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Abstract

Defining the architecture of a specific cancer genome, including its structural variants, is essential for understanding tumor
biology, mechanisms of oncogenesis, and for designing effective personalized therapies. Short read paired-end sequencing
is currently the most sensitive method for detecting somatic mutations that arise during tumor development. However,
mapping structural variants using this method leads to a large number of false positive calls, mostly due to the repetitive
nature of the genome and the difficulty of assigning correct mapping positions to short reads. This study describes a
method to efficiently identify large tumor-specific deletions, inversions, duplications and translocations from low coverage
data using SVDetect or BreakDancer software and a set of novel filtering procedures designed to reduce false positive calls.
Applying our method to a spontaneous T cell lymphoma arising in a core RAG2/p53-deficient mouse, we identified 40
validated tumor-specific structural rearrangements supported by as few as 2 independent read pairs.
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Introduction

Somatic structural variants (SVs), including large deletions,

insertions, inversions, duplications and translocations are impor-

tant hallmarks of cancer genomes, responsible for the creation of

fusion genes, copy number and regulatory changes leading to

activation or overexpression of oncogenes and inactivation of

tumor suppressor genes [1,2,3,4,5,6]. Defining the architecture of

a specific cancer genome is therefore essential not only as a first

step towards understanding the biology of the tumor and

mechanisms of oncogenesis, but also clinically towards designing

effective personalized therapies [7,8].

Recent advances in high throughput sequencing technology

[9,10] have made it possible to study whole genomes at

unprecedented high resolution and relatively low cost. However,

the current short read paired-end sequencing technologies carry

many challenges, especially apparent when attempting to study

SVs in cancer. First, the inherent complexity of tumor tissue

[11,12,13] is a challenge in itself, since tumors are rarely

monoclonal and are often mixed with normal tissue, so the

sequencing coverage must be deeper than for SV detection in the

germline. Second, short reads generated by paired-end sequencing

(typically, 50–100 bp from each end of the 300–400 bp DNA

fragment) prove to be difficult to map correctly back onto the

reference genome due to the high percentage of repetitive genomic

sequences [14,15,16,17]. All this leads to a large number of false

positive calls, generating unacceptable levels of noise. Retro-

transposon activity, common in human and mouse genomes

[18,19], additionally complicates the data analysis leading to

certain types of false positive calls. Finally, DNA library

preparation artefacts arising from PCR amplification combined

with sequencing errors add another level of complexity.

This work describes a whole genome sequencing based

approach to identify 4 types of SVs: large deletions, inversions,

duplications and translocations. We used SVDetect [20] and

BreakDancer [21] to call SVs in a mouse lymphoma genome from

a set of paired-end reads obtained on the Illumina’s HiSeq

platform. In order to reduce the high number of false positive calls,

we developed a filtering procedure that allows detection of tumor-

specific events at relatively low coverage (17x). First, we found it

essential to compare the tumor dataset to a germline sample

obtained from the same animal, to remove a large number of

germline SVs (mostly arising from retrotransposon activity)

detected in the experimental animal when compared to the

reference genome. Second, we developed methods to remove read

pairs marked as discordant due to alignment errors, as well as

imperfect PCR duplicates arising from DNA library preparation

and sequencing errors. Third, we applied several filters on the

results produced by SV calling programs, such as overlaps with
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annotated simple repeats and low mappability regions, in order to

identify high confidence SV candidates. We show PCR and

Sanger sequencing validation of 40 tumor-specific SVs in a single

tumor genome supported by as few as 2 independent read pairs.

In summary, the method presented here simplifies the analysis,

increasing sample throughput. It also provides high sensitivity,

allowing detection of rare variant clones in complex mixtures that

may have important prognostic or therapeutic consequences.

Results and Discussion

Establishing Initial Analysis Parameters
We used paired-end (PE) sequencing simulations as a tool to

establish the initial analysis parameters, to quantify the effect of

sequencing depth on detection of known SVs, and to study

alignment related false positives. We simulated a rearranged

genome based on C57BL/6J mouse reference (mm9), introducing

10 interchromosomal translocations and 10 large deletions into

areas of varying mappability (Table 1). Read length, mean insert

size and standard deviation of the insert size were chosen to be

representative of our experimental data (50, 315, 44, respectively).

Using three independent simulated datasets with 10, 20, 40, 80

and 160 million read pairs, we assessed the number of detected

real and false positives, as well as the detection probability as a

function of local mappability.

PE sequencing proved to be an efficient method for SV

detection at coverage levels corresponding to 80 or more million

read pairs. 90% of events in our simulated rearranged genome

were detected with 160 million read pairs, about the minimum

currently obtainable from a single lane using the Illumina HiSeq

platform (Fig. 1A). As expected, detectability of a certain

rearrangement strongly depended on the breakpoint microenvi-

ronment, with more coverage needed to detect events in regions of

lower mappability (Fig. 1B). When assessing false positives, we

found that 97% of total SV calls were attributed to reads with

more than one equally valid mapping position. These reads

originate from various repetitive genomic regions (such as

centromeric satellite sequences, retroelements, RNA genes, etc.)

and had to be removed from the analysis. After examining BWA

mapping quality scores of reads contributing to real and false

positives, we chose a cutoff of 23 for our analysis (for further

discussion, see ‘‘False positives arising from BWA alignment

errors’’). It should be noted that cutoff is chosen based on the

desired ratio of real and false positives, with lower cutoff increasing

sensitivity at the expense of specificity. After applying the BWA

mapping quality cutoff to our simulated datasets, we observed no

more false positives related to read mapping errors. However, we

noticed size-related false positives that appeared with the

increasing coverage. These false positives were small deletions

originating from higher end and duplications originating from the

lower end of the normal DNA library fragment size distribution.

To correct for insert size related false positives, we used a size

cutoff of 8 standard deviations and applied it to our analysis. This

parameter should be determined for each library individually,

depending on the desired sensitivity: increasing the standard

deviation cutoff will lead to increasing the minimal detectable

deletion and duplication size. Depending on the analysis needs, it

may be beneficial using lower standard deviation cutoffs together

with an assessment of the number of supporting read pairs, as SVs

with a higher number of supporting read pairs can indicate a real

event. However, this approach should be used with caution when

analyzing tumor samples where loss or gain of copy number can

lead to false conclusions.

Simulations of PE sequencing proved to be a useful tool in

developing the data filtering strategy. After optimizing the initial

parameters described above and removing all false positive calls

from simulated datasets, SV calls in the experimental dataset could

be attributed to the sample and the experimental procedure itself,

rather than analysis artefacts. Simulations were also useful as a

means to predict necessary coverage for detecting certain types of

events. Importantly, when relating simulations to the experimental

data analysis, it has to be taken into account that expected

frequency of rearrangements, and hence the needed coverage, will

normally be 50% due to the diploid nature of the genome. In case

of heteroclonal or impure samples (the usual case when dealing

with tumor samples), this frequency is expected to be even lower.

Data Filtering
As our experimental dataset, we chose an uncharacterized

thymic lymphoma obtained from a Rag2c/cp532/2 mouse.

Thymic lymphomas arising spontaneously in this mouse model

harbor a large number of structural rearrangements such as

translocations, large deletions and amplifications [22]. Illumina’s

paired-end sequencing was chosen over the mate pair strategy,

which we abandoned in the early course of this work due to

difficulties in DNA library preparation. We sequenced two

genomic libraries, one obtained from the solid tumor tissue and

the other from the liver of the same animal (germline control). We

found the control library to be essential due to a large number of

germline SVs originating from remains of a 129 strain background

(the mouse was initially created as a 129SvEv/C57BL6 hybrid).

The tumor and control library were sequenced to 17x and 9x

physical coverage, respectively (Table 2, Fig. 2).

Table 1. List of simulated SVs with mappabilities.

SV* Size (bp) Mappability (%)

TR 15_12 – 100

TR 12_15 – 100

TR 10_X – 50

TR X_10 – 50

TR 16_6 – 70.2

TR 6_16 – 52.8

TR 7_11 – 66

TR 11_7 – 73.8

TR 14_13 – 18.5

TR 13_14 – 36.4

DEL 1 576,373 100

DEL 2 46,610 95.1

DEL 3 600,033 85.3

DEL 4 5,963 100

DEL 5 64,735 100

DEL 8 1,433 77.4

DEL 9 10,789 100

DEL 17 3,066 100

DEL 18 1,000,440 100

DEL 19 21,449 100

*TR = translocation, DEL = deletion. Numbers show chromosome(s) involved.
Mappability is calculated as percentage of 50 bp windows with 100%
mappability obtained from the UCSC Table Browser inside the region of 265 bp
on each side of the breakpoint.
doi:10.1371/journal.pone.0048314.t001
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We used SVDetect (Fig. 3A) and BreakDancer (Fig. 3B) to call

initial SVs, as these are the two most widely used large structural

variant detection programs applicable to 50 bp read PE data.

Generally, the analysis using the BreakDancer initially produced

more intrachromosomal and less interchromosomal SV calls

compared to SVDetect, perhaps due to differences in the

clustering strategy. The same analysis parameters and filtering

procedure was applied to both programs, yielding similar results at

the end.

In contrast to simulations, analysis of experimental data led to a

large number of false positive calls after applying initially

established analysis parameters described above. We define these

false positives as events supported by reads mapping to repetitive

genomic regions, as well as those that span regions with

retroelement activity. The number of false positives was especially

large among interchromosomal SVs, explained by the higher

likelihood of a repetitive read being misaligned to a chromosome

different from its mate. In order to find and validate real tumor-

specific variants, it was necessary to analyze the source of these

calls and reduce them to a manageable number. We identified 3

main types of false positive calls, depending on their source: 1) false

positives related to variation between mouse strains, 2) false

positives arising from alignment errors, and 3) false positives

related to PCR duplicates originating from sample preparation

combined with sequencing errors. We developed different pre- and

post-detection filtering procedures in order to work around these

challenges.

False Positives Related to Structural Variation between
Laboratory Mouse Strains

Structural variation among commonly used laboratory mouse

strains, similar to structural variation between individual humans,

has already been documented in great detail [23,24,25]. Most

knock-in mice, including the one used in this study, can be

classified as hybrid strains, even if the animals were backcrossed a

number of times to the reference genome strain (C57BL/6J).

Observed SVs can mostly be attributed to germline retroelement

activity, and are manifested as insertions of SINE, LINE and LTR

Figure 1. Paired-end sequencing simulations. A) Detection of SVs as a function of coverage, B) Number of supporting reads as a function of
mappability.
doi:10.1371/journal.pone.0048314.g001
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elements as well as reverse-transcribed intronless genes (retro-

genes). When an experimental dataset is compared to the C57BL/

6J reference genome, several types of structural variants are called.

Most commonly, retroelement insertions present in the reference,

but missing in the sample strain, will be called as deletions, while

those present in the sample strain, but missing in the reference, will

be called as balanced translocations. Insertions of retrogenes can

be recognized as a number of deletions encompassing introns,

accompanied by a translocation call from the chromosome of

origin to the recipient chromosome (Fig. 4).

In order to filter out germline SVs described above, we found it

necessary to obtain a control dataset by sequencing normal tissue

originating from the same animal. In this study, a control dataset

was prepared using liver tissue and compared to the tumor dataset.

Using this strategy, we were able to remove most germline SVs.

However, certain SVs failed to be detected as germline, due to lack

Figure 2. Relative coverage distribution. A) Tumor dataset, B) Control dataset. Tumor dataset shows differential relative distribution of coverage
due to genomic instability. Chromosome number changes are evident for chr1, chr2, chr15 (,3 copies), chr4 and chr14 (,4 copies), chr8 (,2.5
copies).
doi:10.1371/journal.pone.0048314.g002
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of overlap between supporting read pairs. Therefore, we found it

necessary to examine each SV manually for potentially missed

overlap with the control. Even after applying the comparison

procedure, a number of events we identified as high quality

candidates were validated as germline (30% of intrachromosomal

and 50% of interchromosomal SVs). This result can be attributed

to lower coverage in our control dataset, leading to lower

sensitivity of germline SV detection. Aneuploidy of tumor tissue

(additional copies of some chromosomes or loss of others) creates

local differences in coverage between the tumor and control

dataset, which adds to the complexity of the analysis (Fig. 2).

False Positives Arising from BWA Alignment Errors
To remove false positives related to alignment errors, we tested

the effect of BWA mapping quality score-based filtering on the

number of resulting SV calls. Although BWA authors designate

reads with 0–10 mapping quality as ‘‘unreliably mapped’’ [26], we

found the best cutoff range for mapping quality score in our

experiment to be 0–22 (Fig. 5). To partially correct for undesired

removal of real SV candidates in less unique genomic regions, calls

with large numbers of supporting read pairs were examined

manually. However, none of the examined removed SVs could be

designated as high quality candidates, since they all involved

genomic regions of low mappability. After applying this read

mapping quality filter before any other filtering is applied, the

number of called SVs was reduced to 85% for intrachromosomal

and 36–39% for interchromosomal events (Fig. 3).

To further reduce the number of SV calls resulting from

misalignment of reads originating from repetitive regions, we

tested the strategy of removing SVs with overlap with the

RepeatMasker [27] and the simple repeats track of the UCSC

Genome Browser. We found that RepeatMasker strategy reduces

the number of false positive calls significantly, but filters out 12%

of previously validated rearrangements, including some with

potential biological importance (eg. Pten deletion). Importantly,

reads coming from RepeatMasker annotated regions are not

necessarily difficult to map uniquely, since this track contains

many ancient repeated elements that have significantly diverged

through evolution. RepeatMasker filtering strategy was finally used

only to identify high confidence candidates among interchromo-

somal events with low numbers of supporting read pairs. In

contrast to the RepeatMasker, overlap with simple repeats track

was found to be successful in filtering out alignment error related

false positives only.

As another strategy of dealing with repetitive element-related

false positives, we tested the efficiency of filtering SVs against the

low mappability regions, calculated based on the mappability data

of the UCSC Genome Browser (see Materials and Methods). This

strategy proved to very successful, removing significant numbers of

false positive calls, especially efficient in the case of interchromo-

somal SVs (Fig. 3).

False Positives Related to Errors in Duplicate Calling
In the course of our analysis, we observed false positives called

from small clusters of 2 or 3 read pairs, with both reads mapping at

positions 0–2 bp away from one another (Fig. 6). As already

discussed by others in the field [28], most of these ‘‘imperfect

duplicates’’ probably originated from one DNA fragment and

diverged either during PCR amplification, perhaps due to

template strand slipping, or sequencing errors at the beginning

or the end of the read during the sequencing procedure. These

bona fide duplicates cannot be removed using existing tools such

as Picard’s MarkDuplicates since they do not have identical

mapping positions. Percentage of imperfect duplicates appears to

be correlated with the percentage of perfect PCR duplicates:

specific datasets with high perfect duplicate percentage will show

higher percentage of imperfect duplicates (M. Mijušković, results

not part of this study).

We defined imperfect duplicates as pairs with the same mapping

position of both reads with the possible offset up to 2 bp. Detection

of these duplicates was done during clustering of discordant read

pairs by SVDetect or BreakDancer, using different strategies (see

Materials and Methods). After applying this filter, the number of

intrachromosomal and interchromosomal SVs was reduced by

0.3–1.7% and 3.9–19.5%, respectively (Figure 3). Importantly,

these numbers might underestimate the total imperfect duplicate

percentage since in this case they were detected after removing low

mapping quality reads.

Validating Structural Variants
We created the final list of 61 high confidence SVs (see

Materials and Methods) after manual examination of 381

intrachromosomal and 130 interchromosomal SVs detected by

SVDetect and 328 intrachromosomal and 64 interchromosomal

SVs detected by BreakDancer obtained after applying our filtering

procedure. The majority of these calls, called by both programs,

were found to either be a result of alignment errors related to

repeats (59%), or previously unidentified germline SVs such as

Table 2. Data statistics.

TUMOR DATASET CONTROL DATASET

Total number of unfiltered Ilumina HiSeq read pairs 445046442 231370662

Unmapped 13350529 7275688

Duplicated read pairs/percentage 40573999/9.1% 18667266/8.1%

Mean insert size 315 299

Standard deviation 44 40

Read length 50 50

Coverage** 17x 9x

Anomalously mapped* (same chromosome) 715169 379049

Anomalously mapped* (different chromosomes) 2932221 1258825

*Number of anomalous read pairs after removing duplicated and unmapped read pairs.
**Calculated as physical coverage.
doi:10.1371/journal.pone.0048314.t002

Detecting Structural Variants in Cancer Genomes
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retroelement or retrogene insertions (23%). BreakDancer detected

only a subset of high confidence SVs found by SVDetect (47 out of

61), even before any filtering was applied, perhaps due to

differences in the clustering algorithm.

We used PCR to test 57 intrachromosomal and 4 interchro-

mosomal high confidence SVs found by the BreakDancer and/or

SVDetect (Table S1). From this set, we validated 23 large (1–

539 kb) deletions, 10 inversions, 5 duplications and 2 transloca-

tions as tumor-specific, and the specificity of the PCR products

was confirmed by Sanger sequencing (Table 3). Thus, 40 of the 61

high confidence SVs identified by our method were validated as

tumor specific SVs. The other 19 intrachromosomal and 2

interchromosomal events were PCR validated as germline SVs. 16

out of 21 of these SVs had at least one supporting read pair in the

original control dataset and failed to be detected due to our 2

supporting read cutoff. These false positives can be avoided either

by sequencing the control dataset to higher coverage, when

possible, or examining the control dataset using the 1 read pair

cutoff.

Figure 3. Tumor-specific SVs: data filtering. Graph shows total number of SV calls by SVDetect (A) or BreakDancer (B), as consecutive filtering
steps are applied. NO FILT- No filtering (except removal of perfect PCR duplicates and reads with zero BWA mapping quality), M QUAL- Removing
reads with ,23 BWA mapping quality, I DUPL- Removing reads in the category of ‘‘imperfect duplicates’’, CONTROL- Comparing tumor dataset to the
control, LOW MAP- Post-SV detection filtering of calls overlapping low mappability regions, SIMP REP- Post-SV detection filtering of calls overlapping
simple repeats, CUSTOM- Custom filtering of remaining calls based on the rearrangement type (see text for details).
doi:10.1371/journal.pone.0048314.g003
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Figure 4. Retrotransposon and retrogene insertions leading to false positive calls. A) Retrotransposon insertion to a different chromosome
leading to a false translocation call, B) Retrotransposon insertion to the same chromosome as the original leading to a false deletion call, C) Reverse
transcribed intronless gene (retrogene) insertion to a different chromosome leading to false translocation and deletion calls.
doi:10.1371/journal.pone.0048314.g004

Figure 5. Mapping quality distribution. Discordant reads with mapping qualities above 22 are used for this analysis (box).
doi:10.1371/journal.pone.0048314.g005
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Among validated tumor-specific SVs, we found several tumor-

suppressor gene deletions, as well as some expected canonical

antigen receptor gene rearrangements (Table 3). Notably, two

tumor-specific translocations, two inversions and one validated

tumor-specific duplication show signs of a complex rearrangement

[29].

Conclusions
First, our work shows that simulating paired-end sequencing can

be an effective way to develop the analysis strategy, predict

coverage necessary to detect DNA breakpoints in different

genomic environments and to separate sources of false positive

calls into sample related and those that arise due to analysis

artefacts.

Second, we have found that a control dataset obtained from the

same animal is essential to reduce a large number of germline SVs

that exist between commonly used laboratory mouse strains, even

in cases when the animals are backcrossed a number of times to

the reference genome strain.

Third, we have defined two types of duplicated reads leading to

false SV prediction, both arising from PCR over-amplification

during sample preparation: perfect duplicates, with matching

genomic coordinates, and those with 1–2 bp coordinate offset that

are not detected using existing tools. We present a method to

remove SVs resulting from those reads using either SVDetect or

BreakDancer.

Fourth, we find that removing reads with low BWA mapping

quality, as well as SV calls that overlap with genomic regions of

low mappability, is a very efficient way to filter our large numbers

of false positives that arise due to alignment errors.

Finally, using this method, we validated a fairly large number

of true tumor-specific SVs from a rather small dataset. Starting

with a large number of candidate events, we were able to

rapidly discard majority of false positives and focus on a

tractable number of candidates for manual analysis (,5% of the

initial number of calls from this dataset). We validated our

filtering method with two widely used SV detection programs,

SVDetect and BreakDancer, showing that it is universally

applicable, rather than being restricted to a single program and

its possible shortcomings. The final number of candidate events,

as well as the number of false negatives, is a function of

coverage and the stringency of filtering parameters. Depending

on the needs of the experiment, these parameters can be set to

a desired level in order to achieve an acceptable number of

false positives vs. false negatives.

Our method should be applicable for future work in model

organisms as well as in human tumors. In the clinical context,

higher coverage would be needed to reduce the number of

undetected germline SVs, as well as to improve the detection of

low frequency somatic SVs.

Materials and Methods

Simulating PE Sequencing Data
Simulated PE sequencing datasets were created based on a

mutated mouse reference genome (mm9) containing 10 translo-

cations and 10 large deletions introduced using the EMBOSS tools

(http://emboss.sourceforge.net). Illumina format fastq files were

written using our PE.pl program (http://sourceforge.net/projects/

svdetection) that selects random positions in the user-provided

genome, normalized for different chromosome lengths. User-

defined parameters include the number of read pairs, read length,

mean insert size and standard deviation.

Obtaining Experimental Data
Thymoma and liver (control) tissue were harvested from a

Rag2c/cp532/2 mouse [22], a 129SvEv/C57BL6 hybrid strain,

and genomic DNA was purified using Blood & Cell Culture DNA

Maxi Kit (Qiagen, #13362). Paired-end libraries were generated

from 1 ug starting genomic material from both tissues using

TruSeq DNA v2 Sample Prep Kit (Illumina, #FC-121-2001)

according to manufacturer’s recommendations. Optimal PCR

amplification of adapter-ligated DNA was determined using a

FlashGel DNA System (Lonza, #57026). Libraries were analyzed

for size distribution using Agilent 2100 Bioanalyzer (Agilent

Technologies, #5067-4626) and the DNA concentration was

determined using Qubit dsDNA HS Assay Kit (Life Technologies,

#Q32851). Samples were sequenced on Illumina HiSeq 2000

using TruSeq PE Cluster Kit v3 (Illumina, #PE-401-3001) and

TruSeq SBS Kit v3 (Illumina, #FC-401-3002), according to

manufacturer’s recommendations. Two lanes were used to

sequence the tumor and one lane for the control DNA library

(SRA accession number: SRA055958).

PE Read Alignment and Quality Filtering
Fastq files were generated using Casava 1.8 (Illumina) and reads

were aligned using BWA [26]. Output files were manipulated by

Samtools as needed [30]. Perfect PCR duplicates were removed

using Picard’s MarkDuplicates tool (http://sourceforge.net/apps/

mediawiki/picard). BWA-designated concordant read pairs and

read pairs with low BWA mapping quality scores were removed

using our own software (http://sourceforge.net/projects/

svdetection), as needed.

Calling Structural Variants and Removing Imperfect
Duplicates

SVDetect [20] or BreakDancer [21] were used to call

intrachromosomal and interchromosomal rearrangements from

discordant, quality pre-filtered read pairs. Mean insert size and

standard deviation used in this analysis were obtained by Picard’s

InsertSizeMetrics tool (http://sourceforge.net/apps/mediawiki/

picard). SVDetect and BreakDancer were configured to detect

Figure 6. An example of imperfect duplicates. Three read pairs, likely originating from one DNA fragment, showing 1–2 bp offset in genomic
coordinates.
doi:10.1371/journal.pone.0048314.g006
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rearrangements with 2 or more supporting read pairs using 8 times

standard deviation as threshold for both deletions and duplica-

tions. SVDetect built-in ‘‘compare’’ function was used for

comparison of the tumor and control datasets. When comparing

the calls, the option for comparing only the same SV type was

turned off. For SV detection with BreakDancer, tumor to normal

comparison was done using BEDTools [31].

To remove PCR duplicates with 1–2 bp offset in coordinates

(‘‘imperfect duplicates’’), we manipulated the output file created by

the SVDetect "linking" function using our own software (http://

sourceforge.net/projects/svdetection). This file lists clusters of read

pairs supporting the same rearrangement and contains coordinates

of individual supporting reads. Pairs where both reads are

positioned 0, 1 or 2 base pairs away from each other, in the

same orientation, were removed as imperfect duplicates. In

BreakDancer-based SV analysis, we changed the minimum SV

anchoring region setting to 3, in order to avoid SVs being called

from clusters of imperfect PCR duplicates. We also examined

Table 3. Tumor-specific SVs validated by PCR and Sanger sequencing.

Type Location Size (kb) Read pairs (#) Gene(s)

TRANSLOCATION chr14-X – 21 TCR alpha

chrX-14 – 14 TCR alpha

DELETION Chr3 59 3 Pag1

Chr5 32.1 3 Agpat9

Chr6 261.8 8 TCR beta

Chr6 479.7 5 TCR beta

Chr6 471.4 3 TCR beta

Chr6 145.1 5 Ig kappa

Chr12 365.7 19 Tmem179

Chr12 53.6 29 –

Chr12 456.8 6 Aspg, Tmem179, Mir3073, Kif26a

Chr12 56.1 5 Inf2, Adssl1, Siva1

Chr12 14.3 2 Akt1

Chr12 1.3 19 IgH

Chr12 54 5 Tdrd9

Chr12 10.9 32 –

Chr12 104.4 2 Adssl1, Siva1, Akt1, Zbtb42

Chr13 25.6 29 TCR gamma

Chr14 154 10 TCR alpha

Chr14 366 5 TCR alpha

Chr14 481.9 2 TCR alpha

Chr16 23.1 4 Runx1

Chr18 270.7 5 Arhgap26, Nr3c1

Chr19 538.9 12 Pten

ChrX 1.1 17 –

INVERSION Chr1 106.1 3 –

Chr1 1.2 11 –

Chr12 164.2 5 Inf2, Adssl1, Siva1, Akt1, Zbtb42, AW555464

Chr12 3.7 5 Inf2

Chr12 6 3 Adssl1

Chr12 5.1 28 Tmem179

Chr12 121.4 8 Tdrd9, Aspg

Chr12 533 7 Tdrd9, Aspg, Mir203, Mir3073, Kif26a, Tmem179

Chr12 1.2 7 Inf2

Chr14 1 8 TCR alpha

DUPLICATION Chr8 495.9 3 Cdh13

Chr12 28.9 16 Tdrd9

Chr12 4969 32 IgH

Chr12 3094.8 16 .20 genes

Chr12 3094.4 4 .20 genes

doi:10.1371/journal.pone.0048314.t003
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reads supporting SV calls in BreakDancer-produced bed files and

used our own software to remove any SVs resulting from imperfect

duplicates (http://sourceforge.net/projects/svdetection).

Defining High Confidence SV Candidates
Structural variants called by SVDetect were additionally filtered

based on the overlap with low mappability regions, simple repeats

and RepeatMasker data extracted from the UCSC Table Browser

[32]. Overlap between these regions and SVDetect links was

assessed using Galaxy tools [33,34,35]. Low mappability regions

were assembled as adjacent intervals of 50 bp with Duke

ENCODE uniqueness scores less than 0.5 (the 50 bp sequence

occurs more than 2 times in the genome). SVs with links

overlapping these regions were removed, with the cutoff at 85%

and 50% overlap for intrachromosomal and interchromosomal

events, respectively. For overlap with simple repeat regions, the

cutoff was 50% or greater. RepeatMasker overlap was used as a

filter only for interchromosomal events supported by 2 or 3 read

pairs, with the cutoff set to 80%. For intrachromosomal events, the

additional custom filtering was applied to remove SVs called from

read pairs arising from DNA fragments deviating from the

expected library insert size range that were not removed by our

standard deviation cutoff. To account for this, deletion size cutoff

was set to 600 bp and duplication to 300 bp.

Tumor-specific SVs called by SVDetect and BreakDancer were

finally examined manually to generate the list of high confidence

candidates. SVs originating from alignment errors (related to

repetitive genomic regions), failed tumor-control comparison

filtering, as well as germline SVs (retroelement and retrogene

insertions) were removed from the list or designated as low

confidence candidates.

Validation of SV Calls
High confidence SV candidates were validated by PCR using

custom designed primers mapping to SV ‘‘linking’’ regions, in the

appropriate orientation. SVs validated as tumor-specific were

cloned using the TOPOH TA Cloning Kit (Invitrogen, K4500–

01). For each SV, two independent clones were sequenced by the

Sanger method. Resulting sequences were mapped using BLAT

[36].
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