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Development of a dysregulated immune response discriminates sepsis from uncomplicated infection. Currently
used biomarkers fail to describe simultaneously occurring pro- and anti-inflammatory responses potentially
amenable to therapy.
Marker candidates were screened by microarray and, after transfer to a platform allowing point-of-care testing,
validated in a confirmation set of 246 medical and surgical patients. We identified up-regulated pathways
reflecting innate effector mechanisms, while down-regulated pathways related to adaptive lymphocyte
functions. A panel of markers composed of three up- (Toll-like receptor 5; Protectin; Clusterin) and 4 down-
regulated transcripts (Fibrinogen-like 2; Interleukin-7 receptor; Major histocompatibility complex class II, DP
alpha1; Carboxypeptidase, vitellogenic-like) described the magnitude of immune alterations. The created gene
expression score was significantly greater in patients with definite as well as with possible/probable infection
than with no infection (median (Q25/Q75): 80 (60/101)) and 81 (58/97 vs. 49 (27/66), AUC-ROC = 0.812
(95%-CI 0.755–0.869), p b 0.0001). Down-regulated lymphocyte markers were associated with prognosis with
good sensitivity but limited specificity.
Quantifying systemic inflammation by assessment of both pro- and anti-inflammatory innate and adaptive
immune responses provides a novel option to identify patients-at-risk and may facilitate immune interventions
in sepsis.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Severe sepsis and shock are among the leading causes of death
globally, accounting for more than 210,000 deaths annually in the
United States and more than 15 million cases worldwide (Angus et al.,
2001; Kumar et al., 2011; Adhikari et al., 2010). Sepsis results from a
dysregulated response to invasive infection reflected in damage to the
host's tissues and organs (Singer et al., 2016). Monitoring of that
gy and Intensive CareMedicine,
ermany.
auer).

. This is an open access article under
response may, therefore, provide diagnostic and prognostic informa-
tion. Multiple circulating proteins have been studied as biomarkers
(Pierrakos and Vincent, 2010), based on the assumption that changes
in their expression,may reflect eradication or propagation of pathogens.
However, none of these is widely accepted or used.

An increasing body of evidence suggests that sepsis with organ fail-
ure is associated with an impaired adaptive immune response in which
circulating monocytes secrete reduced amounts of pro-inflammatory
cytokines (Adib-Conquy and Cavaillon, 2009), antigen-presentation
fails, and apoptosis of lymphocytes predominates (Hotchkiss et al.,
2013; Giamarellos-Bourboulis and Raftogiannis, 2012). These complex
changes require high dimensional approaches, such as functional
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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genomics to describe the differing aspects of the host response (Feezor
et al., 2005; Desai et al., 2011).

We used a three-stage transcriptomic approach to develop a
quantitative real-time polymerase chain reaction (PCR) assay of indi-
vidual genes to characterize immune alterations associated with sepsis.
The objective of this strategy was to assess i) infectious origin, ii)
severity of systemic inflammation and iii) its association with outcome.
First, patients with extreme disease phenotypes were subjected to
transcriptomic analysis to identify transcripts that differentiate non-
infectious systemic inflammation from bacterial infection with organ
failure or shock. Results were evaluated in a second cohort of subjects
representing a continuum from health to high-grade inflammation,
identifying clusters of up- and down-regulated pathways that increased
with disease severity. Having established a final biomarker panel and a
corresponding composite score, we validated the tool regarding identi-
fication of infection and prediction of outcome in a pragmatic study in
two independent patient cohorts from Germany and Greece covering
a broad spectrum of medical and surgical patients with diverse comor-
bidities in differing health care systems.

2. Patients and Methods

Patients and healthy controls were enrolled at eight investigational
sites in four countries (Appendix, Text S1). All study protocols were
approved by the respective institutional review boards and written in-
formed consent was provided by patients or their legal representatives.

Gender, age, underlying infections, reason for ICU admission, isolat-
ed pathogen, white blood cell count, Acute Physiology and Chronic
Health Evaluation (APACHE) II score, Sequential (Sepsis-related)
Organ Failure Assessment (SOFA) score, and mortality, respectively,
were recorded as pertinent clinical information. For the initial training
set, the verification set and the German cohort of the confirmation set
C-Reactive Protein (CRP) and procalcitonin (PCT)were recorded aswell.

For transcriptomic analyses, blood was sampled and collected into
PaxGene tubes (PreAnalytiX, Becton Dickinson, Cockeysville, Md), and
stored at −80 °C until assayed. Cases and samples were grouped into
cohorts by medical experts and data analysts by pre-specified criteria
and definitions (Appendix, Text S2). We excluded patients with immu-
nodeficiency disorders (Appendix, Text S2).

2.1. Study Design

The study was designed in three stages consisting of a training set, a
verification set and a confirmation set after transfer of themarker set to
a RT-qPCR platform possibly to facilitate its use at the point-of-care
(Fig. 1).

The training set identified differences in the transcriptomic profile
between patients with extreme phenotypes; i.e. systemic inflammation
and organ failure/shock in the absence or presence of infection. System-
ic inflammation was diagnosed based on the presence of at least two of
four SIRS criteria. In a cohort of 364 patients hospitalized in the ICU of
the Jena University Hospital (JUH) between 2002 and 2007 blood sam-
pling was done within the first 24 h after presenting signs of systemic
inflammation. Then patients were screened for eligibility. An adjudica-
tion committee of two ICU experts selected patients according to pre-
specified criteria (Appendix, Text S2). Ninety-six patients met these
criteria and their sampleswere used in order to select qualitativemolec-
ular marker candidates and to develop an appropriate classification
function, which discriminated cases with and without infection. Demo-
graphic characteristics are summarized in Table S1 (Appendix).

Results of the training set were reevaluated in a verification set to
validate the marker candidates on a broad spectrum of phenotypes
representing a continuum from health to high-grade systemic inflam-
mation and to characterize its suitability to quantify inflammation.

In this sub-study, patients representing six clinical phenotypes were
enrolled, i) subjects and preoperative patients for scheduled operations
with no signs of infection and no signs of inflammation (controls); ii)
patients with local sterile inflammation, iii) patients with local infection
but absent signs of systemic inflammation, iv) patients presenting signs
of systemic inflammation but without evidence of infection, v) patients
with local infection simultaneously fulfilling criteria for systemic
inflammation, and vi) patients with bloodstream infection (BSI)-associ-
ated severe sepsis/septic shock. Sampleswere collected before initiation
of anti-infective therapy for patients of groups v) and vi) and for
patients of group iv) within the first 24 h of presentation of signs of
inflammation. The demographic characteristics of the cohorts are sum-
marized in Supplementary Table S2 (Appendix).

The confirmation set comprised two prospectively enrolled cohorts
inwhich a subset of 7 transcripts suitable to assessing the host response
to infection was tested after transfer to a RT-qPCR platform. The
German cohort was enrolled between May 2009 and October 2010
from the ICU of JUH. Inclusion criteria were systemic inflammation
and/or severe sepsis/septic shock with infection ruled out for patients
with uncomplicated systemic inflammation and confirmed for patients
with severe sepsis/septic shock according to standard definitions at
time of enrolment (Levy et al., 2003; Calandra and Cohen, 2005). The
Greek cohort was enrolled between October 2012 and January 2013 in
three departments of the Hellenic Sepsis Study Group. Inclusion criteria
were: a) diagnosis of severe sepsis or septic shock based on standard
definitions; (Levy et al., 2003) b) diagnosis of acute pyelonephritis,
community-acquired or ventilator-associated pneumonia (CAP or
VAP), intra-abdominal infection (IAI) or BSI. For patients enrolled in
the confirmation cohort sequential blood samples were obtained; the
first on the day of diagnosis and the second 24 h later; in the German
cohort sampling was continued on a daily basis until ICU-discharge or
death for a maximum of ten days.

For the confirmation of the genomic score, patients were indepen-
dently classified according to the current clinical gold standard into
three groups: ‘no infection’, ‘possible/probable infection’ and ‘definite
infection’ (Calandra and Cohen, 2005). In both cohorts, patients were
followed up to assess 100-daymortality. Demographic data are present-
ed in Tables S3 and S4 (Appendix).

In all patient sets, classification according to degree of inflammation
or presence of infection status wasmade independently of the genomic
score or the use of serum biomarkers.

For a detailed description of the used laboratory techniques see
Appendix (Text S3).

2.2. Statistical Analysis

The study consisted of two microarray experiments with a marker
screening and of a RT-qPCR evaluation for the marker confirmation.
For the design and evaluation of the microarray trials specific methods
were employed, including data preprocessing and transformation.

For the training set, 96 RNA samples from 96 ICU patients were
hybridized against the in-house research microarray addressing 5308
transcripts. For the classification of cases with and without infection
the linear discriminant analysis (LDA) was applied with up to 100 tran-
scripts as classification markers, selected by p-values and estimates of
Wilcoxon test. Marker candidates were chosen corresponding to the
best concordance between molecular and clinical classification.

For the verification set, 72 RNA samples from 72 cases were
hybridized against a genome-wide microarray addressing ca. 50,000
transcripts. One-way analysis of variance with 6 groups was applied
gene by gene and evaluated by the estimation of the false discovery
rate. The gene expression pattern of 4761 selected transcripts was visu-
alized by a heatmap and quantified by a genomic score (GES), devel-
oped for this approach.

In the confirmation set, 7 transcripts, representing an overlap of
signatures obtained in the training and verification setswere used to as-
sess the host response to infection in 246 patients, after transfer to a RT-
qPCR platform. TheGES and its components of up- and down-regulation



Fig. 1. Study flow chart. Patientswere enrolled in independent training, verification, and confirmation cohorts. The confirmation cohort was analyzed applying a limited set of 7 transcripts
after platform change from microarray to RT-qPCR. BSI: bloodstream infection; SIRS: Systemic Inflammatory Response Syndrome.
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were determined for each sample and evaluated depending on the
patient status regarding presence of infection and mortality.

For a more detailed description of the statistical analysis see
Appendix (Text S4).

2.3. Funding and Role of the Funding Source

The study was funded by German Federal Ministry of Education and
Research, Thuringian Ministry of Education, Science and Art, Thüringer
Aufbaubank and Hellenic Institute for the Study of Sepsis. The sponsor
of the study had no role in study design, data collection, data analysis,
data interpretation, or writing of the report. The corresponding author
had full access to all the data in the study and had final responsibility
for the decision to submit for publication.
3. Results

3.1. Training Set

The training set served to specify marker candidates, which
distinguished between critically ill patientswith signs of systemic inflam-
mation in the absence or presence of infection. Using linear discriminant
analysis, these groups were discriminated with mean power of 90%
correct classifications as obtained by cross-validation. This initial result
was obtained applying 50 transcripts out of the whole evaluated
number of 5308 transcripts. However the classification power remained
stable when the number of transcripts was reduced (Appendix, Fig. S1).
More precisely, the least classification error was obtained with more
than 10 and fewer than 20 transcripts, where the groups were
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discriminated with mean sensitivity of 95.5% (95%-CI 84.5%, 98.7%) and
specificity of 94.5% (95%-CI 84.6%, 98.1%). In the next step, we evaluated
these 20 transcripts,which provided themost sensitive and specific infor-
mation for the inflammatory status of the host.
Fig. 2. Generation of a genomic score to quantify the host response from the gene expression
column reflects a sample of an individual patient with a color code on the top covering the c
each row reflects an individual transcript. Samples were arranged by GES reflecting the indiv
reflected in the heat-map, with blue indicating low expression and red indicating high ex
computation of GES: each triangle is derived from one sample. Its horizontal side is the Euclid
sepsis/septic shock; mean healthy value was set to zero and the mean value in BSI with syste
mean healthy pattern and the individual patient pattern, and its right side with the distance b
the projection of the upper tip of triangle on the base side (for GES the height of the triangl
DOWN (red and blue lines) to predict a given patient's immune state as reflected by a pa
functions (GES DOWN) are impacted particularly by disease severity. In contrast, up-regulated
3.2. Verification Set

Patientswere divided into three groups representing graded intensi-
ty of the inflammatory response: absence of inflammation, low grade
pattern. A) Heat-map reflecting the gene expression pattern in the verification set: each
ontinuum from green (healthy) to magenta (BSI with signs of systemic inflammation);
idual host response. Thus, the shift in gene expression depending on disease severity is
pression levels compared to the mean of each individual transcript. B) Scheme of the
distance between the mean healthy pattern and mean pattern in BSI-associated severe

mic inflammation was set to 100. Its left side corresponds with the distance between the
etween the individual patient pattern and the mean BSI pattern. The GES is computed as
e is not relevant). C) Potential of GES (black line) and its components GES UP and GES
ngenomic assessment of the blood transcriptome. Down-regulated adaptive immune
transcripts encoding innate immune functions (GES UP) reached a plateau.
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systemic inflammation and high grade systemic inflammation in the ab-
sence or presence of infection (Fig. 1).

Investigations of the verification set resulted in the characterization
of the molecular pattern of the inflammatory-infectious process as
visualized in Fig. 2 by a heat-map for a broad spectrum of phenotypes
representing the entirety fromhealth to high-grade systemic inflamma-
tion. The continuous shift of the transcriptome supports the concept
that the transcriptomic profile of patients can quantify the intensity of
the inflammatory response. The expression of gene ontologies differed
with increasing severity of a clinical inflammatory response; expression
was up-regulated with progression from low to high grade inflamma-
tion for 36% of gene ontologies whereas 64% were down-regulated
during that course.

The whole set of 4761 selected transcripts was included in the
computation of the gene expression score (GES), to order the patterns
of the heat-map. Potential of GES and its components GES UP and GES
DOWN to predict a given patient's immune state as reflected by a
pangenomic assessment of the blood transcriptome are represented
by Fig. 2C. While down-regulated adaptive immune functions (GES
DOWN) were impacted particularly by disease severity, up-regulated
transcripts encoding innate immune functions (GES UP) reached a
plateau.

In the next step, we then tried to identify a reduced subset of repre-
sentative genes with highest phenotypic separation capacity to deter-
mine marker candidates. Through multiple in silico simulations, no
unique set of preferable marker candidates, but marker combinations
were determined reflecting this course with equivalent capability. The
analysis identified that a subset of seven genes used to differentiate
presence of infection in the training set – i.e. TLR5, CD59, CLU, FGL2,
IL7R, HLA-DPA1 and CPVL – can be applied to represent the whole geno-
mic version of GESwith appropriate power (for description of the genes
see Table 1). Albeit these 7 genes predicted the position of a given
patient's transcriptomic response in the continuum reflected in the
heatmap, the substantial heterogeneity of individual patients regarding
the 7 transcripts lends support to the need to individualize therapeutic
interventions (Fig. 3A).

The identification of a parsimonious subset of 7 genes supported the
feasibility of a diagnostic test based on a limited number of transcripts
that describe both up-regulation of innate immune functions and
impaired specific immunity in sepsis. The individual change of the
expression of each gene is scored. The three genes TLR5, CD59 and CLU
that are up-regulated comprise the UP-genomic score; and the four
genes FGL2, IL7R,HLA-DPA1 and CPVL that are down-regulated comprise
the DOWN-genomic score. Combining both scores results in an overall
gene expression score (GES) for systemic immune dysregulation in
sepsis (Fig. 3A).

ROC analysis was performed to evaluate whether the GES or its
subscores can distinguish a state of high grade inflammation from a
state of low grade inflammation (Fig. 3B). The area under the ROC
curve of the GES was significantly greater than for PCT and tended to
be greater than for CRP (Fig. 3B). Twenty-five of the 72 patients enrolled
in this verification set were classified according to the predefined
clinical criteria as patients with a state of high grade inflammation.
Table 1
Characteristics of the seven genes used for the generation of the genomic score.

Gene Description Function

TLR 5 Toll-like receptor 5 (flagellin) Pathogen recognition
CD59 Protectin Complement regulator
CLU Clusterin Complement lysis inhi
FGL2 Fibrinogen-like 2 Immune regulator, pro
IL7R Interleukin-7 receptor Lymphocyte developm
HLA-DPA1 Major histocompatibility complex class II, DP alpha1 Antigen presentation
CPVL Carboxypeptidase, vitellogenic-like Macrophages, inflamm

cascade, phagocytosis
Correlation statistics within these patients failed to identify a positive
correlation between GES and PCT showing that the clinical information
providedbyGESwas different fromPCT (rank correlation coefficient be-
tween GES and PCT 0.58, p = 0.116), while it correlated significantly
with CRP (rank correlation coefficient between GES and CRP 0.77,
p b 0.001) (Fig. 3C).
3.3. Confirmation Set

The pool of seven genes that reflected the host response, both, with
respect to the infectious nature (‘training set’) and themagnitude of the
host inflammatory response (‘verification set’) were selected for
prospective validation as component biomarkers in the ‘confirmation
set’.

The primary endpoint of this sub-study was to confirm the validity
of the genomic instrument to differentiate states of inflammation of
infectious or non-infectious origin. The secondary endpointwas to eval-
uate the importance of changes of the score over time as a surrogate
marker for outcome. Two independent cohorts were used, one enrolled
in Germanywith 196 patients from amixed but predominantly surgical
ICU and another from Greece with 50 medical patients (for characteris-
tics see Tables S3 and S4).

All three genes of the UP-genomic score were expressed at signifi-
cantly greater levels among patients with possible/probable and
definitive infections than among patients with no infection. The score
did not differ between patientswith possible/probable infection andde-
finitive infection (Fig. 4A). In a similar fashion, all four genes of the
DOWN-genomic score were expressed at significantly lower levels
among patients with possible/probable and definitive infections than
among patients with no infection (Fig. 4B). As expected, the overall
genomic score was significantly greater in patients with definite as
well aswith possible/probable infection thanwith no infection (median
(Q25/Q75): 80 (60/101) and 81 (58/97) vs. 49 (27/66) with no differ-
ence as to whether or not a microbiological confirmation of an alleged
pathogen was achieved (median difference [95%-CI] of definitive infec-
tion vs. no infection: 34·9 [25·9, 44·0], possible/probable vs. no infec-
tion: 33.0 [22.7, 42.7] and possible/probable vs. definitive infection:
−1.7 [−10.3, 6.9]) (Fig. 4C). ROC analysis showed good sensitivity
and reasonable specificity for GES to identify presence of infection
(Fig. 4D, Table 2). Corresponding data are provided for CRP and PCT
(Fig. S3, Table S5) but are only available for the German cohort. Sub-
analysis conducted among patients with definitive infections showed
that the genomic score did not differ between different types of infec-
tions (Fig. 5A) and between different pathogens (Fig. 5B).

Significant differences between infected and non-infected patients
were also observed for PCT, CRP (Fig. S3) and SOFA scores; however, a
constant and statistically significant correlation between any pair of
features could not be detected within any of the three studied sub-
groups (i.e. no infection, possible/probable infection, definitive infec-
tion). Furthermore, GES and its UP- and DOWN-scores did not differ
between patients admitted with infections to the ICU and patients
with ICU-acquired infections (Fig. S2).
Implicated pathway Expression in severe
inflammation

Toll-like receptor signaling Up-regulation
y protein Fcy receptor mediated phagocytosis Up-regulation
bitor Integrin signaling Up-regulation
thrombinase Nur77 signaling in T lymphocytes Down-regulation
ent CD28 signaling in T helper cells Down-regulation

Allograft rejection signaling Down-regulation
atory protease Calcium-induced T lymphocyte apoptosis Down-regulation



Fig. 3. Individual expression of the selected transcripts of the marker set within the verification cohort. A) A bar chart represents the deviation of eachmarker from corresponding mean
value obtained inhealthy controls, consisting ofmarkers reflecting up-regulated effector functions of innate anddown-regulated functions of adaptive immunity. Each chart is plottedwith
the value of the corresponding gene expression score (GES) on the vertical axis and the individual deflection of the 7 transcripts on the horizontal axis for the three individual patients
shown in each group, namely those belonging to the 10th, 50th, and 90th percentiles of the corresponding GES values. This presentation reflects the heterogeneity of the response of
the various pro- and anti-inflammatory compounds underlying the overall value of the obtained score in individual patients. B) Receiver Operator Characteristics (ROCs) for the score
compared with procalcitonin (PCT) and C-Reactive Protein (CRP) to differentiate a state of high grade systemic inflammation from a state of low grade systemic inflammation
(AUCROC: GES: 0.963 (95% CIs 0.923–1.000); PCT: 0.869 (95% CIs 0.771–0.967); and CRP: 0.935 (95% CIs 0.882–0.988). AUCs GES vs PCT p = 0.020). C) Individual Correlation of the
genomic score with PCT and CRP.
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Early changes of the expression of the seven transcripts were mea-
sured among patients of the German cohort. ROC analysis was used to
identify a cut-off of an early change of the genomic score that can inform
about the risk to die. No cut-off could be found for the UP-score and
neither for PCT and CRP as the corresponding AUC-values were not
significantly different from 50%. However, it was found that any de-
crease of the DOWN-score by more than 17% within the first 24 h had
a sensitivity of 80.0% (95%-CI 66.2, 89.1%) and a specificity of 37.0%
(95%-CI 29.1, 45.7%) to predict death (Fig. 6A, Table 3). This would
allow to rule in a high-risk population e.g. in interventional trials. The
cut-off was identified for the German cohort and verified for the Greek
cohort. In order to test whether a change of the DOWN-score was an in-
dependent factor associatedwith outcome, a logistic regression analysis
was performed. This revealed two independent factors associated with
mortality, i.e. early decrease of the DOWN-score and the presence of se-
vere sepsis/septic shock (Table 4). However, ROC analysis where sepsis
severity and the change of the DOWN score were considered together
did not improve the area under the curve of prediction, confirming



Fig. 4. Expression characteristics of the individual transcripts of the genomic score and its sub-scores for patients enrolled in the confirmation cohorts. A) Differences to themean value of a
control cohort expressed asΔΔCt values (Kenneth and Thomas, 2001) (i.e., deviation fromgroupmean of healthy volunteers) for each of the three up-regulatedgenes forming theUP score
(TLR5: Toll-like receptor 5; CD59: Protectin; CLU: Clusterin); B) ΔΔCt values for each of the four down-regulated genes forming the DOWN score (FGL2: Fibrinogen-like 2; HLA-DPA1:
Major histocompatibility complex class II, DP alpha1; CPVL: Carboxypeptidase, vitellogenic-like; IL7R: Interleukin-7 receptor);ΔΔCts represent differences of the time to reaction between
patients and healthy controls, both normalized to internal reference genes. C) Values of the calculated genomic master score including both aspects of the host response. Biological func-
tions of the individual transcripts are summarized in Table 1. For all markers and scores, significant differences comparedwith the “no infection” groupwere confirmed (**p b 0.01), how-
ever no significant differences were observed between possible/probable and definitive infection groups (results of the post-hoc pairwise comparison after Kruskal–Wallis test).
D) Receiver Operator Characteristics (ROCs) for the genomic master score to differentiate definite and possible/probable infection from no infection.
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that early change of the DOWN score was a dynamic independent pre-
dictor of mortality (Fig. 6B and C). Once the importance of the change of
the DOWN score to predict mortality was fully established in the Ger-
man cohort, its significance was further confirmed by survival analysis
of patients enrolled in the cohort from Greece (Fig. 6D). Time course
of the DOWN score in the German cohort differed between survivors
and non-survivors with higher values in non-survivors from day two
to day ten, while PCT and CRP values did not differ (Fig. 7).
Table 2
Classification of German cohort regarding the state of infection and the GES level of more and

Definitive/possible/probable infection

GES ≥ 55 151 (61%)

GES b 55 39 (16%)

Total 190 (77%)
Sensitivity = 80%
(73.2–84.6%)
4. Discussion

The need for better diagnostic tests has been voiced for infectious
diseases with special emphasis on sepsis (Cohen et al., 2015). We
have shown that a compound biomarker panel that consists of 7
transcripts and can be used at the point-of-care provides additional in-
formation on the host response compared to conventional biomarkers:
Unlike CRP and PCT, the transcriptomic panel covers both, pro- and anti-
less than 55, thus adjusting for a sensitivity of 80% (95%-CIs are provided in addition).

No infection Total

23 (9%) 174 (71%) PPV = 87%
(80.9–91.3)

33 (13%) 72 (29%) NPV = 46%
(34.8–57.3)

56 (23%) 246 (100%)
Specificity = 59%
(45.9–70.8%)



Fig. 5. Independence of the developed genomic score from the type of infection and from the implicated pathogens. A) The genomic score is presented stratified according the type of
underlying infection/focus of patients enrolled in the two cohorts of the confirmation set, where p-value of one-way-ANOVA between type of infection is 0.749. ABSSTI: acute bacterial
skin and soft tissue infection; IAI: intra-abdominal infection; BSI: bloodstream infection; UTI: urinary tract infection; CAP: community-acquired pneumonia; B) the genomic score is
presented in relation with the isolated microorganism from patients enrolled in the two cohorts of the confirmation set, where p-value of one-way-ANOVA between the various
pathogens is 0.307.
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inflammatory aspects of the host response. Down-regulated transcripts
reflecting effector functions of the specific immune system, a currently
neglected aspect in the monitoring of sepsis exclusively prognosticated
outcome with good sensitivity but limited specificity.

Two main strengths of the study can be recognized: a) the develop-
ment of the biomarker in a three-step approach; and b) the confirma-
tion of the provided information for diagnosis and prognosis in a
completely independent cohort of patients. The Greek cohort is
geographically and genetically far different than the German cohort
presenting also a different pattern of comorbidities andmicrobial path-
ogens confirming the robustness of the transcriptomic signature.

One limitation of the present study is the exclusion of patients with
preexisting immunodeficiency; further studies are needed whether the
present or a modified signature may help to guide decision making in
this high risk patient population. In addition, the lack of sensitivity
and specificity of using the SIRS criteria to identify patientswhoare like-
ly to be infected is well-recognized (Kaukonen et al., 2015), and their
use is on the decline and no longer recommended in the newdefinitions
for sepsis (Singer et al., 2016). However, alternate clinical criteria are
currently not available or validated. Furthermore, the relatively small
number of community-acquired infections could be considered as an-
other limitation. However, the diagnostic uncertainty of absence or
presence of infection in particular in the critically ill is a main driver
for antibiotic overuse in intensive care (Opal and Calandra, 2009;
Vincent et al., 2009), requiring biomarkers to distinguish between
infectious and non-infectious origin of systemic inflammation. The
limited specificity to separate states of systemic inflammation of non-
infectious origin from sepsis even when applying a pangenomic
assessment of the host response points towards biological restrictions,
e.g. release of mitochondrial components reflecting evolutionary endo-
symbionts in particular in the most severely ill patients (Zhang et al.,
2010).

The bias towards hospital-acquired infection in our cohort could
lead to over-emphasis of the immuno-suppressive aspect of the host



Fig. 6. Early changes of the DOWN-genomic score as an independent prognostic factor. A) Receiver Operator Characteristic curves of the change of the DOWN genomic score and of
procalcitonin (PCT) within the first 24 h for the prediction of mortality. Areas under the curve (AUCs) and p-values for the ROC analysis are provided. B) Comparative ROCs of the
DOWN score with the presence of infection and with the presence of organ failure to predict mortality. AUCs and p-values for the ROC analysis are provided. C) Survival of patients
enrolled in the confirmation cohort fromGermany are divided into subgroupswith andwithout early decrease of the down-genomic score by 17%. Thosewith less than 17% early decrease
have prolonged survival. D) The prognostic value of this early decrease of the down-genomic score is confirmed in an independent cohort from Greece. p values of the log-rank tests are
provided.
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response as this has been considered a late occurring event. A most
recent study confirmed two of the three biomarkers of our DOWN-
score, namely IL7R and HLA-DPA1, in a cohort comprising exclusively
community-acquired pneumonia (Scicluna et al., 2015). Similarly, use
of HLA-DR expression on the surface of peripheral blood mononuclear
cells suggested early occurrence of immunosuppression in severe either
community- or hospital-acquired infections complicated by organ
dysfunction (Gomez et al., 2014).
Table 3
Classification of German cohort into subgroups with and without early decrease of the down-g

Non-survivors

GES DOWN
Decrease ≤17% 36 (21%)

Decrease N17% 9 (5%)

Total 45 (26%)
Sensitivity = 80%
(66.2–89.1%)

The threshold, adjusted to the sensitivity of 80% to predict a mortality, finally resulted in the neg
positive predictive value (PPV = 31%). Analysis involved 172 of the initially enrolled patients
Amulti-biomarker based outcome stratificationmodel has also been
advocated byWong et al. that reliably estimated probability ofmortality
based on inflammatory markers along with conventional clinical and
demographic data. Similar to our approach the sensitivity ismuchbetter
than the specificity which would qualify these approaches to enroll
patients at risk e.g. into sepsis trials (Wong et al., 2014).

Sepsis results from a dysregulated host inflammatory response to
‘pathogen associated molecular patterns’ (PAMPs). PAMPs, such as
enomic score by 17% in relation to 100-day mortality.

Survivors Total

80 (47%) 116 (67%)
PPV = 31%
(23.3–39.9%)

47 (27%) 56 (33%)
NPV = 84%
(72.2–91.3%)

127 (74%) 172 (100%)
Specificity = 37%
(29.1–45.7%)

ative predictive value NPV= 84%. The adjustment was at expense of specificity (37%) and
because 24 patients were discharged from ICU or died before the second sampling.



Table 4
Logistic regression analysis of factors related with 100-day mortality among patients en-
rolled in the German cohort of the confirmation study set.

Unadjusted Adjusteda

Factors OR 95% CI p-Value OR 95% CI p-Value

APACHE II score 1.00 0.95–1.05 0.985 –
Presence of severe
sepsis/septic shock

7.87 1.64–37.92 0.010 7.92 1.80–34.77 0.006

Less than 17% decrease
of the DOWN-score
within the first 24 h

0.40 0.17–0.93 0.033 0.40 0.17–0.93 0.032

a Forward step-wise analysis.
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endo- or exotoxins are recognized by pattern recognition receptors
(PRRs) leading to a signal-specific transcriptomic fingerprint (Calvano
et al., 2005). potentially providing information to guide therapeutic
decisions (Giamarellos-Bourboulis and Raftogiannis, 2012). Translation
of these principles into clinical application has become feasible with the
Fig. 7. Time course of GES UP and DOWN, CRP and PCT in survivors and non-survivors of the G
discharge or death for a maximum of ten days. Time courses of GES UP and DOWN are presen
and Q25/Q75). The time course of GES DOWN displayed differences primarily for transcripts
GES UP nor the single protein biomarkers depending on 100-day mortality.
advent of ‘omics’-technologies. Limitations in the critically ill are,
however,many, including an alternate binding of the ‘Danger associated
molecular patterns’ family of ligands, genetic variability of the inflam-
matory response, and absorption of PAMPs from the gastrointestinal
tract (Zhang et al., 2010). These confounding factors and technical hur-
dles associatedwith array technology, have prevented its broader use in
particular at the point-of-care.

Moreover, an ever increasing body of evidence has led to
questioning of the concept of SIRS proposed as an exaggerated immune
response driving the course of disease in the critically ill. An increasingly
better defined failure of central immune functions has been recognized
(Hotchkiss et al., 2013), which is further modulated bymetabolic adap-
tations (Medzhitov et al., 2012). Thus, novel biomarkers of sepsis should
also take into account these facets of the disease. Consistently, our data
lend support to the notion that including biomarkers of the anti-
inflammatory or immunosuppressive facet of the host response to
infection improves clinical utility to identify infection and prognosticate
outcome. These currently available data are restricted to the
erman cohort. For these patients RNA samples were collected on a daily basis until ICU-
ted for survivors and non-survivors, and in comparison to CRP and PCT (each as median
coding for adaptive immune functions while such differences were observed neither for
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transcriptome and introduce the need to corroborate them in the con-
text of proteomic and metabolomic data which might require analysis
on pivotal public databases and interdisciplinary knowledge platforms
(Montague et al., 2014).

Immune dysfunction affects antigen-presenting cells (APC) and T-
lymphocytes although the contribution of this phenomenon to the
prolonged morbidity and mortality in survivors of sepsis remains ill-
defined. Surrogate parameters to describe the phenotype of immune
effector cells include decreased expression of HLA-DR on antigen-
presenting cells, reduced stimulated ex vivo cytokine production, and
impaired T-cell function, such as increased production of programmed
death 1 (PD-1), cytotoxic T-lymphocyte-associated antigen 4, and B
and T-lymphocyte attenuator molecules (Boomer et al., 2011).

While clinical studies applying immunostimulatory agents, such as
γ-interferon or colony-stimulating factors in sepsis are still in their
infancy, patient populations potentially benefitting from such strategies
might exist (Bo et al., 2011; Boomer et al., 2014). A prerequisite to
personalizing care is to describe inter-individual and population-to-
population variability in health intervention outcomes using diagnostic
tests to customize the type and extent of intervention (Ozdemir et al.,
2006). As a result, the need to individualize immunomodulatory strate-
gies in sepsis is increasingly acknowledged and is supported by the sub-
stantial intra-individual and inter-group variability of the marker genes
measured in the present study (Fig. 3A)making such a biomarker in the
first place a promising tool for interventional studies.

Various clinical studies have analyzed the transcriptomic profile of
sepsis. Themain difficulty in these studies is how to reach quantification
of the results in a way that would allow using this information in the
clinical context after transfer onto a feasible platform at the point-of-
care. Our results confirm the observed parallel occurrence of pro- and
anti-inflammatory changes (Opal and Calandra, 2009; Xiao et al.,
2011; Parnell et al., 2013; Tang et al., 2007) and extend this concept to
suggest a composite biomarker set that might be used in clinical
utility studies. Vice versa our data also indicate that the conventional
biomarkers CRP and PCT are significantly impacted by disease severity
assuming that a pangenomic analysis of gene expression patterns de-
scribes the host response appropriately.

Two other studies assessed the transcriptomic profile during the
early hours of sepsis in whole blood (Lissauer et al., 2009; Johnson
et al., 2007). Results of both studies revealed increased expression of
TLR5 as well as mediators of apoptosis similar to the present study.
Overall, the increasing number of proof-of-concept studies suggests
that transcriptomic profiling is technically feasible and leads to repro-
ducible findings indicative of sub-categories of the host response that
are not accessible to clinical diagnosis or conventional single-protein
biomarkers. Furthermore, a most recent study confirms the potential
of limited numbers of transcripts as biomarkers to classify patients
with systemic inflammation on the ICU (McHugh et al., 2015).

While measurements of proteins in plasma can rely on established
platforms, the hurdles to establish multiplexed transcriptome-based
biomarkers are significant.

The presentfindings based on a three-step approach and comprising
confirmation in two independent cohorts introduce a new genomic
biomarker that can separate critically ill patients with infection from
those without infection. The biomarker behaves similarly among
patients with clinical signs of infection with or without confirmatory
microbiology; these are used as a positive infection group to simulate
the everyday clinical scenario where microbiology findings either fail
or delay considerably. One of its basic components, namely the
DOWN-score, changes very early i.e. within the first 24 h indicating
prognosis, allowing to identify a population-at-risk with a good sensi-
tivity but limited specificity that might be included in studies aiming
to improve mortality. Such strategies are increasingly recognized as an
option to avoid doing harm in patients ultimately surviving without
immunomodulatory interventions when aiming to attenuate a princi-
pally adaptive response to infection (Singer and Glynne, 2005).
5. Conclusions

Multiplexed transcriptome-based biomarkers provide additional in-
formation compared to currently available single protein biomarkers of
the host response. Quantification of impaired innate immunity can po-
tentially guide studies of anti-inflammatory therapies, while
measurement of derangements in specific immunity may inform the
design of studies of strategies to restore immune effector functions.
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