tip links are made of
cadherin-23 and protocadherin-15 [26, 75, 142, 198, 201, 5,
99]. Cadherin-23 forms a ternary complex with harmonin and
myosin-VIIa [16]. Protocadherin-15 binds to myosin-VIIa
[194] and binds to harmonin in vitro [2, 170]. Mutations in
any of the mouse USH1 orthologous genes lead to cochlear
hair bundle fragmentation, highlighting their role in hair bun-
dle cohesion as early as E17 [109, 72, 234, 51, 7, 92, 104].
Moreover, the hair bundles of these mutant mice have
mispositioned kinocilia and are misoriented [117]. Ankle links
are composed of VLGR1 and possibly usherin [1, 136, 140].
These proteins interact with whirlin [214, 1] and PDZD7 [77,
250] that is encoded by a modifier gene of the USH2 pheno-
type [56]. In Vlgr1 knock-out mice, ankle links are absent and
abnormally shaped hair bundles are apparent at P2 [136, 238]
(Fig. 3). Paradoxical MET currents can be elicited in these
bundles if the stereocilia are deflected in the inhibitory direc-
tion by a glass pipette, indicating a lack of hair bundle cohe-
siveness [140]. In addition, two proteins that are implicated in
isolated deafness but not in USH also play a role in hair bundle
cohesiveness: tyrosine phosphatase receptor Q (PTPRQ) that
is associated with shaft connectors [74, 149] and stereocilin
that is associated with OHC top connectors [217, 218].

Fig. 3 Hair bundle cohesion. Top
Schematic illustration of the
different types of links between
stereocilia in OHCs at three
different developmental stages,
E17.5, P5, and P14. Bottom
Molecular composition of the
different links and their associated
molecular complexes. Single
asterisk The positions of the listed
proteins at the upper or lower tip-
link insertion points are detailed
in Fig. 5. Double asteriskUsherin
and PTPRQ are part of the ankle
link complex and the shaft link
complex, respectively, but it is
unknown whether these proteins
form the links
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Control of stereocilia length

Stereocilia are filled with a large core of parallel, densely
packed, cross-linked actin filaments with barbed ends at
their tips, where actin monomers are incorporated, and with
pointed ends at their base, where depolymerisation occurs.
Stereocilia taper at their base, which contains fewer actin
filaments than the core. These filaments are densely packed
to form an array that extends below the apical cell surface,
forming the stereocilia rootlets. These rootlets anchor the
stereocilia in the cuticular plate, which is a dense meshwork
of actin filaments lying beneath the apical surface of the
hair cell. The biophysical properties of MET strongly rely
on the correct formation and maintenance of the hair bundle
staircase pattern.

The shape of stereocilia reflects that of its cytoskeleton,
which in turn depends on different categories of actin-
interacting proteins. These include (1) actin-nucleating pro-
teins that promote initiation of actin polymerisation, (2) actin-
capping proteins that prevent the barbed end from incorporat-
ing actin monomers, (3) actin-bundling proteins that cross-
link parallel actin filaments, (4) actin side-binding proteins,
(5) actin-monomer-sequestering proteins, (6) actin-severing
proteins that split actin filaments and (7) actin molecular
motors. Mutations in various actin and actin-interacting pro-
teins of these categories cause defects in stereocilia structure
(see Table 1). Stereocilia contain β-actin (actb) and γ-actin
(actg1), and mutations in ACTG1 and ACTB lead to deafness
[81, 144, 161, 166, 213, 249]. Mutations in Diaphanous-1,
which encodes an actin-nucleating protein that controls actin
polymerisation, cause deafness [125]. Overexpression of
Diaphanous-3 also results in deafness due to larger than
normal stereocilia [189]. Espin, an actin-bundling protein, is
necessary for the assembly and stabilisation of parallel actin
filaments. Stereocilia morphogenesis is markedly impaired in
the Jerker mutant mouse, which lacks functional espin [248,
150]: as early as P0, stereocilia are abnormally thin and short,
with impaired differential elongation that causes the loss of the
staircase pattern [191]. Mutations in EPS8, which encodes an
actin-bundling and actin-capping protein, cause profound con-
genital deafness [20]. Eps8 is located predominantly at the tips
of stereocilia. In knock-out mice lacking eps8, stereocilia are
abnormally short but are still organised in a staircase pattern
[244]. Notably, a related actin-bundling and actin-capping
protein, eps8-l2, is required for the maintenance of the hair
bundle staircase pattern [68]. Radixin (rdx), which belongs to
the family of ezrin/radixin/moesin (ERM) proteins, tethers
actin filaments to the plasma membrane at the base of stereo-
cilia. Accordingly, mutations in RDX are responsible for hear-
ing impairment in humans [101], and loss of Rdx in mice
causes progressive degeneration of stereocilia [107].
NHERF1 and NHERF2, which both contain an ERM binding
domain and two PDZ domains [54], have also been implicated

in deafness in mice [96]. NHERF2 is mainly located at the
base of hair bundles of cochlear hair cells and is more abun-
dant in IHCs than in OHCs [196, 96]. NHERF1 is present in
the hair bundles of both IHCs and OHCs at embryonic stages
before concentrating at the stereocilia tips of OHCs and could
possibly bind to cadherin-23 in vivo [96]. In Nherf1−/− mice,
the hair bundles of OHCs have abnormal shapes in the basal
and middle cochlear regions. Interestingly, this tonotopy-
dependent phenotype has revealed an unusually powerful
mode of interference between low- and high-frequency
sounds, suggesting a previously unreported mode of off-
frequency hearing [96]. Studies involving Triobp mutant
mice, which lack both TRIOBP-4 and TRIOBP-5, show that
the actin-bundling protein TRIOBP is necessary for the for-
mation of stereocilia rootlets [108]. Many other actin-
interacting proteins have been detected in stereocilia including
the actin side-binding protein tropomyosin [69], the actin-
severing protein cofilin [146] and the actin-bundling proteins
fimbrin [210] and fascin-2 [162].

The hair bundle also contains various unconventional
myosins. Their respective contributions in molecular
transport and in the maintenance of mechanical tension
have not yet been clarified. Myosins are logical candi-
dates to transport proteins along the stereocilia dense
network of actin filaments [209]. Moreover, their presence
at different locations, especially near the tip or at the base
of stereocilia, may exert tension on actin filaments and
modify stereocilia shape. The study of myosin-IIIa,
myosin-VI, myosin-VIIa and myosin-XV has provided
additional information about the molecular complexes
involved in the maintenance of the stereocilia actin cores
(Fig. 4). Myosin-IIIa [222] accumulates at stereocilia tips

Fig. 4 List of myosins and their interactors involved in the control of
stereocilia length. The roles of myosin-VI, myosin-VIIa, and myosin-XV
have been determined by the study of mutant mice defective for these
proteins. In contrast, the implication of myosin-IIIa in stereocilia elonga-
tion was assessed in vitro from the observation that stereocilia are taller
than normal in co-transfected hair cells producingmyosin-IIIa and espin 1
[184]. Single asterisk These proteins have not been associated with
deafness forms in humans or in mice
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[188, 223] and promotes stereocilia lengthening when
overexpressed with espin-1 in hair cells [184]. Stereocilia grow
excessively and fuse together in mutant mice deficient for
myosin-VI [14, 13, 193]. It has recently been proposed that
myosin-VI participates in a molecular complex with CLIC5,
PTPRQ, radixin and taperin, which are all present at the base
of stereocilia [183, 70]. This complex may help to stabilise
interactions between the plasma membrane and the subcor-
tical actin cytoskeleton, which may explain the fusion of
stereocilia in myosin-VI-deficient mice [182, 183].
Nonetheless, the mechanism of stereocilia overgrowth in
these mice is still poorly understood. The tallest row of
stereocilia in mutant mice deficient for myosin-VIIa is also
abnormally long [167] (Fig. 2c). This phenotype has been
ascribed to the concomitant loss of twinfilin-2, an actin-
sequestering and actin-capping protein that inhibits actin
polymerisation [178, 159]. Another molecular complex
was uncovered by the observation of abnormally short
stereocilia in myosin-XV-defective [165] and whirlin-
defective mouse mutants [134] (Fig. 2c). Myosin-XV and
whirlin interact and form a complex with eps8 that plays a
crucial role in the elongation of the stereocilia actin fila-
ments [50, 21, 127]. This complex also includes the
membrane-associated guanylate kinase (MAGUK) p55,
protein 4.1R [133] and gelsolin, which is an actin-
capping and actin-severing protein [135]. Therefore,
several myosin-dependent molecular complexes that are
linked to actin dynamics work in concert to determine
stereocilia length.

The molecular processes that determine stereocilia differ-
ential elongation in different rows are still unknown.
However, several studies, with conflicting results, have ad-
dressed the issue of steady-state actin renewal in mature hair
bundles. A treadmilling process was first proposed to ensure
the renewal of actin monomers in stereocilia filaments. When
actin fused to the green fluorescent protein (actin-GFP) was
overexpressed in cells, the actin core renewal speed was
unexpectedly fast (~48 h) [187], and turnover time was similar
in different stereocilia rows. This implies an approximate
proportional relationship between stereocilia size and the
speed of actin polymerisation [179]. However, the overexpres-
sion of a modified actin monomer (actin-GFP) might alter the
intrinsic properties of actin in stereocilia. An alternative ap-
proach based on the incorporation of 15N-labelled precursor
amino acids by multi-isotope imaging mass spectrometry in
stereocilia indeed suggested otherwise, i.e. that the overall
protein renewal including actin is slow (around 10 days in
young mice and 50 days in adult mice) and faster at the very
tip (distal 0.5 μm end) than in the core of stereocilia [245].
However, the time resolution in this radio-labelling approach
is limited by the life time of proteins, which might be much
longer than the local turnover time of actin filaments by a
treadmilling process.

The mature MET apparatus

The MET machinery

High-speed imaging of the calcium influx through MET
channels in cochlear hair cells has shown that these chan-
nels are located at the tips of the short and middle row
stereocilia but not in tall row stereocilia. MET channels
would therefore be located at the basal ends of the tip links
[24]. The molecular nature of the MET channel has so far
remained elusive. The transmembrane channel-like 1
(TMC1) and TMC2 proteins, which have six transmem-
brane domains, are currently the best candidates. Indeed,
mutations in TMC1 cause deafness in humans [113] and
inner ear hair cells from double knock-out mice for Tmc1
and Tmc2 have no MET currents [98]. In addition, the re-
expression of various combinations of Tmc1, Tmc2, and
mutated forms of Tmc1 in the hair cells of these double
knock-out mice [157] modifies the single MET channel
conductance and its permeability to Ca2+ ions. This sug-
gests that TMC1 and TMC2 are pore-forming subunits of
the MET channel [157, 106]. However, this view was
recently challenged by the observation that a mechano-
sensitive current could still be elicited in the double
knock-out mice by pushing the hair bundle in the inhibitory
direction [105]. Therefore, TMC1 and TMC2 may not
constitute the MET channel by themselves, but instead
may be essential for its targeting to the stereocilia tips
(see [18] for comment and see [83] for review). A recent
study revived the debate by showing that the ion channels
underlying the anomalous MET current elicited by pushing
the hair bundle in the inhibitory direction may in fact have
pore properties different from those of the genuine MET
channels, based on the lower dihydrostreptomycin-
blocking efficacy and the absence of rectification in their
current–voltage relationship [129].

The upper and lower parts of the tip link are composed of
cadherin-23 (USH1D) and protocadherin-15 (USH1F), re-
spectively [198, 201, 5, 99]. Inner ear hair cells express
three different transmembrane protocadherin-15 isoforms,
CD1, CD2 and CD3, that differ in their intracellular amino
acid sequence [5]. Based on the study of knock-out mice,
each of them being defective for only one protocadherin-15
isoform, it has been suggested that protocadherin15 iso-
forms are functionally redundant [230]. However, the anal-
ysis of a delayed, hair cell-specific conditional knockout
mouse that loses only the protocadherin-15-CD2 isoform
after the period of hair-bundle development has shown that
this isoform is an essential component of the tip link in
mature auditory hair cells [160]. In addition, a PCDH15
mutation that affects only the CD2 isoform was also found
to lead to profound deafness without vestibular defects in
human patients. Because mutant mice for CD1 or CD3 are
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not hearing-impaired [230], CD2 would be the only isoform of
protocadherin-15 required for the tip link in mature IHCs and
OHCs, unless CD1 and CD3 are functionally redundant [160].
Three other USH1 proteins, harmonin, sans and myosin-VIIa,
and a non-USH gene, tetraspan membrane protein of hair cell
stereocilia (TMHS), have been shown to participate in molec-
ular complexes associated with the lower and upper tip-link
insertion points (Fig. 5). Harmonin isoforms comprise three
sub-classes: a, b, and c. The largest isoform, harmonin-b, that
contains three PDZ domains, two coiled-coil domains and one
PST domain, is an F-actin-bundling protein [26] and is located
at the upper tip-link insertion point in the mature hair bundle
[117, 141, 79]. Electrophysiological studies of METcurrents in
cochlear explants of harmonin-b null mice are consistent with a
role of this protein as an internal linker between the tip link and
the actin cytoskeleton [141]. The contributions of isoforms a
and c to MET are still unclear [26, 79, 141]. Sans, which binds
to harmonin [2, 240] and myosin-VIIa in vitro [2, 235], and
possibly to the intracellular domains of cadherin-23 and
protocadherin-15, is located at the lower tip-link insertion point
in the developing hair bundle [35] and at the upper tip-link
insertion point in the mature hair bundle [76]. Late conditional
knock-out (after the development of the hair bundle) of the sans
gene in hair cells results in markedly impaired transduction
currents [35]. This has been ascribed to the loss of the tip links,
implying that sans is necessary to maintain the tip link in the
mature MET machinery. The involvement of myosin-VIIa in
MET is likely to be more complex than that of sans since this
motor protein probably has several functions. Mutant mice

defective for myosin-VIIa have severely damaged hair bundles
[192]. This myosin interacts with most of the other USH
proteins and may intervene in their transport in the hair bundle,
which may explain this phenotype. For instance, in myosin-
VIIa-defective mouse mutants, two major components of the
ankle-link complex, VLGR1 and usherin, are absent from the
hair bundle as well as harmonin-b, but not cadherin-23 [140,
117, 194]. In the mature hair bundle, myosin-VIIa is observed
in the region of the upper tip-link insertion point [76], where it
is expected to form a ternary complex with harmonin-b and
cadherin-23 as it does in vitro [16]. All USH1 proteins identi-
fied so far are involved in the MET machinery (Fig. 5), al-
though the role of CIB2 has not yet been defined [171]. Finally,
TMHS, a non-USH gene responsible for an autosomal recessive
form of deafness, encodes a four-transmembrane domain pro-
tein that is located at the lower tip-link insertion point. TMHS
binds to protocadherin-15 in vitro. Tmhs knock-out mice have
very weak MET currents. However, this phenotype is partially
rescued by the overexpression of protocadherin-15, indicating
that impaired METwas mostly due to the defective recruitment
of this protein. This suggests that TMHS is a key component of
the MET machinery, possibly bridging protocadherin-15 to the
METchannel, but is not a component of theMETchannel itself
[236] (Fig. 5).

The MET machinery, a structure under tension

Several features indicate that the MET machinery is subjected
to tension even in the absence of sound stimuli. Stereocilia tips

Fig. 5 The MET machinery in cochlear hair cells. a In the developing
hair bundle, the MET machinery comprises the MET channel(s) and
TMHS at the lower tip-link insertion point. Sans and myosin-VIIa are
also present, but the nature of their interaction with the MET complex is
still unknown. The nature of the interaction between the MET complex
and the actin cytoskeleton is also unknown at the lower tip link insertion
point. At the upper tip-link insertion point, myosin-VIIa and harmonin b

interact with cadherin-23. The role of myosin-Ic remains unclear in the
cochlea because its function has not yet been tested in mice mutant for
this protein. In addition, the location of myosin-Ic cannot be investigated
by immunohistochemistry due to the absence of the appropriate mutant
mice to confirm the specificity of antibodies directed against this protein.
bMature MET machinery. Sans, myosin-VIIa and harmonin-b are locat-
ed at the upper tip-link insertion point

Pflugers Arch - Eur J Physiol (2015) 467:49–72 59



of short and middle rows have a prolate shape that is thought
to be caused by the resting tension exerted by the tip link on
the plasma membrane (Fig. 2b). Direct recordings of receptor
potentials in cochlear hair cells in response to sound stimula-
tion in vivo, and of MET currents in response to displacement
of the hair bundle in vitro, have shown that a proportion of
METchannels are open at rest [42, 45, 176, 94]. This suggests
that the resting tension applied to the MET machinery is
tightly controlled. This tension is perturbed in several mouse
mutants involving molecules of the MET machinery. The
phenotypic consequences of conditional knock-out of the sans
gene appear at P8 and involve the simultaneous loss of tip
links and of the prolate shape of IHC stereocilia tips (Fig. 2b).
The prolate shape of stereocilia tips is also absent in cadherin-
23 conditional knock-out mice that display an abnormal phe-
notype involving mature hair cells (beyond P23).
Interestingly, in these two models, the loss of the prolate shape
is concomitant with the regression of stereocilia in the short
and middle rows [35, 34]. These observations are consistent
with the hypothesis that tip-link tension controls actin poly-
merisation at the barbed end of stereocilia actin filaments
[168].

The control of the holding tension on the MET machinery
depends on the anchoring of the MET channel and the tip link
to the actin cytoskeleton. The tip-link tension can be modu-
lated by sliding of the tip-link upper end anchoring point along
actin filaments. This mechanism is thought to contribute to the
adaptation process that is reflected in the decline in the trans-
duction current evoked by a step displacement of the hair
bundle in vitro [85, 9, 55, 111]. Myosins, which are actin-
based motors, are natural candidates for the control of tip-link
tension by this mechanism. A chemical–genetic strategy in the
mouse indeed provided support for a critical role of myosin-Ic
in the MET adaptation process in vestibular hair cells [82,
204]. However, it remains unclear which myosin(s) are in-
volved in cochlear hair cells. Myosin-VIIa, which is present at
the tip-link upper insertion point in mature cochlear hair cells,
is a promising candidate for the MET machinery. However,
the role(s) of myosin-VIIa in MET remain(s) unclear because
hair bundles in the mutant mice defective for myosin-VIIa are
strongly disorganised, making it difficult to attribute the ab-
normal functional features to a malfunctioning of the MET
machinery only. Moreover, MET currents observed in
Myo7a4626SB mice show characteristics similar to the abnor-
mal currents observed in TMC1 and TMC2 defective mutants
when hair bundles are pushed in the inhibitory direction,
which suggests that the recorded MET currents in
Myo7a4626SB mice would not be gated by tip links (see above)
[110, 129]. The b isoform of harmonin also participates in the
anchoring of the tip-link upper end to the actin cytoskeleton.
In mutant mice that only lack this isoform, MET currents
display a variable extent of adaptation. This observation is
consistent with a role of harmonin-b as a component of the

“extent spring” [195], a mechanical element that has been
postulated to control the stroke of the myosin motors in the
adaptation process [141]. The dynamic interplay between
myosin-VIIa and harmonin-b, both of which can bind to actin
at the upper tip-link end, still has to be elucidated. At the lower
tip-link insertion point, little is known about the molecules
that anchor the MET machinery to the actin cytoskeleton,
even though several myosins are present at the stereocilia tips,
includingmyosin-IIIa, myosin-IIIb [138] andmyosin-XV (see
above).

The tectorial membrane

In the cochlea, hair bundles are covered by an acellular gel
composed of several types of collagen and non-collagenous
glycoproteins called the tectorial membrane. Like the organ of
Corti, the tectorial membrane runs along the cochlear duct. It
is attached on its medial side to the spiral limbus, and on the
other side, it is in firm contact with the tips of the tallest OHC
stereocilia row. Notably, hair bundles of IHCs are free stand-
ing under the tectorial membrane. Upon sound stimulation,
the shear movement between the basilar membrane and the
tectorial membrane drives hair bundle oscillations. Many
proteins involved in the composition of the tectorial mem-
brane or required for its attachment to hair cells are encoded
by genes associated with deafness. The study of mice mutant
for these genes has shed new light on the different roles played
by the tectorial membrane in auditory MET.

Six non-collagenous glycoproteins have been found in the
tectorial membrane: α-tectorin, β-tectorin, otogelin, otogelin-
like, CEACAM16, and otolin [173, 121, 37, 199, 208, 247,
243, 30, 46, 97] (see Table 1 for deafness genes). Notably, the
targeted mutation of α- and β-tectorin in mice has helped to
characterise the mechanical properties of the tectorial mem-
brane. The bulk of the tectorial membrane is made of several
collagen fibres that are organised into a matrix composed of
α- and β-tectorins. Inactivation of the α-tectorin gene in
TectaΔENT/ΔENT mice, which causes the tectorial membrane
to detach from the surface of the organ of Corti, led to the
conclusion that the elasticity of the tectorial membrane has
little influence on the amplitude and phase of deflexion of
OHC stereocilia at the characteristic frequency. Rather, at this
frequency, the tectorial membrane probably behaves mostly as
an inert mass on which OHC stereocilia can react, ensuring
that the OHCs respond to sound stimulation with the proper
gain and timing [119]. Subsequently, the study of a knock-in
mouse harbouring the semi-dominant TectaY1870Cmutation
pinpointed a second mechanical role of the tectorial mem-
brane. Although OHC MET activity is normal in
TectaY1870C/+mice, neural thresholds are markedly high, indi-
cating that the tectorial membrane also plays a critical role in
driving the hair bundles of IHCs [120]. Three knock-in mouse
lines with different missense mutations that change amino
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acid residues in distinct protein subdomains ofα-tectorin have
recently been produced. The analysis of these mice showed
that these subdomains, when defective, affect the biomechan-
ical properties of the tectorial membrane in different ways
[118]. A third mechanical role has also been attributed to the
tectorial membrane. The striated sheet formed by the two
tectorins is disrupted in knock-out mice for the β-tectorin
gene (Tectb−/− mice). Basilar membrane and neural tunings
are both sharper than normal in these mice, suggesting that the
tectorial membrane also influences the longitudinal spread of
sound-induced excitation along the cochlea [177]. Several
molecules involved in the two main attachments of the tecto-
rial membrane have also been characterised. Otoancorin,
which is present at the apical surface of the spiral limbus,
plays a critical role in the attachment of the tectorial mem-
brane to this structure. In otoancorin knock-out mice, the
tectorial membrane is still attached to the OHC stereocilia
but detaches from the spiral limbus, leading to the defective
stimulation of IHCs [124]. Notably, the OHC response in
these mutants is largely unaffected, despite the concomitant
detachment of the TM from the spiral limbus. This reinforces
the hypothesis that the elasticity of the tectorial membrane
plays little role in the stimulation of OHCs near their charac-
teristic frequency. Stereocilin is an extracellular protein of the
mature OHC hair bundle. Top connectors do not form in
stereocilin knock-out mice, and stereocilia imprints do not
appear on the tectorial membrane. Thus, stereocilin is neces-
sary for the formation of top connectors, and it may be a
component of the “attachment links” that connect the tallest
stereocilia of OHCs to the tectorial membrane. Whether these
attachment structures are formed by genuine fibrous links or
by the extracellular matrix remains unclear. The absence of the
top connectors leads to deafness caused by progressive
disorganisation of the hair bundle, which is preceded by a loss
of the acoustic distortion products normally generated by
OHC hair bundles [218, 215] (see [11] for review).

Ionic composition of the endolymph

Hair bundles are bathed in endolymph, which is an extracel-
lular fluid with an unusually high K+ concentration (approx-
imately 150 mM [185]). There is a +80–100 mV
transepithelial potential difference between the endolymphatic
and perilymphatic compartments (endocochlear potential)
[137, 153, 186]. The resulting 120–150 mV difference be-
tween the endolymph and the intracellular compartment [94]
drives the MET current, mainly carried by K+ ions, into the
hair cells. The endocochlear potential and the high K+ con-
centration of the endolymph are produced by the stria
vascularis, a specialised bi-layered epithelium of the cochlear
duct outer wall. The maintenance of the endocochlear poten-
tial requires the integrity of the cell–cell tight junctions that
keep the endolymphatic and perilymphatic compartments

electrically isolated from one another. Several ion channels
and transporters have been implicated in the production of the
endocochlear potential and/or K+ secretion by the stria
vascularis, including the Kcnj10 [130, 242], Kcnq1 [151,
116], and Kcne1 [219, 212, 190] K+ channel subunits, and
the Na+–K+–2Cl− cotransporter NKCC1 [49, 52]. Loss-of-
function mutations in any of these genes result in severe
hearing impairment.

The existence of a recycling, through an intercellular gap
junction network, K+ ions that flow out of the hair cells in their
basolateral region has been suggested, although such a process
remains to be established. Mutations in the connexin 26 gene
(CX26/GJB2) [100] are the most common cause of autosomal
recessive congenital deafness in many Caucasian populations;
however, the various roles of gap junction channels in the
functioning of the cochlea are still poorly understood. The
conditional knock-out of Gjb2 in the mouse organ of Corti
leads to the degeneration of sensory cells and supporting cells.
This phenotype has been attributed to defects in the gap
junctions that would be involved in the recycling of K+ ions
released at the base of hair cells. In addition, the endocochlear
potential builds up but fails to be maintained in these mice,
probably as a consequence of the loss of tight junctions
between hair cells and their supporting cells [38]. The
connexin 30 gene (CX30/GJB6) is contiguous with CX26/
GJB2 on human chromosome 13 (mouse chromosome 14)
and is also expressed in the cochlea [207, 65]. Deletions in
GJB6 have been reported in deaf patients [122, 48, 156, 47].
Observations made from the first Gjb6 knock-out mouse
model led to the mistaken conclusion that inactivation of
Gjb6 alone could lead to deafness [207]. In fact, inactivation
of the Gjb6 gene, both in humans and in mice, also impaired
the expression of the Gjb2 gene [40, 174, 155, 126], and
transgenic expression of Gjb2 in the same Gjb6 knock-out
mouse model restored hearing [4]. Indeed, auditory brainstem
responses were normal in a second, more recent Gjb6 knock-
out mouse mutant, in which sufficient expression ofGjb2was
preserved. Thus, the cause of deafness after GJB6 deletion is
the low expression of GJB2 due to the co-deletion of its
putative regulatory element [39, 32]. In addition, the
endocochlear potential in the first Gjb6 knock-out mouse
model [207] fails to build up as a consequence of abnormal
tight junctions between endothelial cells in capillaries of the
stria vascularis [32] indicating a role of Gjb2 at this emplace-
ment. At least, three other genes are thought to be involved in
the recycling circuit of K+ ions: KCNQ4 [112], KCC3 [28],
and KCC4 [27]. KCNQ4 encodes a K+ channel subunit and
KCC3 and KCC4 encode K+–Cl− cotransporters. Kcnq4 is
located at the base of mature OHCs and mediates a voltage-
activated K+ current that is already active at the resting mem-
brane potential [84, 103]. In Kcnq4−/− mice, this current is
abolished, leading to a slow degeneration of OHCs, which
probably results from their chronic depolarisation [102]. Kcc3
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and Kcc4 are present in the supporting cells of IHCs and
OHCs. Kcc3 and Kcc4 are thought to siphon K+ ions from
the hair cells’ pericellular space into supporting cells, where
these ions would enter the gap junction recycling pathway.
Hair cells undergo degeneration both in Kcc3 knock-out mice
and Kcc4 knock-out mice, although degeneration occurs ear-
lier in the former than in the latter [27, 28].

The maintenance of the high endolymphatic K+ concentra-
tion and of the endocochlear potential requires strong apical
cell–cell junctions in the epithelia lining the endolymphatic
compartment of the cochlea, especially in the mechanically
stressed sensory epithelium. Junctions between OHCs and
their supporting cells are probably subjected to the highest
amount of mechanical stress, due to the motion of the sensory
epithelium and forces generated by OHC electromotility.
These junctions are composed of an atypical combination of
tight junctions and adherens junctions [152] containing
claudin-14, claudin-9, claudin-6, catenins, ZO-1, TJP2 and
vezatin [22, 147, 17, 220] (see Table 1 for deafness genes).
This atypical junction complex probably plays a major role in
the resilience of these cell junctions to mechanical stress.
Indeed, conditional mutant mice deficient for vezatin in
OHCs suffer from late onset hearing loss that can also be
induced irreversibly by exposure to loud sound levels that
are harmless to control mice [17].

Continuing the molecular deciphering of the MET
apparatus

There has been for the past 10 years remarkable progress in
the identification of proteins and protein complexes that con-
stitute the MET machinery. However, the composition of the
central element of this machinery, the MET channel, is still
under debate. Various strategies to characterise the molecular
identity of this channel have been hindered by the limited
amount of available material, the multifunction of particular
molecules in the developing and mature hair bundle and by
the current inability to reconstitute the MET machinery in a
controlled exogenous system (see [145] for review). Genetic
studies, both in humans and in mice, circumvented the prob-
lem of the paucity of the hair cell material available. The
development of new genetic tools in the mouse, such as the
myosin-XV promoter-driven cre mouse that enables delayed
conditional knocking-out of proteins, offers a unique oppor-
tunity to distinguish the role of a particular protein in the
mature hair bundle from its possible role during development
[35, 160] (Fig. 2b). Other cre knock-in lines need to be
developed to offer a larger panel of genetic tools at different
developmental time points and in specific hair cell types.
Studies that apply the same strategy to known components

of the MET machinery should clarify their respective roles in
the mature hair bundle.

Most genes that have been associated with deafness appear
to affect MET either directly or indirectly. It is likely that the
genetic approach will continue to feed the list of molecules
involved in MET. As time passes, the increasing speed and
smaller cost of exome sequencing will probably compensate
the lower probability of finding new disease-associated loci by
genetic linkage analysis of affected families. All USH1 pro-
teins characterised so far have been implicated in the MET
machinery; therefore, we can anticipate that the last USH1
protein identified, CIB2 (USH1J), will be no exception [171].

The retina is also affected by USH. The search for new
binding partners of USH1 proteins in the retina is facilitated
by the abundance of photoreceptor cells and may help to
find new elements of the cochlear MET machinery. Until
recently, the pathogenesis of the retinitis pigmentosa ob-
served in USH1 patients remained elusive because mouse
models for USH1 genetic forms do not reproduce the retinal
degeneration phenotype of humans. The study of USH1
protein distribution in the macaque retina revealed the
structural origin of this discrepancy [181]. In primate pho-
toreceptor cells, USH1 proteins are present at the interface
between inner and outer segments and are also associated to
calyceal processes [33], which are axially oriented
microvillus-like structures that form a collar around the
base of the outer segment in rod and cone photoreceptors.
Strikingly, calyceal processes are absent from the photore-
ceptor cells of mice, which probably explains the absence
of an abnormal retinal phenotype in USH1 mutant mice.
Calyceal processes resemble cochlear stereocilia in many
respects. USH1 proteins are present in these structures,
together with other molecules of the cochlear hair bundle
such as myosin IIIa, espin, and the Ca2+ pump PMCA2
(plasma membrane calcium ATPase 2), which has also been
implicated in mouse and human deafness [63, 202].
Furthermore, both cadherin-23 and protocadherin-15 are
located at the membrane interface between the outer seg-
ment and surrounding calyceal processes and between the
base of the outer segment and the apical region of the inner
segment. The USH1 protein complex may form an adhe-
sion belt connecting the outer segment basal region to the
surrounding structures. These similarities between calyceal
processes and hair cell stereocilia indicate that the study of
photoreceptors may provide an alternative strategy to deci-
pher the molecular elements of the MET machinery [181].

Human genetics has uncovered numerous molecules in-
volved in hair bundle development and function. Each of
these molecules provides a starting point to decipher whole
molecular complexes. Clearly, the probability of finding new
genes associated with deafness in patients from newly recruit-
ed families decreases with time, and as a consequence, this
approach may cease to provide new candidates at some point.
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Moreover, lethal mutations cannot be detected by the human
genetics approach, which may make some essential compo-
nents of the MET machinery difficult to identify with this
approach. Thus, complementary strategies need to be devel-
oped to complete the picture of the molecular networks in the
hair bundle. In addition to the yeast two-hybrid technique that
can find new interacting components of a molecular complex
step by step [114, 133, 237], recent technological leaps have
offered new screening strategies. Analysis of isolated hair
bundles by mass spectroscopy could establish an extensive
list of hair bundle proteins and their relative abundances,
which would provide a new framework to pursue functional
studies. Among the most abundant proteins, many are in-
volved in the organisation of the actin cytoskeleton, in the
maintenance of local ATP levels (the brain isoform of creatine
kinase) [197, 196, 12], in calcium homeostasis (calcium buff-
ering proteins such as parvalbumin, calbindin and calmodulin
[80, 197], and the Ca2+ pump PMCA2 [63, 202]). Likewise,
next generation sequencing coupled with messenger RNA
amplification of a few sensory hair cells should bring new
insight into the molecular components involved in hair cell
MET. The variety of structures in which these components are
involved implies that the understanding of their functions will
rely more and more on in vivo studies in the future.
Genetically modified mice have proven to be a powerful tool
to study the role of molecules in situ. In addition, the replica-
tion of relevant human point mutations in mice has been very
instructive, as illustrated by the use of particular Tecta and
Tectb mutations to uncover the various roles of the tectorial
membrane in MET. This mutational approach is to be extend-
ed with the arrival of more powerful and faster tools to
engineer mouse mutants, such as the clustered regularly
interspaced short palindromic repeat/CRISPR-associated
(CRISPR/Cas) system to perform genome sequence specific-
editing. The CRISPR/Cas system allows the one-step genera-
tion ofmice carryingmutations in several genes simultaneous-
ly [224]. This system also offers the possibility to generate
reporter and conditional alleles in one step [241], and hence
speeds up considerably the generation of genetic models in
mice. This gene editing method has already been applied to
zebrafish [36, 88], and should also make it possible to manip-
ulate the genomes of other mammalian species, including ones
that have a frequency range of hearing more similar to that of
humans, such as guinea pig or gerbil.
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