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France, 2 Université de La Réunion, INSERM U1187, CNRS UMR 9192, IRD UMR 249, Unité mixte 134

Processus Infectieux Insulaire Tropical (PIMIT), plateforme technologique CYROI, Sainte-Clotilde, La
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Abstract

Background

Japanese encephalitis virus (JEV) is the causative agent of Japanese encephalitis, the lead-

ing cause of viral encephalitis in Asia. JEV transmission cycle involves mosquitoes and ver-

tebrate hosts. The detection of JEV RNA in a pool of Culex pipiens caught in 2010 in Italy

raised the concern of a putative emergence of the virus in Europe. We aimed to study the

vector competence of European mosquito populations, such as Cx. pipiens and Aedes albo-

pictus for JEV genotypes 3 and 5.

Findings

After oral feeding on an infectious blood meal, mosquitoes were dissected at various times

post-virus exposure. We found that the peak for JEV infection and transmission was

between 11 and 13 days post-virus exposure. We observed a faster dissemination of both

JEV genotypes in Ae. albopictus mosquitoes, when compared with Cx. pipiens mosquitoes.

We also dissected salivary glands and collected saliva from infected mosquitoes and

showed that Ae. albopictus mosquitoes transmitted JEV earlier than Cx. pipiens. The virus

collected from Ae. albopictus and Cx. pipiens saliva was competent at causing pathogene-

sis in a mouse model for JEV infection. Using this model, we found that mosquito saliva or

salivary glands did not enhance the severity of the disease.

Conclusions

In this study, we demonstrated that European populations of Ae. albopictus and Cx. pipiens

were efficient vectors for JEV transmission. Susceptible vertebrate species that develop

high viremia are an obligatory part of the JEV transmission cycle. This study highlights the

need to investigate the susceptibility of potential JEV reservoir hosts in Europe, notably

amongst swine populations and local water birds.
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Author Summary

Japanese encephalitis virus (JEV) is the leading cause of viral encephalitis in Asia. JEV is

maintained in a cycle involving mosquitoes and vertebrate hosts, mainly pigs and wading

birds. Humans can be infected when bitten by an infected mosquito. Culex tritaenior-
hynchus is the main vector of the disease in tropical and subtropical areas. The recent

detection of JEV in birds and mosquitoes collected in Northern Italy has led us to evaluate

the putative emergence of this arboviral disease in Europe. For this purpose, we have

tested the competence of European populations of Cx. pipiens and Aedes albopictus to

transmit this virus in a laboratory setting. We showed that these local mosquitoes could be

infected and were capable of transmitting a pathogenic virus to mice. It is thus urgent to

evaluate the risks of JEV emergence in European regions displaying a favorable environ-

ment for mosquito vectors, susceptible pigs and wading birds.

Introduction

Japanese encephalitis is one of the major viral encephalitides in Asia, with an estimated 68,000

human cases per year [1]. Up to 30% of the symptomatic cases are fatal, and long-term neuro-

logic sequelae can occur in 30 to 50% of survivors [2]. Japanese encephalitis virus (JEV) is the

causative agent of Japanese encephalitis, and is transmitted through the bite of an infected

mosquito. JEV is a member of the Flavivirus genus in the Flaviviridae family and has a posi-

tive-sense RNA genome. The viral polyprotein is processed into 10 proteins: three structural

proteins and seven nonstructural proteins. JEV strains can be differentiated into five genotypes

(1 to 5) based on phylogenetic studies of the viral envelope protein sequences. Until recently,

most of the strains of JEV at the origin of major epidemics in the South, East and Southeast

Asia regions belonged to genotype 3 [3, 4]. Recently a shift in prevalence from JEV genotype 3

to 1 has been observed in several Asian countries [5–7]. JEV genotype 5 was first isolated in

Malaysia in 1952, and is genetically and serologically distinct from other genotypes [8–10]. No

other JEV genotype 5 strain had been identified until its recent isolation from Culex spp. mos-

quito pools in China in 2009 [11] and in South Korea in 2010 and 2012 [12, 13].

Most of the vectors for JEV belong to the Culicinae subfamily in the Culicidae family. In

most Asian countries, the main vector is Culex tritaeniorhynchus [7, 14–18], while Cx. annulir-
ostris was identified as the main vector for JEV transmission in Australia [19, 20]. Several sec-

ondary vectors are known to efficiently transmit JEV: Cx. annulirostris, Cx. annulus, Cx.

fuscocephala, Cx. gelidus, Cx. sitiens or Cx. vishnui. The fact that JEV can be detected in field-

caught mosquitoes belonging to numerous species, such as Cx. pipiens [12, 17, 21], Aedes albo-
pictus [7, 22], or Anopheles species [7, 23], poses the question if those mosquito species could

also act as secondary vectors for JEV.

The JEV enzootic cycle involves mosquitoes and amplifying vertebrate hosts, such as water

birds and domestic swine [24]. Humans are considered as dead-end hosts, while they can be

infected by JEV, they do not develop high levels of blood viremia, and thus cannot infect mos-

quitoes [25].

A fragment of JEV genome was detected in a pool of Cx. pipiens and in birds caught in 2000

and 2010 in Northern Italy [21, 26] raising the threat of a putative emergence of the virus in

Europe [27]. Recent studies have shown that Ae. detritus from England and Ae. japonicus japo-
nicus from Germany were competent to transmit JEV [28, 29]. These observations emphasize

on the need to study the vector competence of European mosquito populations for JEV. Ae.

albopictus is currently expanding its range, predominantly in temperate areas in North
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America and Europe, and this invasion raises a public health threat for pathogens transmitted

by this vector, such as Zika and dengue viruses. Cx. pipiens is the most widely distributed spe-

cies of mosquito in the world, and is typically found in temperate regions. Cx. pipiens complex

mosquitoes play important roles in the transmission of several medically relevant pathogens

such as West Nile virus (WNV), Saint Louis encephalitis virus, and filarial worms [30–32].

In the present study, we evaluated the competence of Ae. albopictus and Cx. pipiens popula-

tions collected in the South of France for two representative strains of JEV, belonging to dis-

tinct genotypes. We found that both viruses could infect and disseminate to high efficiency in

either vector and could be readily transmitted. We additionally evaluated the influence of mos-

quito salivary factors on viral pathogenesis and showed that they had no impact on the devel-

opment of Japanese encephalitis in a mouse model for the disease. Overall, these findings

highlight the need for investigation of the other factors that could contribute to JEV emergence

in Europe.

Methods

Ethics statement

The protocols and subsequent experiments were ethically approved by the Ethic Committee

for Control of Experiments on Animals (CETEA) at the Institut Pasteur and declared to the

French Ministère de l’Enseignement Supérieur et de la Recherche (n˚ 000762.1) in accordance

with European regulations. Experiments were conducted following the guidelines of the Office

Laboratory of Animal Care at the Institut Pasteur. Euthanasia was performed by CO2 asphyxi-

ation, followed by cervical dislocation. Anesthesia was performed by intraperitoneal injection

of a mixture of Xylazine (Rompun, 5 to 10 mg/kg) and Kétamine (Imalgène, 80 to 100 mg/kg).

Mosquito rearing

Cx. pipiens form pipiens and Ae. albopictus mosquito colonies were established in the labora-

tory using mosquitoes collected in Montpellier and Nice, in 2010 and 2011, respectively. Eggs

of each mosquito colony were hatched in tap water. Larvae were reared in plastic trays con-

taining tap water supplemented with brewer’s yeast tablets and cat food. Adults were main-

tained at 27˚C, 80% relative humidity with a 12 h:12 h light: dark cycle and were given

continuous access to 10% sucrose solution.

Cells

Mosquito Ae. albopictus C6/36 cells were maintained at 28˚C in Leibovitz medium (L15) sup-

plemented with 10% heat-inactivated fetal bovine serum (FBS). Baby hamster kidney-derived

BHK-21 (purchased from ATCC), chicken fibroblast-derived DF-1 (obtained from Nadia Naf-

fakh), and human kidney-derived HEK293T cells (purchased from ATCC) were maintained at

37˚C in DMEM supplemented with 10% FBS.

Antibodies

Mouse hybridomas producing the monoclonal antibody 4G2 anti-Flavivirus E were purchased

from ATCC and a highly purified antibody preparation was produced by RD Biotech. The

anti-mosquito saliva antibody was produced in house in rabbits exposed to mosquito bites.

Horseradish peroxidase (HRP)-conjugated goat anti-mouse and anti-rabbit IgG antibodies

were obtained from Bio-Rad Laboratories. Alexa Fluor 488-conjugated goat anti-mouse IgG

antibody was obtained from Jackson ImmunoResearch.

European Mosquito Competence for JEV
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Production of recombinant JEV

A molecular cDNA clone of JEV genotype 3 strain RP-9 was kindly provided by Yi-Lin Ling

and was modified as described previously [33]. A molecular cDNA clone of JEV genotype 5

strain XZ0934 was described previously [33].

To produce infectious virus, the molecular clones were transfected into HEK293T cells

using Lipofectamine 2000 (ThermoFischer Scientific). At 3 days post-transfection, viral super-

natants were collected and used to infect DF-1 cells in order to grow final virus stocks for

experiments.

Virus infections

For infections, C6/36 cells were seeded in 24-well tissue culture plates in L15, supplemented

with 2% FBS. Aliquots of virus were diluted in 200 μl of medium and added to the cells. Plates

were incubated for 1 h at 28˚C. Unadsorbed virus was removed by two washes with Dulbecco’s

phosphate-buffered saline (DPBS) and then 1 ml of L15 supplemented with 2% FBS was added

to the cells, followed by incubation at 28˚C until collection.

Focus forming assay (FFA)

BHK-21 cells were seeded in 24-well plates. Tenfold dilutions of virus samples were prepared

in duplicate in DMEM and 200 μl of each dilution was added to the cells. The plates were incu-

bated for 1 h at 37˚C. Unadsorbed virus was removed, after which 1 ml of DMEM supple-

mented with antibiotics and antifungals, 1.6% carboxymethyl cellulose (CMC), 10 mM HEPES

buffer, 72 mM sodium bicarbonate, and 2% FBS was added to each well, followed by incuba-

tion at 37˚C for 32 h. The CMC overlay was aspirated, and the cells were washed with PBS and

fixed with 4% paraformaldehyde for 15 min, followed by permeabilization with 0.1% Triton-

X100 for 5 min. After fixation, the cells were washed with PBS and incubated for 1 h at room

temperature with anti-E antibody (4G2), followed by incubation with HRP-conjugated anti-

mouse IgG antibody. The assays were developed with the Vector VIP peroxidase substrate kit

(Vector Laboratories) according to the manufacturer’s instructions. The viral titers were

expressed as focus forming units (FFU)/ml.

Oral infection of mosquitoes and dissections

Seven day-old female mosquitoes were deprived of sucrose 24 h prior to the infectious blood

meal. They were then allowed to feed for 2 h on blood-soaked cotton pledgets in the dark at

28˚C. The infectious blood meal was comprised of washed rabbit erythrocytes (obtained

from animals housed at the Institut Pasteur animal facility), viral suspension, and ATP (as a

phagostimulant) at a final concentration of 5 μM. The virus titer in the blood meal was

adjusted to 8 x 106 FFU/ml. Blood-fed females were sorted and transferred into cardboard

containers covered with mosquito nets. After exposure, engorged mosquitoes were main-

tained at 26˚C, 80% relative humidity, with a 10 h: 10 h light: dark cycle with simulation of

dawn and sunset during 2 h. Mosquitoes were dissected at various time points after oral

exposure. For titrations, the mosquitoes or individual organs were collected in a tube con-

taining 0.5 mm glass beads and 300 μl of DMEM supplemented with 2% FBS. The organs

were ground for 30 sec at maximum speed, using a Minilystissue homogeneizer (Bertin) and

stored at -80˚C until analysis. Experiments were reproduced twice with 5 to 10 mosquitoes

collected at each time point for dissection.

European Mosquito Competence for JEV
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Mosquito salivation

JEV exposed mosquitoes were anesthetized at 4˚C, legs and wings were removed and the bod-

ies were attached to a glass slide using double-sided tape. The proboscis was manually inserted

into a 10 μl low binding pipette tip filled with 10 μl DMEM containing 2% FBS. The tip con-

tents were collected 30 min later in a tube. Two μl were transferred to a tube containing 2 μl

SDS sample buffer and analyzed by dot-blot to verify the presence of saliva. Four μl were ana-

lyzed by FFA to determine virus titer. Ten to 20 mosquitoes were analyzed for each time point

(days 11, 12 and 13 post-virus exposure) and experiments were reproduced twice.

Salivary gland extracts preparation

Five days after emerging, mosquito females were blood-fed on mice previously anesthetized by

intraperitoneal injection of a mixture of Xylazine (5 to 10 mg/kg) and Ketamine (80 to 100

mg/kg). Three weeks later, 100 salivary glands (SG) were dissected and placed in 100 μl 1X

PBS. SG extracts were prepared by sonicating the SG (five times at 4 min each with a pulse

ratio of 2 sec on / 2 sec off) and centrifuging the crude extract at 10,000 g for 15 min at 4˚C.

The supernatant was transferred to clean tubes and stored at −80˚C. The inocula used in our

experiments contained the equivalent to a pair of SG.

Western blotting

Protein lysates were prepared by cell lysis in radio-immunoprecipitation assay (RIPA) buffer

(Bio Basic) containing protease inhibitors (Roche). Equal amounts of proteins were loaded on

a NuPAGE Novex 4–12% Bis-Tris protein gel (ThermoFisher Scientific) and transferred to a

polyvinylidene difluoride membrane (Bio-Rad) using the Trans-Blot Turbo Transfer System

(Bio-Rad). After blocking the membrane for 1 h at room temperature in PBS-Tween (PBS-T)

plus 5% milk, the blot was incubated overnight at 4˚C with appropriate dilutions of the pri-

mary antibodies. The membrane was then washed in PBS-T and then incubated for 1 h at

room temperature in the presence of HRP-conjugated secondary antibodies. After washes in

PBS-T, the membrane was developed using Pierce ECL Western Blotting Substrate (Thermo-

Fisher Scientific) and exposed to film.

Dot-blot on mosquito saliva

The saliva collected from each mosquito was blotted onto a nitrocellulose membrane. Two μl

of DMEM containing 2% FBS and 1 μg of mosquito salivary gland extract were deposited on

the membrane as negative and positive controls, respectively. The membranes were blocked

for 1 h in PBS-T plus 5% milk and incubated overnight at 4˚C with an anti-mosquito saliva

antibody. The blots were then processed as indicated above for Western blotting.

Immunofluorescence analysis (IFA)

After dissection, midguts (MG) and salivary glands (SG) were placed on slides and the PBS

removed. MG were fixed in acetone for 15 min. SG were fixed in 4% paraformaldehyde for 15

min. Both slides were dried and stored at 4˚C until use. The MG and SG were then rehydrated

in PBS for 15 min. The MG and the SG were incubated in Triton X100 (0.2%) for 2 h and 15

min, respectively. They were then washed with PBS and incubated for 30 min with PBS + 0.1%

Tween 20 containing 1% BSA. The slides were drained and incubated overnight at 4˚C with

anti-flavivirus protein E 4G2 antibody diluted in PBS, then washed with PBS. The slides were

next incubated for 1 h with a fluorophore conjugated antibody, and washed with PBS. After

washing, a drop of ProLong Gold Antifade reagent with DAPI (ThermoFisher Scientific) was

European Mosquito Competence for JEV
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placed on each slide and a cover slide was added. All preparations were examined using a fluo-

rescence microscope (Axioplan 2 Imaging, Zeiss).

Mice experiments

Three-week-old female BALB/c mice were housed under pathogen-free conditions at the Insti-

tut Pasteur animal facility. Groups of mice were anesthetized as described above, and were

next intradermally inoculated with 50 FFU of JEV genotype 5 in absence or in presence of sali-

vary gland extract or with JEV-infected saliva diluted in 100 μl of DPBS supplemented with

0.2% endotoxin-free serum albumin.

Statistical analysis

An unpaired t test was used to compare quantitative data, and a Log-rank (Mantel-Cox) test

was used to compare survival data. GraphPad Prism was used for all statistical analysis.

Animal handling

Rabbit and mice were housed in Institut Pasteur animal facilities.

Results

Vector competence of European strains of mosquitoes for JEV

To assess the vector competence of European mosquitoes for JEV, we decided to use two

molecular clones of viruses (RP-9 and XZ0934), which are representative of two currently cir-

culating genotypes. The well-characterized genotype 3 strain, JEV RP-9, was isolated from Cx.

tritaeniorhynchus mosquitoes in Taiwan in 1985 [34, 35], while the genotype 5 strain,

JEV-XZ0934, was recently isolated from Cx. tritaeniorhynchus mosquitoes in China in 2009

[11]. For simplification, JEV-RP-9 and JEV-XZ0934 will be hereafter referred to as JEV g3 and

JEV g5, respectively. Both viruses were produced by transfection of cDNA into mammalian

cells, as previously described [33], followed by amplification of viral stocks in chicken fibro-

blasts DF-1 cells. Those viruses displayed comparable growth after infection of Ae. albopictus
derived C6/36 cells (Fig 1, [33]).

To evaluate the vector competence of European mosquito species for JEV, we exposed mos-

quitoes to either JEV g3 or JEV g5 by feeding on blood meals containing approximately 8 x 106

FFU of virus per ml. We note that the viremia in infected pigs or in birds can reach up to 107

PFU/ml, but is on average 104 PFU/ml [36–41]. While we offered blood meals that contained

relatively high levels of virus, it is generally accepted that a greater quantity of virus is needed

to infect mosquitoes orally with artificial mixtures than with viremic hosts [42]. For each

experiment, 3 blood-fed mosquitoes were harvested immediately post-virus exposure, and the

ingested virus titers were evaluated by FFA. The amount of ingested infectious virus was com-

prised between 400 and 9,000 FFU per mosquito, with an average titer of 4,000 FFU.

Previous studies on vector competence of various species of mosquitoes for JEV have

shown the peak for JEV infection and transmission occurs between 5 and 23 days after peroral

infection [23, 29, 43–48]. Our preliminary studies showed that, under our experimental condi-

tions, the majority of Cx. pipiens and Ae. albopictus were infected from 10 to 15 days post-virus

exposure. We chose to focus collection times around the peak of viral transmission and har-

vested samples at 7, 11, 12 and 13 days post-virus exposure. We note that the survival rate of

exposed mosquitoes dropped considerably after 2 weeks of infection, and consequently did

not analyze the levels of mosquito infection beyond this point.

European Mosquito Competence for JEV
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First, we determined the infection rates in Ae. albopictus (Fig 2A) and Cx. pipiens (Fig 2B)

mosquitoes by titrating the midguts harvested from mosquitoes. Next, we measured the levels

of JEV infection in the heads of infected mosquitoes, and calculated infected dissemination

rates (Fig 2C and 2D). We did not observe any statistically significant differences in infection

rates amongst genotypes for each mosquito species or by time after the infectious blood meal.

We did note that dissemination of JEV was faster in Ae. albopictus mosquitoes, when com-

pared with Cx. pipiens mosquitoes. Notably, at 7 days post-virus exposure, we found that 57 to

90% of Ae. albopictus mosquitoes were systemically infected, whereas only 26 to 36% of Cx.

pipiens were (Fig 2C and 2D). Last, we determined transmission rates through titration of

saliva collected from blood-fed mosquitoes (Fig 2E and 2F). While this is a method widely

used to determined transmission rates, we observed that salivation assays are highly dependent

on salivation efficiency, and that the levels of virus in saliva can sometimes be below the detec-

tion limit of our titration assay. Keeping in mind that this determination of the virus transmis-

sion rates has limitations, we observed that both mosquito species transmitted JEV at rates

ranging from 20 to 63% for Ae. albopictus, and from 12 to 41% for Cx. pipiens (Fig 2E and 2F).

Characterization of JEV infection in European strains of mosquitoes

Next, we analyzed the levels of JEV g3 and g5 accumulation in the different mosquito organs

that had been harvested (Fig 3). We noted that JEV levels in the midguts slowly decreased

between 7 and 13 days post-virus exposure, while viral levels in heads and salivary glands

increased over time, which is consistent with patterns of viral dissemination in mosquitoes.

We noted that at 7 days post-virus exposure, the rates of salivary glands infection ranged from

40 to 80% for Ae. albopictus, and from 5 to 9% for Cx. pipiens. Viral infection of salivary glands

has been shown to correlate well with infection of saliva [43], and thus we hypothesize that Ae.

Fig 1. Kinetics of JEV g3 and g5 infection in vitro. Ae. albopictus derived C6/36 cells were infected with

JEV g3 or g5 at a MOI of 1. The infectious virus released to the supernatants at 24, 48 and 72 h post-infection

was quantified by FFA in BHK-21 cells. The error bars represent the standard deviation between two

independent experiments (in each experiment, titrations were done on duplicate experimental samples). FFU,

focus forming units.

doi:10.1371/journal.pntd.0005294.g001
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Fig 2. Vector competence of European strains of mosquitoes for two different JEV genotypes following feeding on infectious

bloodmeals. Infection rates in Ae. albopictus (A) or Cx. pipiens (B) mosquitoes exposed to either JEV g3 or JEV g5 by feeding on blood

meals containing 8 x 106 FFU/ml of virus. The infection rates were determined after titration of midguts harvested from mosquitoes on

days 7, 11, 12 and 13 post-virus exposure. The infected dissemination rates (C and D) were calculated by titration of the heads of

infected mosquitoes. The transmission rates (E and F) were calculated by titration of the saliva collected from all blood-fed mosquitoes.

European Mosquito Competence for JEV
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albopictus mosquitoes were likely to transmit JEV at earlier times than Cx pipiens. Interest-

ingly, in Ae. albopictus mosquitoes midguts, we observed a significant difference in the titers of

JEV g5 when compared to JEV g3 titers (Fig 3A). Notably, it appeared that JEV g5 accumulated

to higher levels than JEV g3 at 7 days post-virus exposure, and to lesser levels at later infection

times (11 to 13 days post-virus exposure).

Additionally, we analyzed the distribution of JEV envelope protein in the organs of infected

mosquitoes (Fig 4). First, we performed immuno-localization within organs harvested from

Ae. albopictus mosquitoes at 14 days post-virus exposure, which corresponds to a peak in viral

transmission (Fig 4A). While envelope protein staining within the midgut was relatively weak,

there was a strong staining of numerous cells within both lobes of salivary glands. Samples col-

lected at 11 days post-virus exposure were also analyzed by western blotting and showed good

detection of the envelope protein in midguts and salivary glands (Fig 4B).

Detection of JEV in infected European mosquito saliva

To evaluate the levels of virus secreted in mosquito saliva, we collected mosquitoes at 11, 12

and 13 days post-feeding on an infectious blood meal, and performed forced salivation. Since

not all of the mosquitoes salivate when subjected to this assay, we also performed a survey of

successful salivation. A fraction of the collected saliva was dotted on a membrane, and was

next incubated with an antibody specific for mosquito saliva (Fig 5A). We noted that both

mosquito species efficiently salivated under our experimental conditions, and that the levels of

actual salivation were above 40% for either mosquitoes (Fig 5A). The collected saliva was then

subjected to a standard infectivity assay to determine the levels of JEV transmitted in JEV-posi-

tive saliva at each time point (Fig 5B and 5C). We noted that for both mosquito species, higher

levels of virus were secreted in saliva at later times post-virus exposure, which mirrored the

increase in viral load in salivary glands (Fig 3C and 3F). The levels of infectious virus in saliva

ranged between 2 and 200 FFU for JEV g3 (45 and 55 FFU in average for Ae. albopictus and

Cx. pipiens, respectively), and between 2 and 196 FFU for JEV g5 (38 and 35 FFU in average

for Ae. albopictus and Cx. pipiens, respectively).

European mosquito saliva or salivary glands do not enhance JEV

pathogenesis in a mouse model for JEV disease

Next we assessed whether the virus transmitted by European mosquitoes was capable of devel-

oping a productive infection in mammalian hosts. To evaluate this, we used a previously char-

acterized murine model for Japanese encephalitis, based on JEV g5 infection of 3-week-old

BALB/c mice [33]. Three-week-old BALB/c mice were injected via intradermal route with

JEV, as this mode of injection most resembles a mosquito bite. First, JEV-positive saliva sam-

ples collected from Ae. albopictus and Cx. pipiens mosquitoes (Fig 5) were used as an inocula

(Fig 6A). Saliva containing various loads of virus was used, with a titer comprised between 7

and 98 FFU. A control group of mice were similarly injected with JEV grown from C6/36 cells,

using a single dose of 50 FFU (Fig 6A). As expected, the animals rapidly exhibited limb paraly-

sis and encephalitis. We did not observe any significant differences in survival rates amongst

the different inocula (Fig 6A). The survival rate was between 33 and 40%, with a mean survival

time of 11 to 12.5 days.

The error bars represent the standard deviation between two independent experiments. The number of mosquitoes analyzed for each

condition is indicated below each graph bar. An unpaired t test was employed to determine significant differences between JEV

genotypes at each time point. No statistically significant differences were found (P�0.08). n.d. not determined.

doi:10.1371/journal.pntd.0005294.g002
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Fig 3. Kinetics of JEV infection in European strains of Ae. albopictus and Cx. pipiens mosquitoes. Ae. albopictus (A, B and C)

or Cx. pipiens (D, E and F) mosquitoes were exposed to either JEV g3 or JEV g5 by feeding on blood meals containing 8 x 106 FFU/

ml of virus. At 7, 11, 12 and 13 days post-virus exposure, the midguts (A and D), heads (B and E) and salivary glands (C and F) were

harvested from individual mosquitoes and the levels of infectious virus in each organ was quantified by FFA in BHK-21 cells. The

error bars represent the standard deviation amongst infected samples collected from two independent experiments. An unpaired t

European Mosquito Competence for JEV
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The detection of JEV-specific antibodies showed that all surviving mice had been exposed

to the virus (S1 Fig).

Since it was shown that mosquitoes can inject salivary components that influence the out-

come of viral infection [49–51], we next evaluated the impact of European mosquito salivary

glands on JEV pathogenesis in a murine model. As described above, we used the intradermal

route to inject 50 FFU of JEV g5 to 3-week-old BALB/c mice (Fig 6B). For two groups of mice,

the inoculum was mixed with salivary glands extracts obtained from Ae. albopictus or Cx.

pipiens mosquitoes. In accordance with what was previously observed after injection of saliva

collected from infected mosquitoes, we did not observe any significant difference in the devel-

opment of JEV pathogenesis in presence of mosquito salivary glands (Fig 6B). Overall these

experiments show that European mosquitoes are fully competent at transmitting infectious

JEV, but that saliva does not facilitate the development of viral pathogenesis in a susceptible

murine model.

Discussion

In recent years, the increase in locally acquired exotic arbovirus diseases in Europe can be

linked to the presence of appropriate combinations of vectors and vertebrate hosts, which

could ultimately lead to the establishment of these diseases in Europe [52–54]. Since 2010, spo-

radic cases of locally acquired chikungunya and dengue fevers have been noted in Europe [55,

56]. The driving forces behind these events are viraemic travelers and the increasing presence

of competent vector species, such as Ae. aegypti and Ae. albopictus, in temperate regions. Like-

wise, the circulation of WNV and Usutu virus–two Flaviviruses—was reported in 10 European

countries [57]. Two studies in Italy reported the infection of local Cx. pipiens populations with

both WNV and Usutu virus [58, 59] and there is an increase in WNV disease incidence in

Europe [60]. While JEV RNA was recently detected in mosquitoes and birds in Northern Italy

test was employed to determine significant differences between JEV genotypes at each time point (***, P < 0.001; **, 0.001 < P <
0.01; *, 0.01 < P < 0.05; only statistically significant differences are shown).

doi:10.1371/journal.pntd.0005294.g003

Fig 4. Analysis of JEV infection in mosquitoes. A. Visualization of JEV envelope protein in the midgut (left panel) and salivary

glands (right panel) of Ae. albopictus mosquitoes infected with JEV g3 at 14 days post-feeding on an infectious blood meal.

Samples obtained from non-infected mosquitoes were used as a control (n.i.). Scale bars: 500 μm for the midgut samples, 50 μm

for the salivary glands samples. B. Detection of JEV envelope protein in lysates obtained from midguts (top) and salivary glands

(bottom) harvested from mosquitoes at 11 days post-feeding on an infectious blood meal. Samples from non-infected mosquitoes

are used as a control (n.i.). The expected size for JEV envelope protein is indicated with an arrow.

doi:10.1371/journal.pntd.0005294.g004
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[21, 26], to date, human infections with JEV were only reported in travelers returning from

endemic countries [61–63].

Our study shows for the first time that European strains of Cx. pipiens and Ae. albopictus
are both competent vectors to transmit two genotypes (3 and 5) of JEV. High levels of infec-

tion, dissemination and transmission rates were observed in both vectors for either genotypes

after oral exposure of mosquitoes to a blood meal containing virus at 8 x 106 FFU/ml. In the

present study, we did not evaluate vector competence for viral strains belonging to the geno-

type 1. Strains belonging to this genotype have displaced the prevalent genotype 3 in several

countries in recent years [5–7]. Genotype 1 and 3 strains are genetically close when compared

to the more distant genotype 5 strains [8–10]. Since we observed equivalent vector competence

of European mosquitoes for genotypes 3 and 5, we hypothesize that those mosquitoes will also

be competent at transmitting genotype 1 viruses.

Several mosquitoes from the Culex genus are established vectors for JEV. Cx. tritaenior-
hynchus is the main vector in the enzootic cycle of JEV in tropical and subtropical regions of

Asia. Interestingly, the vector competence of a Cx. pipiens molestus population from Taiwan

was found to be similar to that of Cx. tritaeniorhynchus, when tested in laboratory conditions

[46], which is in line with our observations. Other investigators reported that Cx. pipiens popu-

lations from other world regions (Cx. pipiens molestus from Uzbekistan, Cx. pipiens pallens
from Korea, Cx. pipiens from the United States of America) were less susceptible to JEV and

were not always capable of transmitting the virus [50, 64]. Of note, there has been some reports

of isolation of JEV from field-caught mosquitoes along the years [12, 17, 21, 65], and all strains

of JEV isolated from Cx. pipiens mosquitoes in Korea in 2012 belonged to the genotype 5 [12].

As strains belonging to the genotype 5 were only rarely isolated, one can wonder if the trans-

mission cycles that are involved in the maintenance of those viruses involve mosquito and

amplifying host species different from the established Cx. tritaeniorhynchus / swine model.

Since the currently available vaccines do not confer full protection against JEV genotype 5

strains [66, 67], the risks of JEV g5 transmission to human populations must be carefully

examined.

Similarly to Cx. pipiens, field-collected Ae. albopictus mosquitoes were occasionally found

positive for JEV [22, 68]. Various transmission rates were observed in laboratory settings,

Fig 5. Analysis of salivas collected from European mosquitoes infected by different genotypes of JEV. At 11, 12 and 13 days post-virus exposure,

salivas were collected from mosquitoes via forced salivation in pipette tips. A. Individual salivation samples were analyzed in a dot-blot assay using an anti-

saliva antibody, to determine the salivation efficiency for each mosquito species. The rates of salivation obtained from two independent salivation assays

are given, and a representative dot blot assay is shown. B. and C. The levels of infectious virus in JEV-positive saliva were measured by FFA in BHK-21

cells.

doi:10.1371/journal.pntd.0005294.g005
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from less than 17% for Australian populations [69] to 45% for Taiwanese populations [22]. In

our experiments, European Ae. albopictus was also able to transmit different strains of JEV to

high efficiency, which supports the hypothesis that European mosquito populations belonging

to these two species have a better vector competence for JEV than populations isolated in

other parts of the world.

Fig 6. Effect of mosquito saliva and salivary glands on JEV infection in a mouse model. Groups of

3-week-old BALB/c mice were monitored for survival after intradermal injection with JEV g5 (n = 6 per group).

A. Mice were injected with JEV-positive saliva collected from infected mosquitoes. The levels of virus in saliva

were between 7 and 98 FFU (Ae. albopictus: 9, 15, 22, 28, 60 and 70 FFU; Cx. pipiens: 7, 16, 24, 30, 51 and

98 FFU). Control mice were injected with 50 FFU of virus grown in C6/36 cells (C6/36 supernatants). B. Mice

were injected with 50 FFU of virus, in presence or absence of one pair of salivary glands (SGP) harvested

from either Ae. albopictus or Cx. pipiens mosquitoes. A Log-rank (Mantel-Cox) test was employed to

determine significant differences between inocula. No statistically significant differences were found (P�0.6).

doi:10.1371/journal.pntd.0005294.g006
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Our results also showed that the extrinsic incubation period (i.e. the time between ingestion

of the virus and the ability of the mosquito to become infectious) for JEV is shorter in Ae. albo-
pictus than in Cx. pipiens. We have not performed a formal analysis of the relative life span of

our mosquito populations after ingestion of an infectious blood meal. If we assume that both

mosquito species have similar life spans, then this would imply that Ae. albopictus mosquitoes

can transmit JEV for a longer period than the French population of Cx. pipiens and therefore

might be a more efficient vector. Specifically, host biting preferences may have consequences

on the emergence of the disease in Europe and its transmission dynamics. Arbovirus circula-

tion is defined by many aspects including the population dynamics of the mosquito vector, the

extrinsic incubation period, and the population densities of the vertebrate amplifying hosts, all

of which are influenced by environmental factors. In the case of JEV, the classic Cx. tritaenior-
hynchus–pig transmission cycle was observed in Japan, a region of high pig farming density,

but other species and scenarios could be invoked in regions where pig farming is less abun-

dant, or where Cx. tritaeniorhynchus is not found [70]. An example of this is the 1995 outbreak

of Japanese encephalitis in Australia that involved the presence of domestic pigs and high pop-

ulations of Cx. annulirostris [19, 20]. Ae. albopictus is considered to be an opportunistic feeder:

it primarily feeds on mammalian hosts (humans, wild and domestic animals) but can also

acquire blood from avian sources [71, 72]. Analysis of feeding patterns in temperate regions

showed that populations of Ae. albopictus in the United States of America mainly fed on mam-

mals and rarely on birds [73]. Cx. pipiens mosquitoes feed mostly on birds (83%) but also on

mammals [74]. Interestingly, it was shown that 20% of Cx. pipiens emerging from diapause in

temperate habitats fed on mammals [73]. Considering the natural cycle of JEV implying birds

as reservoir and pigs as amplifying hosts, specificity in host preferences may have conse-

quences on the possible emergence of the disease in Europe and its transmission dynamics.

Favorable conditions for JEV emergence may be gathered in several places in Europe where

pig breeding sites, bird sanctuaries and Ae. albopictus and/or Cx. pipiens mosquitoes coexist

(Marquenterre parc, Baie de Somme, France; Camargue, Rhone delta, France; Danube delta,

Roumania).

The last part of our study was to investigate the role of mosquito saliva in the transmission

of JEV to mice. When insects take a blood meal, they trigger defensive responses from the ver-

tebrate, such as hemostasis and various immune responses. The saliva proteins injected by the

mosquito can counteract these defenses, through their angiogenic, anti-hemostatic, anti-

inflammatory and immunomodulatory properties [75]. This complex interaction may signifi-

cantly affect the evolution of the disease; notably co-injection of virus and saliva was shown to

potentiate infection of the vertebrate host by arboviruses belonging to various families [49–51,

76, 77]. While we did not observe any enhancement of Japanese encephalitis disease in mice,

in presence of salivary gland extract or of saliva collected from either European vectors, further

studies are needed to evaluate the impact of saliva on viral burden in different organs. Addi-

tionally, we cannot exclude the possibility that JEV pathogenesis might be enhanced by sali-

vary factors of other mosquito species, or that saliva from the two species tested in the present

study might enhance pathogenicity in other mammalian species.

Conclusion

In this study, we have clearly demonstrated that European populations of Ae. albopictus and

Cx. pipiens were efficient vectors for JEV transmission. Conditions for a putative emergence of

JEV in Europe are linked to the possibility for an enzootic cycle to take place in temperate

areas. In order to complete the infection cycle, JEV must be transmitted to a susceptible verte-

brate host, capable of producing sufficient viral titers for subsequent acquisition by the insect
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vector. It is therefore important to further investigate whether any European swine or water

birds populations can be infected with JEV and produce sufficiently high viremias to infect

mosquitoes that feed on them. Such knowledge is critical to assess the potential for JEV to

establish local transmission cycles similar to the closely related WNV in Northern Italy.

Supporting Information

S1 Fig. Detection of JEV specific antibodies in inoculated mice. Sera were collected from

mice at 28 days post-inoculation, and anti-JEV IgGs were quantified by ELISA using recombi-

nant proteins corresponding to the domain III of JEV g5 envelope protein, as described in

[33]. The ELISA absorbance values were measured at 450 nm and the absorbance value

obtained from sera of mice inoculated with DPBS is shown as a dashed line (A450

nm = 0.042). Each symbol represents an individual mouse.
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