

The Toxicity of a Novel Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein Degradation (ERAD) Components

Shriya S
 Raj, Karthik Krishnan, David S
 Askew, Olivier S
 Helynck, Peggy Suzanne, Aurélien Lesnard, Sylvain Rault, Ute S
 Zeidler, Christophe d'Enfert,

Jean-Paul S Latgé, et al.

► To cite this version:

Shriya S
 Raj, Karthik Krishnan, David S
 Askew, Olivier S
 Helynck, Peggy Suzanne, et al.. The Toxicity of a Novel Antifungal Compound Is Modulated by Endoplasmic Reticulum-Associated Protein Degradation (ERAD)
 Components. Antimicrobial Agents and Chemotherapy, 2016, 60 (3), pp.1438-1449.
 10.1128/AAC.02239-15. pasteur-01427574

HAL Id: pasteur-01427574 https://pasteur.hal.science/pasteur-01427574

Submitted on 5 Jan 2017

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike 4.0 International License

Toxicity of a novel antifungal compound is modulated by ERAD components

1	Shriya Raj ¹ , Karthik Krishnan ² , David S. Askew ² , Olivier Helynck ^{3,4} , Peggy Suzanne ⁵ ,
2	Aureslien Lesnard ⁵ , Sylvain Rault ⁵ , Ute Zeidler ^{6,7,@} , Christophe d'Enfert ^{6,7} , Jean-Paul Latgé ^{1,#} ,
3	Hélène Munier-Lehmann ^{3,4,#} , Cosmin Saveanu ^{8,9,#}
4	¹ Institut Pasteur, Unité des Aspergillus, Département Mycologie, 25-28 rue du docteur Roux
5	75015, Paris, France
6	² Department of Pathology & Laboratory Medicine, University of Cincinnati, Cincinnati, OH
7	45267-0529, USA
8	³ Institut Pasteur, Unité de Chimie et Biocatalyse, 25-28 rue du docteur Roux 75015, Paris,
9	France
10	⁴ CNRS UMR3523, F-75015, Paris, France
11	⁵ Centre d'Etudes et de Recherche sur le Médicament de Normandie, EA4258, UFR des
12	Sciences Pharmaceutiques, University of Caen Basse-Normandie, Caen, France
13	⁶ Institut Pasteur, Unité Biologie et Pathogénicité Fongiques, Département Mycologie, 25-28
14	rue du docteur Roux 75015, Paris, France
15	⁷ INRA USC2019, F-75015 Paris, France
16	⁸ Institut Pasteur, Unité de Génétique des Interactions Macromoléculaires, Département
17	Génomes et Génétique, 25-28 rue du docteur Roux 75015, Paris, France
18	⁹ CNRS UMR3525, F-75015 Paris, France
19	[@] Current address: Sandoz, Unterach, Austria
20	[#] Corresponding authors: jean-paul.latge@pasteur.fr (JPL), helene.munier-lehmann@pasteur.fr
21	(HML), cosmin.saveanu@pasteur.fr (CS)
22	Running title: Endoplasmic reticulum-related antifungal toxicity

23 Abstract

In a search for new antifungal compounds, we screened a library of 4454 chemicals for 24 toxicity against the human fungal pathogen Aspergillus fumigatus. We identified sr7575, a 25 molecule that inhibits growth of the evolutionary distant fungi A. fumigatus, Cryptococcus 26 neoformans, Candida albicans, and Saccharomyces cerevisiae but lacks acute toxicity for 27 mammalian cells. To gain insight into the mode of inhibition, sr7575 was screened against 28 4885 S. cerevisiae mutants from the systematic collection of haploid deletion strains and 977 29 barcoded haploid DAmP strains in which the function of essential genes was perturbed by the 30 introduction of a drug resistance cassette downstream of the coding sequence region. 31 Comparisons with previously published chemogenomic screens revealed that the set of 32 mutants conferring sensitivity to sr7575 was strikingly narrow, affecting components of the 33 endoplasmic-associated protein degradation (ERAD) stress response and the ER membrane 34 protein complex (EMC). ERAD-deficient mutants were hypersensitive to sr7575 in both 35 S. cerevisiae and A. fumigatus, indicating a conserved mechanism of growth inhibition 36 between yeast and filamentous fungi. Although the unfolded protein response (UPR) is linked 37 to ERAD regulation, sr7575 did not trigger the UPR in A. fumigatus and UPR mutants showed 38 no enhanced sensitivity to the compound. The data from this chemogenomic analysis 39 demonstrate that sr7575 exerts its antifungal activity by disrupting ER protein quality control 40 in a manner that requires ERAD intervention but bypasses the need for the canonical UPR. ER 41 protein quality control is thus a specific vulnerability of fungal organisms that might be 42 exploited for antifungal drug development. 43

44 Introduction

The burden of fungal infections in the human population is very high, with an estimated 45 1.5 million annual deaths worldwide, despite antifungal prophylaxis (1–3). The evolutionary 46 proximity between mammalian and fungal cells creates a challenge for the identification of 47 selective drug targets. Consequently, there are only a few mechanistically distinct classes of 48 antifungal agents. The major antifungal drugs in clinical use disrupt membrane homeostasis by 49 targeting ergosterol (4), impair cell wall integrity by inhibiting β -(1,3)-glucan synthase (5), or 50 perturb nucleic acid synthesis via a fluorinated nucleotide analogue (6). The limited number of 51 therapeutic options impedes effective management of invasive fungal infections, particularly 52 when resistance to a drug is either emerging or an intrinsic characteristic of the fungal 53 pathogen. 54

The identification of novel drugs and their targets can follow several strategies, ranging 55 from the inhibition of a known protein target with a panel of inhibitors to the analysis of 56 mutant strain sensitivity to toxic compounds (7). Chemical genomic screens analyze large 57 collections of genetically defined mutant strains for their sensitivity to chemical libraries in a 58 systematic manner. Data from these screens can provide insight into candidate targets for a 59 given drug, as well as the cellular pathways required to buffer drug toxicity (8–11). The 60 interpretation of chemogenomic screens depends on the type of mutant collection utilized for 61 the analysis. For example, the absence of a general dosage compensation mechanism in yeast 62 (12) allows heterozygous deletion strains to be used as tools to determine how a reduction in 63 the level of a gene product impacts drug sensitivity. However, since heterozygous deletion 64 strains retain some level of gene function, compensatory mechanisms could mask changes in 65

66	drug sensitivity. Haploid deletion strains can circumvent this problem and increase the
67	sensitivity of the screen. The resulting chemogenomic profile, or pattern of mutants that are
68	affected by a given compound, is predictive of the mechanism of action and has been
69	successfully applied to drug lead identification and target classification in yeast (13). Further
70	insight into pathways that are modulated by a compound can be obtained by developing in
71	silico comparison tools that link the results of a chemogenomic analysis to the data of other
72	published large-scale chemogenomic or genetic interaction screens (14, 15, for examples).
73	Most of the large chemogenomic data sets currently available have investigated non-
74	essential gene deletions in haploid strains (10, 16). Essential genes, representing about one
75	sixth of all S. cerevisiae genes, are more difficult to study in haploid or heterozygous deletion
76	strains, so an alternative approach is the use of Decreased Abundance by mRNA Perturbation
77	(DAmP) strains. DAmP strains contain a drug resistance marker inserted into the 3'
78	untranslated region (UTR) of a gene, resulting in defects in mRNA stability that can create
79	hypomorphic alleles for phenotypic analysis of essential gene function (17). These strains have
80	provided important insights into gene function, as well as the response of cells to stress (18,
81	for example).
82	In this study, we report the identification of sr7575, a small molecule with fungistatic
83	activity against S. cerevisiae and three genera of human fungal pathogens: A. fumigatus, C.
84	neoformans, and C. albicans. We employed a genome-wide approach to characterize the mode
85	of action of sr7575, using a systematic determination of <i>S. cerevisiae</i> deletion and DAmP
86	mutant sensitivity to the drug, combined with extensive in silico comparisons with large-scale
87	datasets from published chemogenomic and genetic interaction screens. The strategy led to the

conclusion that *S. cerevisiae* and *A. fumigatus* mutants that are deficient in ER-associated

degradation (ERAD), a degradative pathway that disposes of misfolded proteins that arise in
the ER membrane or lumen (19) are hypersensitive to sr7575. Collectively, these data
implicate ER protein quality control as the target of sr7575 toxicity in evolutionarily distant
fungi, and suggest that further analysis of compounds that disrupt ER homeostasis may
provide novel avenues for antifungal drug development.

94 Materials and Methods

95 Screening procedure of the CERMN chemical library.

All robotic steps were performed on a Tecan Freedom EVO platform. Compounds were 96 transferred from mother plates into clear, flat bottom, barcoded tissue culture 96-well plates 97 (Greiner Bio One): 1 µL of a DMSO solution containing 3.3 mg/mL of each compound was 98 spiked into dry wells of daughter plates (80 compounds per plate). For each plate, columns 1 99 and 12 served as controls: 8 positive controls spiked with DMSO alone provided the reference 100 as 100% growth and 8 negative controls contained the antifungal drug amphotericin B at 15 101 μ g/mL to kill all cells. 130 μ L of a mixture containing 10 volumes of conidial suspension 10⁵ 102 conidia/mL (in RPMI with 0.1% Tween 20) and 3 volumes of resazurin 0.01% was added to 103 each well. After 48 hours of incubation at 37°C, the absorbance at 570 nm (measurement 104 wavelength) and 604 nm (reference wavelength) were measured on a Safire2 (Tecan) 105 microplate reader. The data were normalized using the following formula: % viability = 100 x 106 (sample value - average value of negative controls) / (average of positive controls - average of 107 negative controls). 108

For analysis of toxicity to human cells, compounds were added to HeLa cells at a concentration of 10 μ M (2.8 μ g/mL for sr7575) and the release of cytoplasmic lactate

111	dehydrogenase was measured using the ELISA-based Cytotoxicity Detection Kit (Roche),
112	according to the manufacturer's recommendations. Mutagenic activity was tested in the
113	bacterial reverse mutation test, either in the presence or absence of a rat metabolizing system
114	(performed by CiToxLAB Safety and Health Research Laboratories). To determine acute
115	mouse toxicity, groups of four NMRI mice were given a single dose of sr7575 (100 mg/kg) by
116	i.p. injection, and mortality was monitored for 3 days.
117	Yeast strains, growth, and media.
118	All strains used in this study are described in Table S4. The pooled haploid deletion
119	library (MATa) contained deletions in 4885 non-essential genes along with DAmP
120	modifications of 977 essential genes (20, 21). Wild type (WT) S. cerevisiae strain BY4741
121	was routinely maintained on YPD agar (1% yeast extract, 2% peptone, 2% dextrose, 2% bacto
122	agar; YPDA).
123	For S. cerevisiae serial dilution spot assays, fresh colonies from plates were used to
124	inoculate overnight cultures in YPD. The next morning, cultures were washed once, diluted to
125	OD_{600} 1 in PBS and serial ten-fold dilutions were carried out in a 96-well plate. 10 μ L of each
126	dilution was spotted onto SC medium (containing 6.7 g/L yeast nitrogen base with ammonium
127	sulfate, BD Difco, with all amino acids, 2% dextrose and 2% bacto agar) lacking or
128	supplemented with 0.25 μ g/mL sr7575. Plates were incubated at 30°C and growth was
129	monitored every 24 h over three days. Spot assays on SC supplemented with the analog sr7576
130	were conducted in a similar fashion.
131	The same serial dilution spot assay used to assess sensitivity in S. cerevisiae was used
132	for C. albicans and C. neoformans, with the exception that the plates were supplemented with

sr7575 between 1-8 μ g/mL and were incubated at 37°C.

134	Verification of S. cerevisiae mutant strains.
135	The following mutants were extracted from the gene deletion library maintained in the
136	96-well format(8): YBR283C (SSH1), YCL045C (EMC1), YDL020C (RPN4), YDL226C
137	(GCS1), YER019C-A (SBH2), YER090W (TRP2), YKL126W (YPK1), YKL207W (EMC3),
138	YML105C (SEC65; DAmP strain), YMR022W (UBC7), YMR264W (CUE1), YOL013C
139	(HRD1), YOR008C (SLG1), YOR153W (PDR5), YPR060C (ARO7), YHR079C (IRE1),
140	YFL031W (HAC1), YBR201W (DER1), YLR207W (HRD3), YIL030C (SSM4/DOA10),
141	YDL190C (UFD2), YGL013C (PDR1), YNL181W (DAmP strain), and YML125C (PGA3;
142	DAmP strain). Genomic DNA was extracted using phenol-chloroform followed by ethanol
143	precipitation. Mutants were verified by PCR amplification using a common forward primer
144	annealing to the KanMX cassette (KaniF) and gene specific reverse primers (oligonucleotides
145	listed in Table S5).
146	Complementation tests in S. cerevisiae.
147	Complementation tests were performed with plasmids from the Molecular Barcoded
148	Yeast ORF collection (MoBY-ORF) (22). URA3 plasmids carrying ORFs corresponding to
149	genes ARO7, CUE1, EMC1, EMC3, HRD1, RPN4, SSH1, and UBC7 (Table S4) were
150	recovered from <i>E.coli</i> grown in LB medium (1% tryptone, 0.5% yeast extract, 1% NaCl, 1.5%
151	bacto agar) supplemented with chloramphenicol (60 μ g/ml) and kanamycin (50 μ g/ml) (22).
152	500 ng of each plasmid was transformed into the appropriate yeast deletion parent following
153	the lithium acetate protocol (23) and URA3-expressing transformants were selected on SC
154	medium lacking uracil. The resulting transformants were purified by passaging onto fresh SC

(-URA) medium and four clones of each transformant-set were screened by colony PCR using
 a gene-specific primer pair (Table S5), generating product sizes ranging between 500-1000 bp.
 The deletion parent was always included as a negative control. Complemented strains were
 screened in parallel with the parental deletion strains in spot assays.

159

Overexpression tests in S. cerevisiae.

2 micron-based *LEU2* plasmids from the systematic overexpression library (24)
 corresponding to regions of the yeast genome that contain the ORFs *PDR1*, *PDR5*, *PDR12*,
 and a control lacking intact genes (Table S4) were recovered from *E. coli* DH10B cultures
 grown in LB medium supplemented with kanamycin (50 μg/mL), transformed into wild type
 BY4741, and transformants selected on SC (-LEU) plates. Transformants were purified by
 passaging onto fresh SC (-LEU) plates. Overexpressing strains were screened by serial
 dilution spot assays on SC medium supplemented with increasing concentrations of sr7575.

167 Cl

Chemogenomic profiling.

Concentrations of sr7575 that inhibit WT growth by 10-20% in liquid culture were 168 determined using the haploid strain BY4741 (MATa; $his3\Delta1$; $leu2\Delta0$; $met15\Delta0$; $ura3\Delta0$). 169 Single colonies from fresh YPDA plates were inoculated into 10 ml YPD and incubated at 170 30°C for 14 h. Cultures were diluted to OD₆₀₀ of 0.01 and grown to an OD₆₀₀ of 0.05 prior to 171 the addition of increasing concentrations of sr7575 (0.0625 μ g/mL to 0.5 μ g/mL). DMSO was 172 used as a vehicle control but there was no observable difference in growth rate between the 173 no-vehicle and DMSO-treated cultures. Growth was monitored by measuring the OD_{600} every 174 hour, starting from 0 h until 10 h (Fig. S2A). 175

Pooled 400 mL cultures of the haploid deletion library were grown for 12 generations in

177	the presence of sr7575 at 0.125 μ g/mL or DMSO vehicle-control. Amplified TAG products
178	from the pooled cultures were hybridized to Agilent barcode-specific microarrays (platform
179	GPL18088, GEO) as previously described (14). Images obtained with a GenePix 4200AL
180	scanner were annotated by using GenePix Pro 7 (Molecular Devices, CA, USA). Gpr files
181	were normalized separately for the UP and DOWN barcodes and aggregated for each mutant.
182	Raw and normalized data were deposited in the GEO database under identifier GSE60934.
183	Only results for which data were obtained in two independent biological replicates were
184	further considered for analysis. A total of 4909 mutants, including both deletion and DAmP-
185	modified strains, showed consistent growth measurements (Table S6), with a Pearson
186	correlation coefficient between the two series of log-transformed values of 0.78.
187	Gene set enrichment analysis and correlations.
188	Over-representation of GO terms in the chemogenomic screen results was analyzed
189	using the web interface at http://go.princeton.edu/cgi-bin/GOTermFinder to the GO Term
190	finder preasure (25). This preasure identifies enriched CO terms by coloulating the frequency.
	inder program (25). This program identifies enficied GO terms by calculating the frequency
191	with which one expects to encounter a number of genes having the same annotation in a subset
191 192	with which one expects to encounter a number of genes having the same annotation in a subset of genes (hypergeometric distribution). Correlations with published large-scale datasets were
191 192 193	with which one expects to encounter a number of genes having the same annotation in a subset of genes (hypergeometric distribution). Correlations with published large-scale datasets were computed using the R project (https://cran.r-project.org/) function 'cor.test', using either
191 192 193 194	with which one expects to encounter a number of genes having the same annotation in a subset of genes (hypergeometric distribution). Correlations with published large-scale datasets were computed using the R project (https://cran.r-project.org/) function 'cor.test', using either " <i>pearson</i> " or " <i>spearman</i> " as comparison methods. Treatments or gene deletion perturbations
191 192 193 194 195	with which one expects to encounter a number of genes having the same annotation in a subset of genes (hypergeometric distribution). Correlations with published large-scale datasets were computed using the R project (https://cran.r-project.org/) function 'cor.test', using either " <i>pearson</i> " or " <i>spearman</i> " as comparison methods. Treatments or gene deletion perturbations were ranked in decreasing order of calculated correlation coefficients.

A. fumigatus strains, growth, and media.

WT *A. fumigatus* strain kuA and deletion mutants $derA\Delta$, $hacA\Delta$, $hrdA\Delta$, and *hrdA\Delta/derA\Delta* were maintained on malt slants (2% malt extract, 2% bacto agar) while strains

199	<i>ireA</i> Δ and <i>hacA</i> Δ / <i>derA</i> Δ were maintained on <i>Aspergillus</i> minimal medium (MM) with 5 mM
200	ammonium tartrate as the nitrogen source and osmotically stabilized with 1.2 M sorbitol (26).
201	G418 was obtained from Invitrogen and Sigma Aldrich was the source for ampicillin,
202	kanamycin, and chloramphenicol.
203	Conidia from <i>ireA</i> Δ and <i>hacA</i> Δ / <i>hrdA</i> Δ strains were recovered from <i>Aspergillus</i> MM +
204	1.2 M sorbitol slants, while that of the parental kuA strain and the remaining deletion strains
205	were recovered from 10-day old malt slants in 0.05% Tween. Conidia were diluted to 10^7
206	conidia/mL and serial 10-fold dilutions were carried out in a 96-well plate prior to spotting 10
207	μ L of each dilution onto MOPS-buffered RPMI-1640 pH 7.0 plates in the presence or absence
208	of 5 μ g/mL sr7575. The analog sr7576 precipitated out of solution in RPMI-1640 media and
209	was therefore not included in the analysis. Plates were incubated at 37°C and growth was
210	monitored over four days.
211	MIC determination.
212	Determination of the minimal inhibitory concentration (MIC) for yeast strains was
213	carried out by the CLSI M27-A3 broth microdilution method (27). Growth inhibition of
214	Aspergillus strains was monitored using a colorimetric test described earlier (28). The MIC of
215	A. fumigatus strain that constitutively expresses DsRed fluorescent protein (29) was
216	determined following growth for 24 h at 37°C by measuring fluorescence using a Biotek
217	Synergy fluorescent microplate reader with an excitation wavelength of 254 nm and emission
218	filter set at 291 nm. The relative fluorescence units were plotted against the compound
219	concentrations to determine MIC.

Measurement of fungistatic or fungicidal activity.

221	For yeast, freshly growing YPD cultures were diluted to OD_{600} 0.001. sr7575 was added
222	at 0.625 μ g/mL, amphotericin B at 0.5 μ g/mL, and DMSO was used as a vehicle control.
223	100 μ L aliquots were recovered for plating on YPDA. Cultures were grown for 16 h, cells
224	were washed once in 1X PBS and 100 μ L of serially diluted samples were plated. Colonies
225	were counted following 48 h and normalized to the OD_{600} .

For *A. fumigatus*, 50 mL RPMI cultures with a starting cell number of 1×10^5 conidia/ml were setup in the presence or absence of 5 µg/mL sr7575 (in duplicate). 100 µL aliquots were recovered for enumeration of colony forming units. Following 16 h of growth, mycelia from one pair of flasks were filtered and mycelial dry weight estimated. From the second pair, 100 µL from the drug-treated flask was serially diluted and plated to assess viability.

231 **qRT-PCR.**

A. fumigatus conidia were inoculated into YG medium (0.5% yeast extract, 2% glucose) 232 and incubated overnight at 37°C, 200 rpm. The mycelium was treated with the indicated 233 concentrations of sr7575 or dithiothreitol (DTT), along with appropriate vehicle controls, for 234 1 h. The mycelia were harvested by filtration and lysed by crushing in liquid nitrogen. RNA 235 was isolated using the TRIzol reagent, treated with DNase to remove traces of DNA, and 236 reverse-transcribed using M-MuLV reverse transcriptase (NEB) together with an oligo-d(T) 237 primer. Quantitation of *bipA* and *tigA* mRNA expression was performed by qRT-PCR, as 238 previously described (30). 239

240 **Results**

Identification of a new inhibitor of fungal growth

In a search for new antifungals, we tested the toxicity of 4454 chemicals from the 242 CERMN compound library against A. fumigatus using the strategy outlined in Fig. 1A. The 243 CERMN library is part of the French national collection of chemicals (31) and was built since 244 1998 to be used in the framework of partnerships with public research laboratories. The 245 dynamic range and degree of separation between positive and negative controls in the screen 246 was evaluated by computing the Z' score (32). The average Z' value was 0.92 ± 0.03 , 247 indicating a robust and reliable assay. Data analysis identified 76 hits showing greater than 248 90% fungal growth inhibition, which were clustered into 7 chemical families and 29 singletons 249 (Table S1). Compounds with known effects on human physiology (33), or which showed 250 cytotoxicity for HeLa cells in a lactate dehydrogenase release assay, were eliminated from 251 further consideration. The compound sr1810 was active against A. *fumigatus* and was selected 252 for further analysis. Since sr1810 consisted of a mixture of two isomers, 75% of sr7575 (1) 253 (Fig. 1A) and 25% of sr7576 (2), we synthesized each isomer (Fig S1, A and B) and found that 254 it was only sr7575 that was responsible for the antifungal activity. The sr7575 compound 255 showed no mutagenic activity in the bacterial reverse mutation test, and no acute toxicity was 256 observed in mice at a dose of 100 mg/kg. 257

To gain insight into the structural basis for sr7575 antifungal activity, we prepared thirty analogues using aniline derivatives with different substitutions in the first reaction (compounds 3-32, Tables S2 and S3, synthesis detailed in Text S1). Growth inhibition tests with these compounds showed that at least two features of sr7575 were required for its antifungal potency: the chlorine at position 4 of the phenyl group and the positioning of the

nitro group in relation to the pyrrole moiety (Table S2).

In addition to its effects on A. fumigatus, sr7575 was active against A. flavus (Fig. 1B), 264 C. neoformans, C. albicans (Fig. 1C), and S. cerevisiae (Fig. 1D) on plates and in liquid 265 medium at inhibitory concentrations ranging from 0.6 to 10 µg/mL (Fig. S2A, B, C, D). More 266 than 90% of either S. cerevisiae or A. fumigatus cells were able to resume growth after a 16 h 267 incubation in the presence of sr7575 (0.625 μ g/mL and 5 μ g/mL, respectively) indicating that 268 the compound exerts a fungistatic effect. 269 ERAD-deficient mutants of S. cerevisiae are hypersensitive to sr7575 270 To gain insight into the mechanism by which sr7575 perturbs fungal physiology, the 271 effect of sr7575 was tested on the growth rate of each of 4885 haploid yeast deletion strains in 272 the systemic deletion collection (20). In addition, sr7575 activity was measured on 977 locus 273 tagged barcoded DAmP (17) mutants of essential genes that were previously generated in our 274 laboratory (21). This collection of gene knockout and DAmP strains contains molecular 275 barcodes to facilitate detection and quantitation of DNA by custom Agilent microarrays (34, 276 35). Following the strategy outlined in Fig. 1A, the normalized ratio of the hybridization 277 signal in the presence or absence of treatment was used as an estimate of relative growth rate 278 in pools of mutants. Only a fraction of mutant strains showed hypersensitivity to sr7575, as 279 indicated by the left tail of the distribution for sensitivity values (Fig. 2A). The strain that 280 showed the most dramatic increase in sr7575 sensitivity harbors a deletion of the PDR1 gene, 281 encoding the main regulator of multidrug resistance in yeast (36). Pdr1 is a transcriptional 282 activator for xenobiotic efflux transporter genes, thereby governing resistance to numerous 283 toxic compounds. It is likely that the effect of *PDR1* deletion on sensitivity to sr7575 is 284

mediated through the plasma membrane ATP-binding cassette (ABC) transporter Pdr5, since *PDR5* is a known target of Pdr1 (37) and the pdr5 mutant was ranked 6th among deletion strains that were most affected by sr7575.

To identify cellular pathways or protein complexes that allow cells to counteract sr7575 288 effects, we used a gene set enrichment analysis on 89 mutant strains that showed an average 289 increase in generation time of at least 10% relative to WT in the presence of sr7575. The most 290 over-represented pathway in the dataset was ER-associated protein degradation (ERAD), 291 specifically the GO term "ER-associated ubiquitin-dependent protein catabolic process" 292 (GO:0030433), with a p-value corrected for multiple hypotheses testing of 1.5×10^{-6} . This set 293 included CUE1, UBC7, HRD1, HRD3, UFD2, UBX4, SSM4 (DOA10), DSK2, and UBX2, 294 encompassing one fifth of the total number of genes annotated to this term (Fig. 2B). The 295 second most over-represented GO term was "aromatic amino acid family biosynthetic 296 process" (GO:0009073). However, strains deficient in this pathway are known to exhibit a 297 multidrug response signature (9), so the study of the corresponding strains was not pursued 298 further. 299

Cellular component enrichment analysis was used to determine whether any of the 89 300 proteins selected in the screen were linked to the same protein complex or intracellular 301 location. The ER membrane protein complex (EMC) was the most over-represented group by 302 this analysis, with a p-value of 2 X 10^{-7} . In addition to gene deletions directly affecting *EMC1*, 303 EMC3, EMC4 and EMC5, deletions affecting dubious ORFs which overlap with EMC2 304 (YJR087W) and EMC1 (YCL046W) that are distinct mutants of these genes, were also present 305 in this dataset. Members of the EMC complex are required for efficient protein folding in the 306 ER (38), potentially through roles in phospholipid metabolism at the ER membrane (39). 307

308	Other components of the ER membrane showed enrichment, including 10 of 58 genes
309	annotated as "intrinsic components of the ER membrane" (GO:0031227) and two DAmP-
310	modified essential genes of uncharacterized function (YNL181W and PGA3). In addition,
311	several genes encoding components of the signal recognition particle (SRP) involved in co-
312	translational targeting of proteins into the ER showed enrichment: sec65-DAmP, srp21-DAmP,
313	<i>shr3</i> -DAmP, <i>ssh1</i> Δ , and <i>sbh2</i> Δ . Taken together, these findings indicate that sensitivity to the
314	inhibitory effects of sr7575 is exacerbated by defects in the ERAD stress response, as well as
315	by alterations in ER membrane composition that affect optimal ER protein translocation and
316	folding.

317 The sr7575 sensitivity profile suggests a UPR-independent stress response

The effects of sr7575 on haploid yeast deletion strains were compared to profiles 318 obtained from 1,824 different chemicals in a recently published large-scale chemogenomic 319 screen (16). The compound CMB4166 had the highest Spearman correlation coefficient in this 320 comparison (Fig. 2C, r=0.44) and showed a remarkably similar profile to that of sr7575 321 (Fig. 2D). Most of the strains showing sensitivity to sr7575 were also sensitive to CMB4166 322 (Fig. 2E), suggesting that the two compounds trigger similar cellular responses. However, 323 CMB4166 is a macrolide (D. Hoepfner, personal communication) and shares no structural 324 homology to sr7575. 325 To acquire insights into the specificity of the response to sr7575, we compared its 326

sensitivity profile to published results on 3,356 other chemical compounds (10). The pattern of
 sr7575 sensitive mutants revealed little-to-no similarity to profiles obtained from the other
 compounds in this comparison. For example, the maximum computed Pearson correlation

330	coefficient was 0.27 for the compound k048-0007 (screen SGTC_352, Fig. S3A). However,
331	this correlation was due to strains with deletions in PDR1, RPN4, or GCS1, which confer
332	sensitivity to multiple stresses (Fig. S3C). To avoid the typically large effect of outliers on the
333	Pearson correlation, we also tested correlation via the Spearman non-parametric test that uses
334	ranks rather than values. The maximum correlation by this approach was also low (0.18) ,
335	identifying the compound 4245-1575 used in screen SGTC_513 (Fig. S3B). Most of the
336	correlation in this case could be attributed to the hypersensitivity of the $ubc7\Delta$ and $cue1\Delta$
337	ERAD mutants (Fig. S3D). Since this second compound was annotated as having an unfolded
338	protein response (UPR) signature (10), we also tested the correlation between the profile of
339	sr7575 and tunicamycin, a well-known and widely used inducer of the UPR (40, 41, for
340	review). However, no similarity was found (Fig. S3E). Collectively, these comparisons suggest
341	that while many sensitivity profiles are related and indicate the most frequent types of cellular
342	responses to chemical toxicity (10), the profile obtained for sr7575 was specific, with
343	similarity to only one compound out of over 5000 chemicals analyzed.
344	Large-scale chemical toxicity screens are complementary to synthetic genetic array
345	analyses (SGA), in which double deletion mutant strains are used to determine functional
346	interactions between genes. We compared the sensitivity profile of sr7575 with the results
347	from 1711 SGA screens (42). The closest hit was the profile shown by a strain harboring a
348	DAmP modification of the essential gene PGA3 (17) (Fig. S4A). The correlation between the
349	sr7575 and <i>PGA3</i> profiles was robust, since it also ranked 5 th when estimated using Spearman
350	correlation (Fig. S4B). Despite the low value of the correlation coefficient (0.23), several
351	strains containing gene deletions were affected by both sr7575 treatment and replacement of
352	<i>PGA3</i> with the <i>pga3</i> -DAmP allele, including the ERAD-associated genes <i>cue1</i> Δ , <i>ubc7</i> Δ ,

353	$ufd2\Delta$, $ssm4\Delta$, and EMC complex components (Fig. S4C). A role in newly synthesized protein
354	trafficking has been proposed for Pga3 (43), raising the possibility that its presence in our
355	dataset is due to a function that impacts ER homeostasis.
356	The gene deletion that ranked second in terms of correlation with the sr7575 profile
357	involved CHO2, encoding a phosphatidyl N-methyltransferase required for phosphatidyl-
358	choline synthesis. The absence of CHO2 renders yeast cells dependent on the UPR for survival
359	(42, 44), suggesting that CHO2 contributes to ER homeostasis. Consistent with this, CHO2
360	deletion shows an aggravating interaction with the loss of EMC genes in terms of yeast growth
361	(39).
362	A summary of the correlations between sr7575 sensitivity profiles and those derived
363	from published chemogenomic screens is shown in Fig. 3. Since the numerical values reported
364	for genetic and chemogenomic screens are not readily comparable, the ranking of the different
365	mutants in each screen was used to generate a meaningful graphical display. The resulting
366	heatmap (Fig. 3A) highlights the unique ERAD signature of sr7575 relative to currently
367	published screens. A schematic illustrating the ER membrane proteins involved in the ERAD
368	pathway is shown for perspective (Fig. 3B). Since ERAD is known to work in concert with the
369	UPR to relieve ER stress, it is interesting to note that hypersensitivity to sr7575 was observed
370	for ERAD mutants, but not for the UPR-inactivated strains <i>ire1</i> Δ and <i>hac1</i> Δ . Taken together,
371	these data are consistent with a model in which sr7575 toxicity is counteracted by a functional
372	ERAD machinery, independent of signaling through the UPR pathway.
373	Snecific FRAD deficiencies enhance sr7575 toxicity in S. corovisiao
515	Specific Livers with conclusion of start to the conclusion of the second start and the second start of the

Specific ERAD deficiencies enhance sr7575 toxicity in *S. cerevisiae*

Seventeen S. cerevisiae mutant strains were selected to validate the results of the 374

375	chemogenomic screen, encompassing strains with deletions in components of the ERAD and
376	proteasome pathways, the EMC, the Ssh1 co-translocase, the PDR network, aromatic acid
377	biosynthesis, and DAmP modifications of YNL181W and PGA3. Each strain was analyzed
378	individually for sr7575 susceptibility, using a subinhibitory concentration for WT (Fig. 4A and
379	Fig. S5). A strain deleted for aromatic amino acid biosynthesis ($aro7\Delta$) showed increased
380	sr7575 sensitivity (Fig. 4A), consistent with the pleiotropic effects of this mutation on stress
381	response.
382	As predicted by the chemogenomic screen, mutants in the PDR5 multidrug transporter
383	and its transcriptional activator PDR1 were hypersensitive to sr7575 (Fig. S5). Conversely,
384	overexpression of PDR1 and PDR5, but not PDR12 rendered S. cerevisiae cells tolerant to
385	high concentrations of sr7575 (Fig. S6A). This phenotype was conserved across fungal
386	species, since clinical isolates and laboratory C. albicans strains that overexpress CDR1, the
387	ortholog of S. cerevisiae PDR5, were also tolerant to sr7575 (Fig. S6B).
388	Deletions of genes coding for EMC members, EMC1 and EMC3, and the co-
389	translational translocase SSH1 conferred increased sensitivity to sr7575, as suggested by the
390	chemogenomic screen. However, a mutant in SBH2, which functions in the Ssh1 translocase
391	complex (45), did not show increased sensitivity at least at this concentration (Fig. S5).
392	Hypersensitivity to sr7575 was confirmed for components of the ERAD complex, including
393	the Hrd1 E3 ubiquitin ligase, the E2 ubiquitin conjugating enzyme Ubc7, and the ER
394	membrane-resident recruiter Cue1 (46-48) (Fig. 4A). Although the ERAD component Der1
395	(49) was not identified in our chemogenomic screen, a mild increase in sr7575 sensitivity was
396	observed for this mutant (Fig. S5), consistent with ERAD involvement in sr7575 effects.
397	sr7575 hypersensitivity was also validated for a strain lacking RPN4, encoding a

transcriptional activator of proteasome genes (Fig. 4A). Since proteasomal degradation is the
final step in the disposal of misfolded proteins by ERAD, this finding is consistent with the
notion that sr7575 affects protein quality control in the ER. In conclusion, these findings
demonstrate that components of the ERAD pathway are necessary to protect yeast cells from
the toxic effects of sr7575 in *S. cerevisiae*, suggesting a mechanism of action that involves
perturbation of ER protein quality control.

404 ERAD protects against sr7575 toxicity in *A. fumigatus*, but is UPR-independent

The UPR is a stress response pathway that communicates information on ER 405 homeostasis to the nucleus (40, 41). The pathway is triggered by misfolded proteins, which 406 accumulate in the ER when the demand for secretion exceeds ER folding capacity, or when the 407 cell encounters adverse environmental conditions. Unfolded proteins are sensed by the ER-408 transmembrane sensor Ire1, which triggers the synthesis of Hac1, a transcription factor. Hac1 409 translocates to the nucleus and upregulates the expression of chaperones, folding enzymes, and 410 other proteins that support ER function (44, 50). Since ERAD mutants are hypersensitive to 411 sr7575, and ERAD capacity can be regulated by the UPR, we were surprised to find that 412 neither HAC1 nor IRE1 were identified in the sr7575 chemogenomic screen. The UPR 413 independence of this response was confirmed by susceptibility testing: yeast *ire1* Δ and *hac1* Δ 414 mutants were not affected by sr7575 at concentrations of up to 0.5 µg/mL (Fig. 4C). These 415 findings suggest that ERAD protects against sr7575 toxicity through a mechanism that is 416 independent of the UPR in S. cerevisiae. 417

Consistent with the results obtained in *S. cerevisiae*, UPR mutants of *A. fumigatus* that lack either the ER sensor IreA or the transcription factor HacA showed no hypersensitivity to

420	sr7575 (Fig. 5A). As in yeast, the $hrdA\Delta$ mutant, which lacks the ortholog of S. cerevisiae
421	<i>HRD1</i> , showed increased sensitivity to sr7575. A <i>der</i> $A\Delta$ mutant that is deficient in the DerA
422	component of the HrdA ERAD complex showed no increase in sr7575 sensitivity. However, a
423	double deletion mutant lacking both DerA and HrdA showed greater sensitivity to sr7575 than
424	a mutant lacking HrdA alone, underscoring the importance of the Hrd1 complex in the
425	response to sr7575 toxicity. We conclude that sr7575 action involves the inhibition of an
426	evolutionarily conserved target, necessitating the intervention of the ERAD complex
427	Hrd1/HrdA in both S. cerevisiae and A. fumigatus.
428	The ERAD-enriched signature for sr7575 suggested that some aspect of ER protein
429	quality control is adversely affected by this compound. However, since UPR deficient strains
430	of S. cerevisiae or A. fumigatus showed no increase in sr7575 sensitivity, the results suggest
431	that a UPR-independent mechanism of ERAD activity is involved in the sr7575 response. To
432	confirm UPR independence, qRT-PCR was used to measure mRNA levels for two well-known
433	UPR target genes: the ER chaperone <i>bipA</i> and the protein disulfide isomerase <i>tigA</i> . As
434	expected, the expression of both genes was strongly induced by treatment with a sub-
435	inhibitory concentration of dithiothreitol (DTT, 1 mM), a well-known inducer of the UPR
436	(Fig. 5B). By contrast, no increase in expression was observed following treatment with a sub-
437	inhibitory concentration of sr7575 (0.1 $\mu\text{g/mL}).$ In addition, pretreatment with sr7575 for 1 h
438	prior to DTT exposure failed to block UPR activation. These results indicate that while
439	exposure to sr7575 does not trigger the UPR, it was also unable to prevent UPR activation by
440	DTT. We conclude that sr7575 is unlikely to target UPR signaling for its toxic effects in
441	A. fumigatus or S. cerevisiae, consistent with the UPR-independent response suggested by the
442	chemogenomic screen.

Discussion

In this study, we describe the identification of a novel antifungal compound, sr7575 that 444 was active against species from four fungal genera. Chemogenomic profiling in S. cerevisiae 445 demonstrated that the set of genes required for protection against sr7575 was markedly 446 narrow, involving components of the ERAD stress response and other components of the ER 447 membrane. The function of the ERAD pathway is to maintain protein quality control in the ER 448 by eliminating toxic unfolded proteins that may accumulate in the fungus during periods of 449 high secretory activity, or when the organism encounters adverse environmental conditions. 450 This disposal mechanism centers on a multi-protein complex in the ER membrane that 451 selectively identifies misfolded proteins in the ER lumen or membrane and transports them 452 back into the cytoplasm for degradation by the proteasome. The results from our 453 chemogenomic screen demonstrate that mutants of this complex, either in S. cerevisiae or 454 A. fumigatus, are hypersensitive to sr7575 inhibition, suggesting that the antifungal effects of 455 this compound involves a disruption of ER protein quality control. 456 ER protein quality control is also affected by the UPR, a signaling pathway that counters 457

the accumulation of unfolded proteins in the ER by increasing the expression of chaperones 458 and other proteins involved in protein folding when the demand for secretion exceeds the 459 folding capacity of the organelle. A tight coordination between the UPR and ERAD pathways 460 was demonstrated in yeast where UPR mutants have decreased ERAD activity whereas ERAD 461 mutants exhibit constitutive UPR upregulation (50). In addition, although ERAD is sufficient 462 to eliminate misfolded proteins that continually arise during normal growth, it requires the 463 UPR for optimal degradative capacity under conditions of severe ER stress (51). Basal ERAD 464 465 activity is thus sufficient to handle low levels of unfolded proteins and is UPR-independent.

However, upregulation of ERAD activity by the UPR is needed when the level of unfolded
proteins reaches a critical threshold of toxicity. The connection between these pathways is also
evident in A. fumigatus, where mutants deficient in both the UPR and ERAD are less fit than
those lacking the UPR or ERAD alone (52).
In view of the link between the UPR and ERAD pathways, we were surprised to find
that neither <i>ire1</i> Δ nor <i>hac1</i> Δ were among the strains most affected by sr7575 in our
chemogenomic screen, and that these strains showed no increase in sr7575 sensitivity when
tested individually. In addition, our experiments revealed that sr7575 did not trigger the UPR,
nor did it prevent the UPR from being activated by DTT, a strong inducer of unfolded
proteins. These observations suggest that sr7575 does not cause the widespread protein
unfolding that is typical of strong ER stress aggravators such as DTT and tunicamycin.
Specific ER stress can be induced, for example, by expressing topologically abnormal ERAD-
targeted integral membrane proteins without inducing the canonical UPR pathway in yeast
(53).
The ability of sr7575 to inhibit the growth of fungi but not human cells raises the
possibility that it targets a fungal-specific process. Our chemogenomic screen identified
ynl181w-DAmP as one of the top 10 strains most affected by sr7575 toxicity. YNL181W
encodes an essential ER-membrane protein, the function of which is currently unknown, but is
speculated to involve an oxido-reductase activity (54, 55). The Ynl181w protein is conserved
among fungi (Fig. 6A) and has no metazoan orthologue, as defined in the OrthoMCL database
(56). Since the protein is essential, a heterozygous $YNL181W/ynl181w\Delta$ deletion strain was
previously used to study its function in chemogenomic investigations (10, 16). We were
especially interested in the effects of chemical CMB4166 in these studies because our data

489	revealed that the strain sensitivity profile for that compound (16) most closely resembled that
490	of sr7575 (Fig. 2C, D, E). A striking finding from this comparison was that the heterozygous
491	deletion strain of YNL181W was among the strains most affected by CMB4166 (Fig. 3A),
492	indicating that the absence of Ynl181w sensitizes yeast to both sr7575 and CMB4166.
493	A DAmP modification of YNL181W has been previously combined with a large-scale
494	genetic screen to identify mutations that synergize with loss of YNL181W function (42). A
495	comparison of the sr7575 sensitivity profile with the results of this genetic screen identified
496	several ERAD mutants that were affected by both DAmP modification of YNL181W and by
497	treatment with sr7575, including UBC7, CUE1, and RPN4 (Fig. 6B). The connection to UBC7
498	was particularly remarkable because a similar synergistic growth defect associated with
499	<i>ynl181w</i> -DAmP and <i>ubc7</i> Δ mutation was observed in two other large-scale studies (17, 57).
500	The correlation between Ynl181w mutation and sr7575 sensitivity obtained by
501	chemogenomics was confirmed on plates by showing that a <i>ynl181w</i> -DAmP mutant was
502	hypersensitive to sr7575 (Fig. 6C). We speculate that Yn1181w could be involved in processes
503	that are targeted by sr7575.
504	In conclusion, we report the identification of a novel compound that has activity against
505	both S. cerevisiae and A. fumigatus. The data are consistent with a model for s7575 action in
506	which the compound disrupts the structure of one or more proteins in the ER lumen or
507	membrane, resulting in a situation that necessitates ERAD intervention to eliminate the
508	abnormal protein(s) but does not require UPR activation. These findings underscore the
509	importance of ER homeostasis to the growth fungi and suggest the presence of fungal-specific
510	ER processes that could represent new opportunities for antifungal intervention.

Funding information

Funding was provided by AVIESAN *A. fumigatus* grant BAP109, Institut Carnot Pasteur
Maladies Infectieuses grant FUNGI, Institut Pasteur, CNRS, and INSERM. The funders had
no role in study design, data collection and interpretation, or the decision to submit the work
for publication.

516 Acknowledgments

	517	We thank Pr.	Michel Bo	ulouard	(Group	e Mémoii	re et Plas	ticité Cor	nportementa	ale,
--	-----	--------------	-----------	---------	--------	----------	------------	------------	-------------	------

- 518 GMPc, EA4259) for the *in vivo* toxicity tests on mice, Dominique Sanglard (CHUV Laussane,
- 519 Switzerland) for the *C. albicans* strains, Françoise Dromer (CNRMA, Institut Pasteur) for the
- A. *fumigatus* clinical isolates, and Alain Jacquier (Unité de Génétique des Interactions
- 521 Macromoléculaires, Institut Pasteur) for support and critical reading of the manuscript,.

522 **References**

 Brown GD, Denning DW, Levitz SM. 2012. Tackling human fungal infections.
 Science 336:647.
 Lai C-C, Tan C-K, Huang Y-T, Shao P-L, Hsueh P-R. 2008. Current challenges in the management of invasive fungal infections. J Infect Chemother Off J Jpn Soc Chemother 14:77–85.

14:77–85.
3. Park BJ, Wannemuehler KA, Marston BJ, Govender N, Pappas PG, Chiller TM.
2009. Estimation of the current global burden of cryptococcal meningitis among persons
living with HIV/AIDS. AIDS Lond Engl 23:525–530.

- Odds FC, Brown AJP, Gow NAR. 2003. Antifungal agents: mechanisms of action.
 Trends Microbiol 11:272–279.
- 533 5. **Perlin DS**. 2011. Current perspectives on echinocandin class drugs. Future Microbiol 6:441–457.
- 6. Hope WW, Tabernero L, Denning DW, Anderson MJ. 2004. Molecular
 mechanisms of primary resistance to flucytosine in Candida albicans. Antimicrob Agents
 Chemother 48:4377–4386.
- Schenone M, Dančík V, Wagner BK, Clemons PA. 2013. Target identification and mechanism of action in chemical biology and drug discovery. Nat Chem Biol 9:232–240.
 Giaever G, Nislow C. 2014. The Yeast Deletion Collection: A Decade of Functional

- 541 Genomics. Genetics **197**:451–465.
- Hillenmeyer ME, Fung E, Wildenhain J, Pierce SE, Hoon S, Lee W, Proctor M, St
 Onge RP, Tyers M, Koller D, Altman RB, Davis RW, Nislow C, Giaever G. 2008. The
 chemical genomic portrait of yeast: uncovering a phenotype for all genes. Science 320:362–365.
- Lee AY, St Onge RP, Proctor MJ, Wallace IM, Nile AH, Spagnuolo PA, Jitkova Y,
 Gronda M, Wu Y, Kim MK, Cheung-Ong K, Torres NP, Spear ED, Han MKL, Schlecht
 U, Suresh S, Duby G, Heisler LE, Surendra A, Fung E, Urbanus ML, Gebbia M, Lissina
 E, Miranda M, Chiang JH, Aparicio AM, Zeghouf M, Davis RW, Cherfils J, Boutry M,
 Kaiser CA, Cummins CL, Trimble WS, Brown GW, Schimmer AD, Bankaitis VA, Nislow
 C, Bader GD, Giaever G. 2014. Mapping the cellular response to small molecules using
- chemogenomic fitness signatures. Science **344**:208–211.
- Parsons AB, Lopez A, Givoni IE, Williams DE, Gray CA, Porter J, Chua G,
 Sopko R, Brost RL, Ho C-H, Wang J, Ketela T, Brenner C, Brill JA, Fernandez GE,
 Lorenz TC, Payne GS, Ishihara S, Ohya Y, Andrews B, Hughes TR, Frey BJ, Graham
 TR, Andersen RJ, Boone C. 2006. Exploring the mode-of-action of bioactive compounds by
 chemical-genetic profiling in yeast. Cell 126:611–625.
- Springer M, Weissman JS, Kirschner MW. 2010. A general lack of compensation
 for gene dosage in yeast. Mol Syst Biol 6:368.
- Hillenmeyer ME, Ericson E, Davis RW, Nislow C, Koller D, Giaever G. 2010.
 Systematic analysis of genome-wide fitness data in yeast reveals novel gene function and drug action. Genome Biol 11:R30.
- 14. Decourty L, Saveanu C, Zemam K, Hantraye F, Frachon E, Rousselle J-C,
 Fromont-Racine M, Jacquier A. 2008. Linking functionally related genes by sensitive and
 quantitative characterization of genetic interaction profiles. Proc Natl Acad Sci U S A
 105:5821–5826.
- Tong AHY, Lesage G, Bader GD, Ding H, Xu H, Xin X, Young J, Berriz GF, Brost
 RL, Chang M, Chen Y, Cheng X, Chua G, Friesen H, Goldberg DS, Haynes J,
- Humphries C, He G, Hussein S, Ke L, Krogan N, Li Z, Levinson JN, Lu H, Ménard P,
 Munyana C, Parsons AB, Ryan O, Tonikian R, Roberts T, Sdicu A-M, Shapiro J, Sheikh
 B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J,
- B, Suter B, Wong SL, Zhang LV, Zhu H, Burd CG, Munro S, Sander C, Rine J,
 Greenblatt J, Peter M, Bretscher A, Bell G, Roth FP, Brown GW, Andrews B, Bussey H,
 Boone C. 2004. Global mapping of the yeast genetic interaction network. Science 303:808–
 813.
- 16. Hoepfner D, Helliwell SB, Sadlish H, Schuierer S, Filipuzzi I, Brachat S, Bhullar
 B, Plikat U, Abraham Y, Altorfer M, Aust T, Baeriswyl L, Cerino R, Chang L, Estoppey
 D. Eichenheuren L, Euclewiksen M, Hentmann N, Hehendehl A, Knenn B, Knestel B
- D, Eichenberger J, Frederiksen M, Hartmann N, Hohendahl A, Knapp B, Krastel P,
 Melin N, Nigsch F, Oakeley EJ, Petitjean V, Petersen F, Riedl R, Schmitt EK, Staedtler
- F, Studer C, Tallarico JA, Wetzel S, Fishman MC, Porter JA, Movva NR. 2014. High resolution chemical dissection of a model eukaryote reveals targets, pathways and gene
 functions. Microbiol Res 169:107–120.
- Schuldiner M, Collins SR, Thompson NJ, Denic V, Bhamidipati A, Punna T,
 Ihmels J, Andrews B, Boone C, Greenblatt JF, Weissman JS, Krogan NJ. 2005.
- 584 Exploration of the function and organization of the yeast early secretory pathway through an 585 epistatic miniarray profile. Cell **123**:507–519.

Berry DB, Guan O, Hose J, Haroon S, Gebbia M, Heisler LE, Nislow C, Giaever 18. 586 G, Gasch AP. 2011. Multiple means to the same end: the genetic basis of acquired stress 587 resistance in yeast. PLoS Genet 7:e1002353. 588 Thibault G, Ng DTW. 2012. The endoplasmic reticulum-associated degradation 19. 589 pathways of budding yeast. Cold Spring Harb Perspect Biol 4. 590 Giaever G, Chu AM, Ni L, Connelly C, Riles L, Véronneau S, Dow S, Lucau-20. 591 Danila A, Anderson K, André B, Arkin AP, Astromoff A, El-Bakkoury M, Bangham R, 592 Benito R, Brachat S, Campanaro S, Curtiss M, Davis K, Deutschbauer A, Entian K-D, 593 Flaherty P, Foury F, Garfinkel DJ, Gerstein M, Gotte D, Güldener U, Hegemann JH, 594 Hempel S, Herman Z, Jaramillo DF, Kelly DE, Kelly SL, Kötter P, LaBonte D, Lamb 595 DC, Lan N, Liang H, Liao H, Liu L, Luo C, Lussier M, Mao R, Menard P, Ooi SL, 596 Revuelta JL, Roberts CJ, Rose M, Ross-Macdonald P, Scherens B, Schimmack G, Shafer 597 B, Shoemaker DD, Sookhai-Mahadeo S, Storms RK, Strathern JN, Valle G, Voet M, 598 Volckaert G, Wang C, Ward TR, Wilhelmy J, Winzeler EA, Yang Y, Yen G, Youngman 599 E. Yu K. Bussev H. Boeke JD. Snyder M. Philippsen P. Davis RW. Johnston M. 2002. 600 Functional profiling of the Saccharomyces cerevisiae genome. Nature **418**:387–391. 601 Decourty L, Doyen A, Malabat C, Frachon E, Rispal D, Séraphin B, Feuerbach F, 21. 602 Jacquier A, Saveanu C. 2014. Long open reading frame transcripts escape nonsense-603 mediated mRNA decay in yeast. Cell Rep 6:593-598. 604 Ho CH, Magtanong L, Barker SL, Gresham D, Nishimura S, Natarajan P, Koh 22. 605 JLY, Porter J, Gray CA, Andersen RJ, Giaever G, Nislow C, Andrews B, Botstein D, 606 Graham TR, Yoshida M, Boone C. 2009. A molecular barcoded yeast ORF library enables 607 mode-of-action analysis of bioactive compounds. Nat Biotechnol 27:369–377. 608 Schiestl RH, Gietz RD. 1989. High efficiency transformation of intact yeast cells 23. 609 using single stranded nucleic acids as a carrier. Curr Genet 16:339–346. 610 Jones GM, Stalker J, Humphray S, West A, Cox T, Rogers J, Dunham I, Prelich 24. 611 G. 2008. A systematic library for comprehensive overexpression screens in Saccharomyces 612 cerevisiae. Nat Methods 5:239–241. 613 Boyle EI, Weng S, Gollub J, Jin H, Botstein D, Cherry JM, Sherlock G. 2004. 25. 614 GO::TermFinder--open source software for accessing Gene Ontology information and finding 615 significantly enriched Gene Ontology terms associated with a list of genes. Bioinforma Oxf 616 Engl 20:3710-3715. 617 Richie DL, Hartl L, Aimanianda V, Winters MS, Fuller KK, Miley MD, White S, 26. 618 McCarthy JW, Latgé J-P, Feldmesser M, Rhodes JC, Askew DS. 2009. A role for the 619 unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus 620 fumigatus. PLoS Pathog 5:e1000258. 621 27. 2008. Reference method for broth dilution antifungal susceptibility testing of yeasts; 622 Approved Standard-Third Edition. CLSI document M27-A3. Clinical and Laboratory 623 Standards Institute, Wayne, PA. 624 28. Clavaud C, Beauvais A, Barbin L, Munier-Lehmann H, Latgé J-P. 2012. The 625 composition of the culture medium influences the β -1,3-glucan metabolism of Aspergillus 626 fumigatus and the antifungal activity of inhibitors of β -1,3-glucan synthesis. Antimicrob 627 Agents Chemother 56:3428-3431. 628 29. Jhingran A, Mar KB, Kumasaka DK, Knoblaugh SE, Ngo LY, Segal BH, Iwakura 629 Y, Lowell CA, Hamerman JA, Lin X, Hohl TM. 2012. Tracing conidial fate and measuring 630

631	host cell antifungal activity using a reporter of microbial viability in the lung. Cell Rep
632	2 :1762–1773.
633	30. Feng X, Krishnan K, Richie DL, Aimanianda V, Hartl L, Grahl N, Powers-
634	Fletcher MV, Zhang M, Fuller KK, Nierman WC, Lu LJ, Latgé J-P, Woollett L,
635	Newman SL, Cramer RA, Rhodes JC, Askew DS. 2011. HacA-Independent Functions of
636	the ER Stress Sensor IreA Synergize with the Canonical UPR to Influence Virulence Traits in
637	Aspergillus fumigatus. PLoS Pathog 7.
638	31. Hibert MF . 2009. French/European academic compound library initiative. Drug
639	Discov Today 14:723–725.
640	32. Zhang J-H, Chung TDY, Oldenburg KR. 1999. A Simple Statistical Parameter for
641	Use in Evaluation and Validation of High Throughput Screening Assays. J Biomol Screen
642	4:67–73.
643	33. Prunier H, Rault S, Lancelot JC, Robba M, Renard P, Delagrange P, Pfeiffer B,
644	Caignard DH, Misslin R, Guardiola-Lemaitre B, Hamon M. 1997. Novel and selective
645	partial agonists of 5-HT3 receptors. 2. Synthesis and biological evaluation of
646	piperazinopyridopyrrolopyrazines, piperazinopyrroloquinoxalines, and
647	piperazinopyridopyrroloquinoxalines. J Med Chem 40:1808–1819.
648	34. Smith AM, Heisler LE, Mellor J, Kaper F, Thompson MJ, Chee M, Roth FP,
649	Giaever G, Nislow C. 2009. Quantitative phenotyping via deep barcode sequencing. Genome
650	Res 19 :1836–1842.
651	35. Eason RG, Pourmand N, Tongprasit W, Herman ZS, Anthony K, Jejelowo O,
652	Davis RW, Stolc V. 2004. Characterization of synthetic DNA bar codes in Saccharomyces
653	cerevisiae gene-deletion strains. Proc Natl Acad Sci U S A 101 :11046–11051.
654	36. Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K,
655	Niimi M, Goffeau A, Monk BC. 2009. Efflux-mediated antifungal drug resistance. Clin
656	Microbiol Rev 22:291–321, Table of Contents.
657	37. Meyers S, Schauer W, Balzi E, Wagner M, Goffeau A, Golin J. 1992. Interaction of
658	the yeast pleiotropic drug resistance genes PDR1 and PDR5. Curr Genet 21:431-436.
659	38. Jonikas MC, Collins SR, Denic V, Oh E, Quan EM, Schmid V, Weibezahn J,
660	Schwappach B, Walter P, Weissman JS, Schuldiner M. 2009. Comprehensive
661	characterization of genes required for protein folding in the endoplasmic reticulum. Science
662	323 :1693–1697.
663	39. Lahiri S, Chao JT, Tavassoli S, Wong AKO, Choudhary V, Young BP, Loewen
664	CJR, Prinz WA. 2014. A conserved endoplasmic reticulum membrane protein complex
665	(EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol 12:e1001969.
666	40. Hampton RY . 2000. ER stress response: getting the UPR hand on misfolded proteins.
667	Curr Biol CB 10 :R518–521.
668	41. Schröder M. 2008. Endoplasmic reticulum stress responses. Cell Mol Life Sci CMLS
669	65 :862–894.
670	42. Costanzo M, Baryshnikova A, Bellay J, Kim Y, Spear ED, Sevier CS, Ding H, Koh
671	JLY, Toufighi K, Mostafavi S, Prinz J, St Onge RP, VanderSluis B, Makhnevych T,
672	Vizeacoumar FJ, Alizadeh S, Bahr S, Brost RL, Chen Y, Cokol M, Deshpande R, Li Z,
673	Lin Z-Y, Liang W, Marback M, Paw J, San Luis B-J, Shuteriqi E, Tong AHY, van Dyk
674	N, Wallace IM, Whitney JA, Weirauch MT, Zhong G, Zhu H, Houry WA, Brudno M,
675	Ragibizadeh S, Papp B, Pál C, Roth FP, Giaever G, Nislow C, Troyanskaya OG, Bussey

H. Bader GD. Gingras A-C. Morris OD, Kim PM, Kaiser CA, Myers CL, Andrews BJ, 676 Boone C. 2010. The genetic landscape of a cell. Science 327:425–431. 677 Yu L, Peña Castillo L, Mnaimneh S, Hughes TR, Brown GW. 2006. A survey of 43. 678 essential gene function in the yeast cell division cycle. Mol Biol Cell 17:4736–4747. 679 Thibault G, Shui G, Kim W, McAlister GC, Ismail N, Gygi SP, Wenk MR, Ng 44. 680 **DTW**. 2012. The membrane stress response buffers lethal effects of lipid disequilibrium by 681 reprogramming the protein homeostasis network. Mol Cell 48:16–27. 682 Finke K, Plath K, Panzner S, Prehn S, Rapoport TA, Hartmann E, Sommer T. 45. 683 1996. A second trimeric complex containing homologs of the Sec61p complex functions in 684 protein transport across the ER membrane of S. cerevisiae. EMBO J 15:1482-1494. 685 Biederer T, Volkwein C, Sommer T. 1997. Role of Cue1p in ubiquitination and 46. 686 degradation at the ER surface. Science 278:1806–1809. 687 Bordallo J, Plemper RK, Finger A, Wolf DH. 1998. Der3p/Hrd1p is required for 47. 688 endoplasmic reticulum-associated degradation of misfolded lumenal and integral membrane 689 proteins. Mol Biol Cell 9:209–222. 690 Hampton RY, Gardner RG, Rine J. 1996. Role of 26S proteasome and HRD genes 691 48. in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic 692 reticulum membrane protein. Mol Biol Cell 7:2029-2044. 693 Mehnert M. Sommer T. Jarosch E. 2014. Der1 promotes movement of misfolded 49. 694 proteins through the endoplasmic reticulum membrane. Nat Cell Biol 16:77-86. 695 50. Travers KJ, Patil CK, Wodicka L, Lockhart DJ, Weissman JS, Walter P. 2000. 696 Functional and Genomic Analyses Reveal an Essential Coordination between the Unfolded 697 Protein Response and ER-Associated Degradation. Cell 101:249-258. 698 Friedlander R, Jarosch E, Urban J, Volkwein C, Sommer T. 2000. A regulatory 51. 699 link between ER-associated protein degradation and the unfolded-protein response. Nat Cell 700 Biol 2:379–384. 701 Richie DL, Feng X, Hartl L, Aimanianda V, Krishnan K, Powers-Fletcher MV, 52. 702 Watson DS, Galande AK, White SM, Willett T, Latgé J-P, Rhodes JC, Askew DS. 2011. 703 The virulence of the opportunistic fungal pathogen Aspergillus fumigatus requires cooperation 704 between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded 705 protein response (UPR). Virulence 2:12–21. 706 Buck TM, Jordan R, Lyons-Weiler J, Adelman JL, Needham PG, Kleyman TR, 53. 707 Brodsky JL. 2015. Expression of three topologically distinct membrane proteins elicits 708 unique stress response pathways in the yeast Saccharomyces cerevisiae. Physiol Genomics 709 47:198-214. 710 54. Hazbun TR, Malmström L, Anderson S, Graczyk BJ, Fox B, Riffle M, Sundin 711 BA, Aranda JD, McDonald WH, Chiu C-H, Snydsman BE, Bradley P, Muller EGD, 712 Fields S, Baker D, Yates JR, Davis TN. 2003. Assigning function to yeast proteins by 713 integration of technologies. Mol Cell 12:1353-1365. 714 55. Huh W-K, Falvo JV, Gerke LC, Carroll AS, Howson RW, Weissman JS, O'Shea 715 EK. 2003. Global analysis of protein localization in budding yeast. Nature 425:686–691. 716 Chen F, Mackey AJ, Stoeckert CJ, Roos DS. 2006. OrthoMCL-DB: querying a 56. 717 comprehensive multi-species collection of ortholog groups. Nucleic Acids Res 34:D363–368. 718 Hoppins S, Collins SR, Cassidy-Stone A, Hummel E, Devay RM, Lackner LL, 57. 719 Westermann B, Schuldiner M, Weissman JS, Nunnari J. 2011. A mitochondrial-focused 720

genetic interaction map reveals a scaffold-like complex required for inner membrane
 organization in mitochondria. J Cell Biol 195:323–340.

Figure legends

Fig. 1: Identification of a compound with broad antifungal activity. (A) Selection of a 724 new antifungal, sr7575, through a chemical library screen of A. *fumigatus* growth inhibition 725 was followed by chemogenomic profiling in S. cerevisiae to identify a potential mechanism of 726 action. sr7575 inhibited growth of various fungi, including A. flavus (48 h, 37°C, RPMI 727 medium, 5 µg/mL) (B); C. albicans and C. neoformans (24 h, 37°C, SC medium, 2 µg/mL) 728 (C); S. cerevisiae (48 h, 30° C, SC medium, 1 µg/mL) (D). 729 Fig. 2: Chemogenomic profiling reveals an ERAD-enriched signature for sr7575 730 toxicity. (A) Distribution of relative growth values for S. cerevisiae mutant strains grown in 731 the presence of sr7575. Colors indicate functional categories from the pooled library with 732 genes annotated as ERAD (violet), protein translocation (grey), ER membrane complex 733 (EMC; pink), and vesicular traffic (green) showing the most sensitivity to sr7575 when 734 mutated. Note: YML012C-A* overlaps UBX2 and "#" indicates a DAmP strain; (B) 735 Distribution of sensitivity values for deletion strains affected for genes annotated with the GO 736 term 0030433, ERAD; (C) Pearson correlation coefficients between results obtained with 737

sr7575 and a published large scale chemogenomics data set identifies chemical 4166 as having

a profile that is most similar to sr7575. Only the scores for the top 100 correlated treatments

are displayed; (D) Same as (C) but with the Spearman rank correlation; (E) Comparison of the

fitness defect scores between sr7575 and chemical 4166; gene names are color coded as in

742 **(A)**.

743	Fig. 3: Summary of mutations conferring increased susceptibility to sr7575. (A)
744	Heatmap showing the unique ERAD signature of sr7575 compared with published
745	chemogenomic and SGA growth defect profiles; (B) Model showing the two main pathways
746	responsible for ERAD in fungi- Doa10 pathway (green) for clearing misfolded proteins with
747	cytosolic lesions, and the Hrd1 pathway (violet), which degrades misfolded proteins with
748	lumenal or transmembrane lesions. Shared components (Ubx2, Ubc7, Cue1, and the Cdc48
749	complex) are denoted in gray or black.
750	Fig. 4: Sensitivity to sr7575 depends on EMC and ERAD components. (A) Serial 10-
751	fold dilutions of the WT and selected haploid deletion mutants were grown on SC plates in the
752	absence or presence of 0.25 μ g/mL sr7575 for 48 h at 30°C; (B) Complementation of sr7575
753	sensitivity for the strains shown in panel (A) was tested by using single copy plasmids
754	carrying the corresponding genes; (C) Strains lacking core UPR components, HAC1 and IRE1
755	were tested for sensitivity against sr7575 at 0.5 μ g/mL.
756	Fig. 5: The hypersensitivity of ERAD mutants to sr7575 is conserved in A. fumigatus.
757	(a) Conidia from A. <i>fumigatus</i> WT and deletion mutants were recovered in 0.05% Tween-
758	water and serial dilutions were spotted onto sr7575-containing RPMI 1640, pH 7.0. Plates
759	were incubated at 37°C for 72 h; (B) Analysis of UPR target gene expression (<i>bipA</i> and <i>tigA</i>)
760	by qRT-PCR. Cultures were treated with sr7575, DTT, or sr7575 for 1 h followed by DTT.
761	RNA was extracted and analyzed by qRT-PCR, using <i>tubA</i> mRNA for normalization. The
762	results of treated vs untreated samples from three independent experiments are shown.
763	Fig. 6: Ynl181w is an ER protein conserved in fungi and involved in adaptation to
764	sr7575. (A) T-Coffee alignment of the conserved short chain dehydrogenase region within Sc
765	Ynl181w (PFAM 54-187) and its orthologs in pathogenic fungi. Gene annotations with

766	number range indicate the position of the PFAM domain: A. fumigatus (Afu5g10790; 54-205),
767	C. albicans (orf19.6233; 58-204), C. glabrata (XP_448202; 54-193); (B) Scatter plot showing
768	the correlation between sr7575 sensitivity values and the previously published SGA scores for
769	ynl181w-DAmP; (C) Spot assays showing the difference in sensitivity to sr7575 and UPR
770	inducer tunicamycin (TM) for <i>ynl181w</i> -DAmP as compared with a strain defective for UPR
771	$(hac1\Delta).$
772	Supplementary Data synopsis
773	Fig. S1: Synthetic pathways for sr7575 and related compounds.
774	Fig. S2: Growth of A. fumigatus, A. flavus, S. cerevisiae, C. albicans and C. neoformans
775	cells in liquid medium in the presence of various concentrations of sr7575.
776	Fig. S3: sr7575 profile shows little correlation with a previously published large-scale
777	chemogenomics dataset.
778	Fig. S4: Perturbation of PGA3 function shows similarities with the sensitivity profile for
779	sr7575.
780	Fig. S5: Susceptibility testing of yeast strains against sr7575.
781	Fig. S6: Susceptibility of multidrug resistant S. cerevisiae strains and azole resistant C.
782	albicans strains to sr7575.
783	Table S1: List of 76 compounds from the CERMN chemical library showing 90% or
784	more growth inhibition of A.fumigatus at 25 µg/mL.
785	Table S2: Analogues of sr7575 and MIC ₁₀₀ values against <i>A. fumigatus</i> .
786	Table S3: Analogues of sr7576 and MIC ₁₀₀ values against <i>A. fumigatus</i> .
787	Table S4: List of strains used in this study.

788	Table S5: List of oligonucleotides used in this study.
789	Table S6 (provided as a separate xls file): Sensitivity of S. cerevisiae deletion and
790	DAmP strains to 0.125 µg/mL sr7575.
791	Text S1: Synthesis of sr7575 and related compounds.

Fig. 1: Identification of a compound with broad antifungal activity. (A) Selection of a new antifungal, sr7575, through a chemical library screen of *A. fumigatus* growth inhibition was followed by chemogenomic profiling in *S. cerevisiae* to identify a potential mechanism of action. sr7575 inhibited growth of various fungi, including *A. flavus* (48 h, 37°C, RPMI medium, 5 μ g/mL) (B); *C. albicans* and *C. neoformans* (24 h, 37°C, SC medium, 2 μ g/mL) (C); *S. cerevisiae* (48 h, 30°C, SC medium, 1 μ g/mL) (D).

Fig. 2: Chemogenomic profiling reveals an ERAD-enriched signature for sr7575 toxicity. **(A)** Distribution of relative growth values for *S. cerevisiae* mutant strains grown in the presence of sr7575. Colors indicate functional categories from the pooled library with genes annotated as ERAD (violet), protein translocation (grey), ER membrane complex (EMC; pink), and vesicular traffic (green) showing the most sensitivity to sr7575 when mutated. Note: *YML012C-A** overlaps *UBX2* and "#" indicates a DAmP strain; **(B)** Distribution of sensitivity values for deletion strains affected for genes annotated with the GO term 0030433, ERAD; **(C)** Pearson correlation coefficients between results obtained with sr7575 and a published large scale chemogenomics data set identifies chemical 4166 as having a profile that is most similar to sr7575. Only the scores for the top 100 correlated treatments are displayed; **(D)** Same as **(C)** but with the Spearman rank correlation; **(E)** Comparison of the fitness defect scores between sr7575 and chemical 4166; gene names are color coded as in **(A)**.

Fig. 3: Summary of mutations conferring increased susceptibility to sr7575. (A) Heatmap showing the unique ERAD signature of sr7575 compared with published chemogenomic and SGA growth defect profiles; (B) Model showing the two main pathways responsible for ERAD in fungi- Doa10 pathway (green) for clearing misfolded proteins with cytosolic lesions, and the Hrd1 pathway (violet), which degrades misfolded proteins with lumenal or transmembrane lesions. Shared components (Ubx2, Ubc7, Cue1, and the Cdc48 complex) are denoted in gray or black.

Fig. 4: Sensitivity to sr7575 depends on EMC and ERAD components. **(A)** Serial 10-fold dilutions of the WT and selected haploid deletion mutants were grown on SC plates in the absence or presence of 0.25 μ g/mL sr7575 for 48 h at 30°C; **(B)** Complementation of sr7575 sensitivity for the strains shown in panel **(A)** was tested by using single copy plasmids carrying the corresponding genes; **(C)** Strains lacking core UPR components, *HAC1* and *IRE1* were tested for sensitivity against sr7575 at 0.5 μ g/mL.

Fig. 5: The hypersensitivity of ERAD mutants to sr7575 is conserved in *A. fumigatus*. (a) Conidia from *A. fumigatus* WT and deletion mutants were recovered in 0.05% Tween-water and serial dilutions were spotted onto sr7575-containing RPMI 1640, pH 7.0. Plates were incubated at 37°C for 72 h; (B) Analysis of UPR target gene expression (*bipA* and *tigA*) by qRT-PCR. Cultures were treated with sr7575, DTT, or sr7575 for 1 h followed by DTT. RNA was extracted and analyzed by qRT-PCR, using *tubA* mRNA for normalization. The results of treated vs untreated samples from three independent experiments are shown.

Fig. 6: Ynl181w is an ER protein conserved in fungi and involved in adaptation to sr7575. **(A)** T-Coffee alignment of the conserved short chain dehydrogenase region within Sc Ynl181w (PFAM 54-187) and its orthologs in pathogenic fungi. Gene annotations with number range indicate the position of the PFAM domain: *A. fumigatus* (Afu5g10790; 54-205), *C. albicans* (orf19.6233; 58-204), *C. glabrata* (XP_448202; 54-193); **(B)** Scatter plot showing the correlation between sr7575 sensitivity values and the previously published SGA scores for ynl181w-DAmP; **(C)** Spot assays showing the difference in sensitivity to sr7575 and UPR inducer tunicamycin (TM) for *ynl181w*-DAmP as compared with a strain defective for UPR (*hac1* Δ).

Supplementary Material for Publication of manuscript "Toxicity of a novel antifungal compound is modulated by ERAD components", by Raj et al.

Fig. S1: Synthetic pathways for sr7575 and related compounds.

Fig. S2: Growth of *A. fumigatus*, *A. flavus*, *S. cerevisiae*, *C. albicans* and *C. neoformans* cells in liquid medium in the presence of various concentrations of sr7575.

Fig. S3: sr7575 profile shows little correlation with a previously published large-scale chemogenomics dataset.

Fig. S4: Perturbation of PGA3 function shows similarities with the sensitivity profile for sr7575.

Fig. S5: Susceptibility testing of yeast strains against sr7575.

Fig. S6: Susceptibility of multidrug resistant *S. cerevisiae* strains and azole resistant *C. albicans* strains to sr7575.

 Table S1: List of 76 compounds from the CERMN chemical library showing 90% or more

growth inhibition of *A.fumigatus* at 25 μ g/mL.

 Table S2: Analogues of sr7575 and MIC₁₀₀ values against A. fumigatus.

Table S3: Analogues of sr7576 and MIC₁₀₀ values against *A. fumigatus*.

Table S4: List of strains and plasmids used in this study.

Table S5: List of oligonucleotides used in this study.

Table S6 (provided as a separate xls file): Sensitivity of *S. cerevisiae* deletion and DAmP strains to 0.125 μg/mL sr7575.

Text S1: Synthesis of sr7575 and related compounds.

Figure S1. Synthetic pathways for sr7575 and related compounds. Pathways detailing the synthesis of sr7575 and analogues 2-5.

Figure S2. Growth of *A. fumigatus, A. flavus, S. cerevisiae, C. albicans* and *C. neoformans* cells in liquid medium in the presence of various concentrations of sr7575. (A) Log-phase cultures of *S. cerevisiae* WT strain BY4741 were grown in the presence of increasing concentrations of sr7575 with DMSO as vehicle control. The Abs600 was determined every hour for 10 h. (B) *A. fumigatus* strain Af293-dsRed was grown for 23 h in RPMI-1640 medium in the presence of increasing concentrations of sr7575. Fluorescence (ex 254 nm/ em 291 nm) was measured and relative fluorescence units (RFU) plotted against time. (C) Growth inhibition estimates were obtained at various concentrations of sr7575 by measuring absorbance at 600 nm for *S. cerevisiae* (BY4741, YPD, 30°C, 48 h), *C. albicans* (SC5314, RPMI, 37°C, 48 h) and *C. neoformans* (H99, RPMI, 37°C, 72 h). (D) Growth inhibition estimates for *A. flavus* and three *A. fumigatus* clinical isolates (12.321, 13.242, 13.433) were obtained by the resazurin reduction assay in RPMI medium, 37°C, 39 h at concentrations of sr7575 up to 40 µg/ml.

Figure S3. sr7575 profile shows little correlation with a previously published large-scale chemogenomics dataset. Computed Pearson (A) and Spearman (B) correlation coefficients between sr7575 values and previously published growth scores obtained with 3,356 compounds were ranked in descending order and the top 100 values are indicated. Among the highest correlations, we identified SGTC 352, a drug showing an ERAD signature (C) and SGTC 513, a compound with a UPR signature

(D) as being closest to the sr7575 profile. (E) The sr7575 profile showed no correlation with the one published for tunicamycin.

Figure S4. Perturbation of *PGA3* function shows similarities with the sensitivity profile for sr7575. Pearson (A) and Spearman (B) correlations between the sr7575 profile and 1711 previously published SGA profiles . Fitness defect scores for DAmP modification of *PGA3* are shown in (C), while the interactions of *hac1* Δ and ERAD depleted strains are depicted in (D).

Figure S5. Susceptibility testing of yeast strains against sr7575. Mutants from the haploid deletion background were serially spotted onto SC plates supplemented with sr7575. Plates were incubated at 30°C for 48 h.

Figure S6. Susceptibility of multidrug resistant *S. cerevisiae* strains and azole resistant *C. albicans* strains to sr7575. (A) *S. cerevisiae* strains with deletions of or overexpressing *PDR1*, *PDR5* and *PDR12* were tested for susceptibility to sr7575 (1 μ g/mL, SC medium, 30°C, 48 h). (B) Comparison of growth inhibition of *C. albicans* strains: WT (SC5314), *TAC1* transcription factor homozygous deletion strain (DSY4241), azole susceptible clinical isolate DSY294, azole resistant clinical isolate DSY296, azole susceptible laboratory generated strain ALY21 and azole resistant laboratory generated strain ALY22 (SC medium in the presence of 2 and 4 μ g/mL sr7575, 37°C, 48 h).

Figure S7. Response of yeast mutants against sr7576. Serial 10-fold dilutions of the WT and haploid deletion mutants were spotted onto SC plates supplemented with sr7576 (0.25 μ g/mL). Plates were monitored for growth at 30°C for 48 h.

Supplementary Table S4 - Strains and plasmids used in this study					
Strain	Genotype	Reference			
BY4741	MATa: $his3\Delta$ 1: $leu2\Delta$ 0: $met15\Delta$ 0: $ura3\Delta$ 0	Brachmann et al. 1998			
		,			
(Deletion mutants were generat	ed in the Sc BY4741 background)	Reference			
aro7A	aro7 ^{··} KanMX4	Giaever et al. 2002			
	cue1::KanMX4				
der1A	der1:KanMX4				
emc1	emc1::KanMX4				
emc3∆	emc3::KanMX4				
gcs1∆	gcs1::KanMX4				
hac1∆	hac1::KanMX4				
hrd1∆	hrd1::KanMX4				
hrd3∆	hrd3::KanMX4				
ire1Δ	ire1::KanMX4				
$pdr1\Delta$	<i>pdr1</i> ::KanMX4				
pdr5∆	pdr5::KanMX4				
pga3-DAmP	pga3-DAmP (KanMX4)				
rnn4A	rnn4··KanMX4				
shb2A	shb?::KanMX4				
	socies DAmp (KanMX4)				
	SIG1Kallivika				
SSN1A	ssn1::KanMX4				
trp2∆	trp2::KanMX4				
ubc7∆	ubc7::KanMX4				
ufd2∆	ufd2::KanMX4				
<i>ynl181w</i> -DAmP	<i>ynl181w</i> -DAmP (KanMX4)				
vpk1∆	vpk1::KanMX4				
A. fumigatus strains used in thi	s study:				
Strain	Genotype	Reference			
kuA	akuA…ntrA	Krappmann et al. 2006			
derAA	akuA::ntrA_derA::hnh	Richie DL et al 2011			
bacAA	akuApirA, becAhph	Pichie DL et al 2000			
hrd A A	akuApirA, hacAhpir	Krishnan K at al 2009			
	akuApirA, nrdAnpn	Krishnan K et al 2013			
	akuA::ptrA, IreA::ble	Jeng X et al 2011			
derAD/hacAD	akuA:ptrA, hacA::hph,derA::ble	Richie DL et al 2011			
derAΔ/hrdAΔ	akuA::ptrA, hrdA::hph, derA::ble	Krishnan K et al 2013			
Other yeast strains used in this	study:				
Strain	Genotype	Reference			
C. albicans SC5314	wild type	Lohberger et al, 2014			
DSY4241	tac1∆::FRT/tac1∆::FRT				
DSY294	azole susceptible clinical isolate (TAC1-3/TAC1-4)				
DSY296	azole resistant clinical isolate (TAC1-5/TAC1-5; N977E	D mutation)			
ALY21	tac1∆::TAC1-4-FRT/tac1∆::TAC1-4-FRT				
ALY22	tac1∆::TAC1-5-FRT/tac1∆::TAC1-5-FRT				
C. neoformans H99	wild type	Perfect et al. 1980			
		,			
MoBY plasmid (library v1.1) cor	nplemented S. cerevisiae strains:				
Strain	Genotype+ MoBY clone identifier	Reference			
aro7A + ARO7	aro7"KanMX4+ YPR060C"20NP C0	Ho et al. 2009			
	auo1::KanMX4+ YMD264W/::32ND_H12	10 ct al, 2003			
	eme2u/canMX4+ YCL045C4 INP_D8				
emc3D+EMC3	emc3::KanWX4+ YKL207W::8NP_A12				
hrd1∆+HRD1	hrd1::KanMX4+ YOL013C::12NP_G12				
rpn4∆+RPN4	rpn4::KanMX4+ YDL020C::30NP_F2				
ssh1∆+SSH1	ssh1::KanMX4+ YBR283C::37NP_A11				
ubc7∆+UBC7	ubc7::KanMX4+ YMR022W::36NP_G3				
YGPM systematic overexpressi	on library in S. cerevisiae strains:				
Strain	Genotype+ YGPM clone identifier	Reference			
Control	BY4741+ YGPM22k06 chrlll:151898152647	Jones et al, 2008			
PDR1	BY4741+ YGPM26h12 chrVII:466658477209				
PDR5	BY4741+ YGPM33k24 chrXV:619141631341				
PDR12	BY4741+ YGPM8p07 chrXVI:444386454435				
	•				
References :					

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Yeast. 1998 14(2):115-32. Krappmann S, Sasse C, Braus GH. Eukaryot Cell. 2006 5(1):212-5. Jones GM, Stalker J, Humphray S, West A, Cox T, Rogers J, Dunham I, Prelich G. Nature Methods. 2008 5:239-241 Lohberger A, Coste AT, Sanglard D. Eukaryot Cell. 2014 13(1):127-42 Perfect, JR, Lang SDR, and Durack DT. Am. J. Pathol. 1980 101:177-194. Supplementary Material for Publication of manuscript "Toxicity of a novel antifungal compound is modulated by ERAD components", by Raj et al.

Fig. S1: Synthetic pathways for sr7575 and related compounds.

Fig. S2: Growth of *A. fumigatus*, *A. flavus*, *S. cerevisiae*, *C. albicans* and *C. neoformans* cells in liquid medium in the presence of various concentrations of sr7575.

Fig. S3: sr7575 profile shows little correlation with a previously published large-scale chemogenomics dataset.

Fig. S4: Perturbation of PGA3 function shows similarities with the sensitivity profile for sr7575.

Fig. S5: Susceptibility testing of yeast strains against sr7575.

Fig. S6: Susceptibility of multidrug resistant *S. cerevisiae* strains and azole resistant *C. albicans* strains to sr7575.

 Table S1: List of 76 compounds from the CERMN chemical library showing 90% or more

growth inhibition of *A.fumigatus* at 25 μ g/mL.

 Table S2: Analogues of sr7575 and MIC₁₀₀ values against A. fumigatus.

Table S3: Analogues of sr7576 and MIC₁₀₀ values against *A. fumigatus*.

Table S4: List of strains and plasmids used in this study.

Table S5: List of oligonucleotides used in this study.

Table S6 (provided as a separate xls file): Sensitivity of *S. cerevisiae* deletion and DAmP strains to 0.125 μg/mL sr7575.

Text S1: Synthesis of sr7575 and related compounds.

Figure S1. Synthetic pathways for sr7575 and related compounds. Pathways detailing the synthesis of sr7575 and analogues 2-5.

Figure S2. Growth of *A. fumigatus, A. flavus, S. cerevisiae, C. albicans* and *C. neoformans* cells in liquid medium in the presence of various concentrations of sr7575. (A) Log-phase cultures of *S. cerevisiae* WT strain BY4741 were grown in the presence of increasing concentrations of sr7575 with DMSO as vehicle control. The Abs600 was determined every hour for 10 h. (B) *A. fumigatus* strain Af293-dsRed was grown for 23 h in RPMI-1640 medium in the presence of increasing concentrations of sr7575. Fluorescence (ex 254 nm/ em 291 nm) was measured and relative fluorescence units (RFU) plotted against time. (C) Growth inhibition estimates were obtained at various concentrations of sr7575 by measuring absorbance at 600 nm for *S. cerevisiae* (BY4741, YPD, 30°C, 48 h), *C. albicans* (SC5314, RPMI, 37°C, 48 h) and *C. neoformans* (H99, RPMI, 37°C, 72 h). (D) Growth inhibition estimates for *A. flavus* and three *A. fumigatus* clinical isolates (12.321, 13.242, 13.433) were obtained by the resazurin reduction assay in RPMI medium, 37°C, 39 h at concentrations of sr7575 up to 40 µg/ml.

Figure S3. sr7575 profile shows little correlation with a previously published large-scale chemogenomics dataset. Computed Pearson (A) and Spearman (B) correlation coefficients between sr7575 values and previously published growth scores obtained with 3,356 compounds were ranked in descending order and the top 100 values are indicated. Among the highest correlations, we identified SGTC 352, a drug showing an ERAD signature (C) and SGTC 513, a compound with a UPR signature

(D) as being closest to the sr7575 profile. (E) The sr7575 profile showed no correlation with the one published for tunicamycin.

Figure S4. Perturbation of *PGA3* function shows similarities with the sensitivity profile for sr7575. Pearson (A) and Spearman (B) correlations between the sr7575 profile and 1711 previously published SGA profiles . Fitness defect scores for DAmP modification of *PGA3* are shown in (C), while the interactions of *hac1* Δ and ERAD depleted strains are depicted in (D).

Figure S5. Susceptibility testing of yeast strains against sr7575. Mutants from the haploid deletion background were serially spotted onto SC plates supplemented with sr7575. Plates were incubated at 30°C for 48 h.

Figure S6. Susceptibility of multidrug resistant *S. cerevisiae* strains and azole resistant *C. albicans* strains to sr7575. (A) *S. cerevisiae* strains with deletions of or overexpressing *PDR1*, *PDR5* and *PDR12* were tested for susceptibility to sr7575 (1 μ g/mL, SC medium, 30°C, 48 h). (B) Comparison of growth inhibition of *C. albicans* strains: WT (SC5314), *TAC1* transcription factor homozygous deletion strain (DSY4241), azole susceptible clinical isolate DSY294, azole resistant clinical isolate DSY296, azole susceptible laboratory generated strain ALY21 and azole resistant laboratory generated strain ALY22 (SC medium in the presence of 2 and 4 μ g/mL sr7575, 37°C, 48 h).

Supplementary Table S1 - list of 76 compounds from the CERMN chemical library showing 90% or more growth inhibition of *Aspergillus fumigatus* at 25 µg/mL.

 \rightarrow Family A:

Compound	R	R1	R2	% viability
sr1304 ¹	-H		-CH3	2
sr1308 ²	-H	H ₃ C	Ó ^{CH} 3	0
sr3163²	-H		— СН3	0
sr3164²	-H		— СН3	0
sr3168³	-H		-CH ₃	0
sr3169²	-H	H ₃ C N	СН3	0

1^cS. Rault, S. Lemaître, F. Dauphin, A. Kervabon, M. Boulouard, J.-C. Lancelot, PCT Int. Appl., WO2001014381, (2001).

2[°]Dual Histamine H3R/Serotonin 5-HT4R Ligands with Antiamnesic Properties: Pharmacophore-Based Virtual Screening and Polypharmacology, Lepailleur, Alban; Freret, Thomas; Lemaitre, Stephane; Boulouard, Michel; Dauphin, Francois; Hinschberger, Antoine; Dulin, Fabienne; Lesnard, Aurelien; Bureau, Ronan; Rault, Sylvain; Journal of Chemical Information and Modeling (2014), 54(6), 1773-1784.

sr3172 ¹	-H		-OCH₃	0
sr3174 ³	-H		-CH3	0
sr3179²	Br	CH ₃ NCH ₃	-H	0
sr3180²	CI	H ₃ C N—CH ₃	-H	0
sr3181³	Br		-H	0
sr3182²		CH ₃	-H	0
sr3185³	Br	H ₃ C H ₃ C	-H	0
sr3186 ¹	Br	H ₃ C N—CH ₃	-H	0
sr3188 ²	-H	CH ₃	-CH3	0

 \rightarrow <u>Family B:</u>

Compound	R2	R3	% viability
sr4045 ¹	-Н		2
sr4046 ¹	CH3	-H	0
sr4049 ¹	Br	-H	0
sr4050 ³	-H		0
sr4051 ¹	CI	-H	0
sr4052 ⁴	-Н	-H	0

 \rightarrow Family C:

Compound	R4	R5	R6	% viability
mr22450 ²	-H	-CH₃		0
mr22442 ²	-H	-Cl		0
mr22455 ²	-H	-Cl		0

³ Solution-phase parallel synthesis of a 1140-member ureidothiophene carboxylic acid library, Le Foulon, Francois-Xavier; Braud, Emmanuelle; Fabis, Frederic; Lancelot, Jean-Charles; Rault, Sylvain, Journal of Combinatorial Chemistry (2005), 7(2), 253-257.

mr22461 ²	-H	-Cl	CH3	0
mr22478 ²	-H	-Cl		4
mr18993 ⁴	-Cl	-Cl		4
mr23269 ³	-H	-H		1
mr23270 ¹	-H	-F		0
mr24316 ¹	-H	-Cl	N-CH3	0
mr24344 ³	-H	-H		3
sr1832⁵	-H	-H		0
sr2823 ¹	-H	-CH3		0

 \rightarrow Family D:

⁴ Synthesis of new pyrrolo[1,2-a]quinoxalines: potential non-peptide glucagon receptor antagonists, Guillon, Jean; Dallemagne, Patrick; Pfeiffer, Bruno; Renard, Pierre; Manechez, Dominique; Kervran, Alain; Rault, Sylvain, European Journal of Medicinal Chemistry (1998), 33(4), 293-308

^{5&}lt;sup>®</sup>Novel and Selective Partial Agonists of 5-HT3 Receptors. 2. Synthesis and Biological Evaluation of Piperazinopyridopyrrolopyrazines, Piperazinopyrroloquinoxalines, and

PiperazinopyridopyrroloquinoxalinesPrunier, Herve; Rault, Sylvain; Lancelot, Jean-Charles; Robba, Max; Renard, Pierre; Delagrange, Philippe; Pfeiffer, Bruno; Caignard, Daniel-Henri; Misslin, Rene; Guardiola-Lemaitre, Beatrice; et al, Journal of Medicinal Chemistry (1997), 40(12), 1808-1819.

Compound	R7	R8	% viability
sr1457 ¹	CI	-H	0
sr1460 ¹	Br	-H	0
sr1462 ¹		-H	2

\rightarrow Family E:

Compound	R9	% viability
sr2845 ⁶	CI	0
sr3584 ⁷	—0 ^{CH} 3	0
mr22410 ⁸	CH3	6

^{6&}lt;sup>°</sup>Novel Selective and Partial Agonists of 5-HT3 Receptors. Part 1. Synthesis and Biological Evaluation of Piperazinopyrrolothienopyrazines, Rault, Sylvain; Lancelot, Jean-Charles; Prunier, Herve; Robba, Max; Renard, Pierre; Delagrange, Philippe; Pfeiffer, Bruno; Caignard, Daniel-Henri; Guardiola-Lemaitre, Beatrice; Hamon, Michel, Journal of Medicinal Chemistry (1996), 39(10), 2068-80.

7[°]Pyrrolo[1,2-a]thieno[3,2-e]pyrazines, Rault, Sylvain; Cugnon de Sevricourt, Michel; Nguyen-Huy Dung; Robba, Max, Journal of Heterocyclic Chemistry (1981), 18(4), 739-42.

^{8&}lt;sup>°</sup>Novel antagonists of serotonin-4 receptors: Synthesis and biological evaluation of pyrrolothienopyrazines, Lemaitre, Stephane; Lepailleur, Alban; Bureau, Ronan; Butt-Gueulle, Sabrina; Lelong-Boulouard, Veronique; Duchatelle, Pascal; Boulouard, Michel; Dumuis, Aline; Daveu, Cyril; Lezoualc'h, Frank; et al, Bioorganic & Medicinal Chemistry (2009), 17(6), 2607-2622.

mr22422 ¹	 0
mr24356 ¹	3

\rightarrow **Family F:**

Compound	R10	R11	% viability
sr2205 ⁹		-H	3
sr2210 ¹	NH ₂	-H	3
sr2634 ¹	-Cl	-NO2	0

 \rightarrow Family G:

Compound	R13	R14	% viability
----------	-----	-----	-------------

⁹ Scott, William J.; Bierer, Donald E.; Stolle, Andreas, PCT Int. pl. (2003), WO 2003057149

pa2 ¹⁰	N_N_CH ₃	-CF ₃	0
pa18 ¹¹	N_CH ₃	-Cl	0

\rightarrow <u>Singletons</u>:

Compound	Structure	% viability
mr19807 ¹	N~	0
mr15010a ¹	Br H ₃ C H ₃ CH ₃ CH ₃ H ₃ C H CH ₃	4
	CH ₃	
mr15059 ¹²		4
	H ₃ C ^{-O}	

^{10&}lt;sup>°</sup>Trifluoperazine (DCI) dihydrochloride; New (trifluoromethyl)phenothiazine derivatives, Craig, P. N.; Nodiff, E. A.; Lafferty, J. J.; Ullyot, G. E., Journal of Organic Chemistry (1957), 22, 709-11.

^{11&}lt;sup>°</sup>Chlorpromazine (DCI) hydrochloride; Substituted 10-(dimethylaminopropyl)phenothiazines, Charpentier, Paul; Gailliot, Paul; Jacob, Robert; Gaudechon, Jacques; Buisson, Paul, Compt. rend. (1952), 235, 59-60.

¹²Anti-tumor heterocycles. Part 13. The syntheses of two new pyridocarbazoles (ellipticines) and some pyrrolocarbazole analogs, Chunchatprasert, Laddawan; Dharmasena, Priyanthi; Oliveira-Campos, Ana M. F.; Queiroz, Maria J. R. P.; Raposo, Maria M. M.; Shannon, Patrick V. R. Journal of Chemical Research, Synopses (1996), (2), 84-5.

^{13&}lt;sup>°</sup>Comparative effect of a family of substituted thiopseudoureas on protein synthesis by rat liver and Walker carcinoma ribosomes, Carmona, Andres; Gonzalez-Cadavid, Nestor F., Chemico-Biological Interactions (1978), 22(2-3), 309-27.

14 Preparation of 3-mercapto-2-thiophenecarboxylic acid derivatives as intermediates for herbicides, Rault, Sylvain; Lancelot, Jean Charles; Letois, Bertrand; Robba, Max; Labat, Yves Fr. Demande (1993), FR 2689129 A1 19931001.

15[°]First synthesis of 5,6-dihydro-4H-furo[3,2-f]pyrrolo[1,2-a][1,4]diazepines, Feng, Xiao; Lancelot, Jean-Charles; Gillard, Alain-Claude; Landelle, Henriette; Rault, Sylvain, Journal of Heterocyclic Chemistry (1998), 35(6), 1313-1316.

16[°]Preparation of pyrrolopyrazines as 5-HT3 ligands, Lancelot, Jean-Charles; Prunier, Herve; Robba, Max; Delagrange, Philippe; Renard, Pierre; Adam, Gerard, Eur. Pat. Appl. (1994), EP 623620 A1 19941109.

sr1461 ¹⁷	H ₃ C N	1
	H ₂ N H ₃ C	
sr1475 ¹⁸	$ \begin{array}{c} $	0
sr1810 ¹		9
sr1821 ¹⁹	$H_{3}C$	0
sr1922 ²⁰		0

¹⁷ First synthesis of 4H-furo[3,2-f]pyrrolo[1,2-a][1,4]diazepines, Feng, Xiao; Lancelot, Jean-Charles; Prunier, Herve; Rault, Sylvain, Journal of Heterocyclic Chemistry (1996), 33(6), 2007-2011.

^{18&}lt;sup>°</sup>Synthesis and in vitro antibacterial evaluation of N-[5-(5-nitro-2-thienyl)-1,3,4-thiadiazol-2-yl] piperazinylquinolones, Foroumadi, Alireza; Mansouri, Shahla; Kiani, Zahra; Rahmani, Afsaneh, European Journal of Medicinal Chemistry (2003), 38(9), 851-854.

¹⁹Alpha-ethyltryptamines as dual dopamine-serotonin releasers, Blough, Bruce E.; Landavazo, Antonio; Partilla, John S.; Decker, Ann M.; Page, Kevin M.; Baumann, Michael H.; Rothman, Richard B., Bioorganic & Medicinal Chemistry Letters (2014), 24(19), 4754-4758.

^{20&}lt;sup>°</sup>Synthesis of nitrile and benzoyl substituted poly(biphenylene oxide)s via nitro displacement reactionIn, Insik; Kim, Sang Youl, Polymer (2006), 47(13), 4549-4556

sr2223	CI CI CIH	8
sr2323 ¹	S N N N N N N N N N N N N N N	0
sr2565 ²¹	H ₃ C HO	5
sr2627 ²²	H ₃ C-O	1
sr2970 ²³		6
sr2809 ²⁴		0

²¹ First tricyclic oximino derivatives as 5-HT3 ligands, Baglin, I.; Daveu, C.; Lancelot, J. C.; Bureau, R.; Dauphin, F.; Pfeiffer, B.; Renard, P.; Delagrange, P.; Rault, S., Bioorganic & Medicinal Chemistry Letters (2001), 11(4), 453-457.

²²[1]Benzothienopyrimidines. I. Study of 3H-benzothieno[3,2-d]pyrimid-4-one, Robba, Max; Touzot, Paulette; El-Kashef, Hussein, Journal of Heterocyclic Chemistry (1980), 17(5), 923-8.

²³[°]Synthesis and physicochemical study of 1,2,4-triazolo[4,3-a]pyridines and of 1,2,4-triazolo[2,3-a]pyridines, Bouteau, Brigitte; Lancelot, Jean Charles; Robba, Max, Journal of Heterocyclic Chemistry (1990), 27(6), 1649-51.

²⁴ Method of producing 2-iodoacetylaminobenzophenones, Mazurov, A. A.; Andronati, S. A.; Yakubovskaya, L. N. U.S.S.R. (1991), SU 1622365 A1 19910123.

²⁵ Synthesis, in vitro cytotoxic and in vivo antitumor activities of new pyrrolo[2,1-c][1,4]benzodiazepines. Part IFoloppe, M. P.; Caballero, E.; Rault, S.; Robba, M., European Journal of Medicinal Chemistry (1992), 27(3), 291-5.

^{26&}lt;sup>°</sup>Selective Dual Inhibitors of the Cancer-Related Deubiquitylating Proteases USP7 and USP47, Weinstock, Joseph; Wu, Jian; Cao, Ping; Kingsbury, William D.; McDermott, Jeffrey L.; Kodrasov, Matthew P.; McKelvey, Devin M.; Suresh Kumar, K. G.; Goldenberg, Seth J.; Mattern, Michael R.; et al, ACS Medicinal Chemistry Letters (2012), 3(10), 789-792.

sr4080 ²⁷		8
	Ċ	
sr4211 ²⁸	O^{-} O^{-} O^{-} O^{-} O^{-} O^{-} O^{-} O^{-} O^{-} CH_3	8
mr24355 ¹⁰	H ₃ C-//N O N S CH ₃ O O O O O O O O O O O O O	0

²⁷ Insecticidal action and mitochondrial uncoupling activity of AC-303,630 and related halogenated pyrroles, Black, Bruce C.; Hollingworth, Robert M.; Ahammadsahib, Kabeer I.; Kukel, Christine D.; Donovan, Stephen Pesticide Biochemistry and Physiology (1994), 50(2), 115-28.

²⁸Synthesis of dinitro-substituted furans, thiophenes, and azoles, Katritzky, Alan R.; Vakulenko, Anatoliy V.; Sivapackiam, Jothilingam; Draghici, Bogdan; Damavarapu, Reddy Synthesis (2008), (5), 699-706.

Compound	R1	R2	R3	MIC ₁₀₀ (µg/ml)
sr7575 (1)	2,4-dichlorophenyl	Н	NO ₂	2.4-4.8
3	2,4-dichlorophenyl	CH_3	NO ₂	> 26-32
4	2,4-dichlorophenyl	Н	CN	> 26-32
5	2,4-dichlorophenyl	Н	NO ₂	> 26-32
6	4-chlorophenyl	Н	NO ₂	2.4-4.8
7	3-chlorophenyl	Н	NO ₂	9.6
8	2-chlorophenyl	Н	NO ₂	13 - 26
9	3,4-dichlorophenyl	Н	NO ₂	9.6
10	2,3-dichlorophenyl	Н	NO ₂	19.2
11	2,5-dichlorophenyl	Н	NO ₂	> 38.5
12	3,5-dichlorophenyl	Н	NO ₂	9.6
13	2,6-dichlorophenyl	Н	NO ₂	19.2
14	2,4,5-trichlorophenyl	Н	NO ₂	9.6
15	2,4,6-trichlorophenyl	Н	NO ₂	26 - 32
16	2-fluoro-4-chlorophenyl	Н	NO ₂	13 - 26
17	2-chloro-4-fluorophenyl	Н	NO ₂	13
18	2,4-dibromophenyl	Н	NO ₂	13 - 26
19	2-bromo-4-chlorophenyl	Н	NO ₂	13 - 26
20	2-chloro-4-bromophenyl	Н	NO ₂	13
21	2-iodo-4-chlorophenyl	Н	NO ₂	26
22	2-chloro-4-iodophenyl	Н	NO ₂	26

Compound	R1	MIC ₁₀₀ (μg/ml)
sr7576 (2)	2,4-dichlorophenyl	> 38.5
23	3-chlorophenyl	26 - 32
24	3,4-dichlorophenyl	26 - 32
25	3,5-dichlorophenyl	26 - 32
26	2,6-dichlorophenyl	38.5
27	2,4,6-trichlorophenyl	38.5
28	2-bromo-4- chlorophenyl	> 26 - 32
29	2-chloro-4- bromophenyl	> 26 - 32
30	2,4-dibromorophenyl	> 26 - 32
31	2-iodo-4-chlorophenyl	> 26 - 32
32	2-chloro-4-iodophenyl	>26 - 32

Supplementary Table S3: Analogues of sr7576 and MIC values against A. fumigatus.

Supplementary Table S4 - Strain	ns and plasmids used in this study	
Strain	Genotype	Reference
BY4741	MATa: $his3\Delta$ 1: $leu2\Delta$ 0: $met15\Delta$ 0: $ura3\Delta$ 0	Brachmann et al. 1998
2		
(Deletion mutants were generat	ed in the Sc BY4741 background)	Reference
aro7A	aro7 ^{··} KanMX4	Giaever et al. 2002
	cue1::KanMX4	
der1A	der1:KanMX4	
emc1	emc1::KanMX4	
emc3∆	emc3::KanMX4	
gcs1∆	gcs1::KanMX4	
hac1∆	hac1::KanMX4	
hrd1∆	hrd1::KanMX4	
hrd3∆	hrd3::KanMX4	
ire1Δ	ire1::KanMX4	
$pdr1\Delta$	<i>pdr1</i> ::KanMX4	
pdr5∆	pdr5::KanMX4	
pga3-DAmP	pga3-DAmP (KanMX4)	
rnn4A	rnn4··KanMX4	
shb2A	shb?::KanMX4	
	socies DAmp (KanMX4)	
	SIG1Kallivika	
SSN1A	ssn1::KanMX4	
trp2∆	trp2::KanMX4	
ubc7∆	ubc7::KanMX4	
ufd2∆	ufd2::KanMX4	
<i>ynl181w</i> -DAmP	<i>ynl181w</i> -DAmP (KanMX4)	
vpk1∆	vpk1::KanMX4	
A. fumigatus strains used in thi	s study:	
Strain	Genotype	Reference
kuA	akuA…ntrA	Krappmann et al. 2006
derAA	akuA::ntrA_derA::hnh	Richie DL et al 2011
bacAA	akuApirA, becAhph	Pichie DL et al 2000
hrd A A	akuApirA, hacAhpir	Krishnan K at al 2009
	akuApirA, nrdAnpn	Krishnan K et al 2013
	akuA::ptrA, IreA::ble	Jeng X et al 2011
derAD/hacAD	akuA:ptrA, hacA::hph,derA::ble	Richie DL et al 2011
derAΔ/hrdAΔ	akuA::ptrA, hrdA::hph, derA::ble	Krishnan K et al 2013
Other yeast strains used in this	study:	
Strain	Genotype	Reference
C. albicans SC5314	wild type	Lohberger et al, 2014
DSY4241	tac1∆::FRT/tac1∆::FRT	
DSY294	azole susceptible clinical isolate (TAC1-3/TAC1-4)	
DSY296	azole resistant clinical isolate (TAC1-5/TAC1-5; N977E	D mutation)
ALY21	tac1∆::TAC1-4-FRT/tac1∆::TAC1-4-FRT	
ALY22	tac1∆::TAC1-5-FRT/tac1∆::TAC1-5-FRT	
C. neoformans H99	wild type	Perfect et al, 1980
	<i>.</i>	,
MoBY plasmid (library v1.1) cor	nplemented S. cerevisiae strains:	
Strain	Genotype+ MoBY clone identifier	Reference
$aro7\Lambda + ARO7$	aro7"KanMX4+ YPR060C"29NP_C9	Ho et al. 2009
	auo1::KanMX4+ YMD264W/::32ND_H12	10 ct al, 2003
	eme2u/canMX4+ YCL045C4 INP_D8	
emc3D+EMC3	emc3::KanWX4+ YKL207W::8NP_A12	
hrd1∆+HRD1	hrd1::KanMX4+ YOL013C::12NP_G12	
rpn4∆+RPN4	rpn4::KanMX4+ YDL020C::30NP_F2	
ssh1∆+SSH1	ssh1::KanMX4+ YBR283C::37NP_A11	
ubc7∆+UBC7	ubc7::KanMX4+ YMR022W::36NP_G3	
YGPM systematic overexpressi	on library in <i>S. cerevisiae</i> strains:	
Strain	Genotype+ YGPM clone identifier	Reference
Control	BY4741+ YGPM22k06 chrlll:151898152647	Jones et al, 2008
PDR1	BY4741+ YGPM26h12 chrVII:466658477209	
PDR5	BY4741+ YGPM33k24 chrXV:619141631341	
PDR12	BY4741+ YGPM8p07 chrXVI:444386454435	
	•	
References :		

Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD. Yeast. 1998 14(2):115-32. Krappmann S, Sasse C, Braus GH. Eukaryot Cell. 2006 5(1):212-5. Jones GM, Stalker J, Humphray S, West A, Cox T, Rogers J, Dunham I, Prelich G. Nature Methods. 2008 5:239-241 Lohberger A, Coste AT, Sanglard D. Eukaryot Cell. 2014 13(1):127-42 Perfect, JR, Lang SDR, and Durack DT. Am. J. Pathol. 1980 101:177-194.
List of oligonucleotides to screen deletion/DAMP mutants:			
Gene	Primer name	Sequence	
Kanamycin	KANMX-FW	5'-AGATGCGAAGTTAAGTGCGC-3'	
ARO7	ARO7dR	5'-GAGAGAAGGTCATGGATGTG-3'	
CUE1	CUE1dR	5'-GTAAGGGGAGAAGAACGTTC-3'	
DER1	DER1dR	5'-TCTGCAAACGGACACCAAGT-3'	
EMC1	EMC1dR	5'-GCACATCATTTCCAGACGAG-3'	
EMC3	EMC3dR	5'-GCGAGGACTTTTTGCCATAC-3'	
GCS1	GCS1dR	5'-GTGGTAGTTCTCTCTCCTTG-3'	
HAC1	HAC1dR	5'-AGAGCCGTGAGAGTGAGAGT-3'	
HRD1	HRD1dR	5'-TATGTCACCTTCCTATGCCG-3'	
HRD3	HRD3dR	5'-ATGAACGGCAATTTGAGACC-3'	
IRE1	IRE1dR	5'-TCTTGCACTTTTCGCCATGC-3'	
PDR1	PDR1dR	5'-TGGCAACTATGTGGTGCAAT-3'	
PDR5	PDR5dR	5'-GCATCTTGCTCTTTCCTCTC-3'	
RPN4	RPN4dR	5'-CTGGGTACGAATTCAAGGAG-3'	
SBH2	SBH2dR	5'-CATGCACCCTTAACATCGTC-3'	
SEC65	SEC65-DAmP	5'-GGAAGTTGTGAGTACTGACG-3'	
SLG1	SLG1dR	5'-TATATCGTCTTTCAACGCGG-3'	
SSH1	SSH1dR	5'-CCACGAAGCAAGGTAACAAG-3'	
SSM4	SSM4dR	5'-GACGAGGGCTAAGCAGTTTG-3'	
TRP2	TRP2dR	5'-CCAAACCACATTGGTCTAGG-3'	
UBC7	UBC7dR	5'-TACTGTACGGCTTGGAAGAG-3'	
UFD2	UFD2dR	5'-ACCGTCATCAACGAACAACA-3'	
YPK1	YPK1dR	5'-CCGTTCGTGGTTAAGGTAAG-3'	

Supplementary Table S5 - list of oligonucleotides used in this study List of oligonucleotides to screen deletion/DAmP mutants:

List of oligonucleotides to screen MoBY plasmids:

Gene	Primer name	Sequence
ARO7	ARO7iF	5'-TCGCCACATGTCCTTCAGTT-3'
	ARO7iR	5'-GCAAGTATTCCACCTCAACTTCC-3'
CUE1	CUE1iF	5'-ATGGAGGATTCGAGATTGCTT-3'
	CUE1iR	5'-CTGGCTTGCCAAACCAACAA-3'
EMC1	EMC1iF	5'-TGCCCCTTCTACGACCATTT-3'
	EMC1iR	5'-TGCCATTCGTGTCATGCTCT-3'
EMC3	EMC3iF	5'-ACCAGCTGAAGTATTGGGTCC-3'
	EMC3iR	5'-TATCCCGGCCTGAATACCCA-3'
HRD1	HRD1iF	5'-TGCGTGTATTCAGCCACCAA-3'
	HRD1iR	5'-GCCAAGATATCCCACACCACA-3'
RPN4	RPN4iF	5'-GCGAAACCCCATTGCAGAAG-3'
	RPN4iR	5'-TGGTGATGCAGTCGAAGGTT-3'
SSH1	SSH1iF	5'-TTGGTCGGTGCTGGCATATT-3'
	SSH1iR	5'-GGATGCACCCGTAACAGCT-3'
UBC7	UBC7iF	5'-CGAAAACCGCTCAGAAACGT-3'
	UBC7iR	5'-GCATCAATGTTGGCACCACT-3'

Supporting information (S1) - Synthesis of sr7575-related compounds.

General Methods

All chemical reagents and solvents were purchased from commercial sources and used without further purification. Thin-layer chromatography (TLC) was performed on silica gel plates. Silica gel 0.06–0.2 mm, 60 Å was used for all column chromatography. Melting points were determined on a Kofler melting point apparatus. NMR spectra were recorded on a BRUKER AVANCE III 400 MHz (1 H NMR at 399.8 MHz and 13 C NMR at 100 MHz) with the solvents indicated. Chemical shifts are reported in parts per million (ppm) on the δ scale and referenced to the appropriate solvent peak. High-resolution mass spectral (HRMS) were performed on a BRUKER maxis mass spectrometer by the "fédération de Recherche" ICOA / CBM (FR2708) platform. LC-MS Analysis was performed on a Waters alliance 2695 using the following gradient: A (95%)/B (5%) to A (5%)/B (95%) in 4 min. This ratio was held for 1.5 min before returning to initial conditions in 0.5 min. Initial conditions were then maintained for 2 min (A, H $_{2}$ O; B, MeCN; each containing 0.1% HCOOH; column, C18 Xbridge 4.6 x 50 mm / 2.5 µm). MS detection was performed with a SQDetector.

Compound sr1810: Mixture of (*E*) 1-(2,4-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole [75%] and (*E*) 1-(2,4-Dichlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole [25%].

1-(2,4-Dichlorophenyl)-1*H*-pyrrole (**33**).¹ 4-chloropyridine, hydrochloride (9.25 g, 0.0617 mol) and 2,5-dimethoxytetrahydrofuran (8.15 g, 0.0617 mol) were stirred in 150 mL of dioxane at room temperature for 30 min. 2,4-dichloroaniline (10 g, 0.0617 mol) was then added and the mixture was stirred at reflux for 4 h. The reaction was cooled down to room temperature and concentrated under vacuum. 150 mL of water were added to the residue, followed by 200 mL of Et $_2$ O. The aqueous layer was extracted with Et $_2$ O (2x 100 mL). The

¹ Azizi, N. *et al.* Iron-catalyzed inexpensive and practical synthesis of N-substituted pyrroles in water. *Synlett*, **14**, 2245-2248 (2009).

combined organic layers were washed with HCl 1N (200 mL) and water (2x 200 mL), dried over MgSO ₄ and concentrated under vacuum. The resulting residue was purified by chromatography on silica gel using CH $_2$ Cl₂ as eluant to give compound **33** as a brown oil (11.4 g, 87%). ¹H NMR (400 MHz, CDCl ₃) δ 7.56 (d, J = 2.2 Hz, 1H), 7.35 (dd, J = 8.7 and 2.3 Hz, 1H), 7.31 (d, J = 8.6 Hz, 1H), 6.92 (t, J = 2.1 Hz, 2H), 6.39 (t, J = 1.9 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.5, 133.3, 130.5, 130.4, 128.5, 127.9, 122.1, 109.7.

Mixture of 1-(2,4-Dichlorophenyl)-1 *H*-pyrrole-2-carbaldehyde (**34**) and 1-(2,4-Dichlorophenyl)-1*H*-pyrrole-3-carbaldehyde (35). Dimethylformamide (2.20 mL, 0.0283) mol) was stirred at 0°C. Phosphorus oxychloride (2.7 mL, 0.0283 mol) was then added dropwise and the white solid obtained was stayed cold for 30 min. After this time, a solution of compound **33** (6 g, 0.0283 mol) in 120 mL of CH ₂Cl₂ was slowly added dropwise to the reaction mixture. The reaction was refluxed for 20 h. After cooling, 120 mL of water were added and the mixture was stirred at room temperature for 30 min. Then, the layers were separated and the aqueous layer was alkalized with 20% sodium hydroxide solution. This aqueous layer was extracted with Et 2O (2x 120 mL). The combined organic layers were dried over MgSO 4 and concentrated under vacuum. The mixture of compound **34** and **35** was engaged in the next tape without further purification and was obtained as brown solid (4.4 g, 65%). LC-MS (ESI): $t_R = 4.66$ and 4.79 min; $[M+H]^+ 240.35$. HRMS for $C_{11}H_8Cl_2NO [M+H]^+$ calculated mass: 239.9977, measured: 239.9974.

Compound **34**: ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.44 (d, J = 2.3 Hz, 1H), 7.26 (dd, J = 8.6 and 2.0 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 1.4 and 4.0 Hz, 1H), 6.86 (m, 1H), 6.37 (dd, J = 4.0 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 136.0, 135.2, 132.9, 132.9, 131.1, 130.0, 129.6, 127.7, 123.2, 111.2.

Compound **35**: ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.50 (d, J = 2.3 Hz, 1H), 7.40 (t, J = 1.7 Hz, 1H), 7.31 (dd, J = 8.5 and 2.3 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 6.80 (t, J = 2.8 Hz, 1H), 6.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 136.1, 135.0, 130.8, 130.7, 130.0, 128.4, 128.2, 127.8, 124.8, 108.8.

sr1810: Mixture of (*E*) 1-(2,4-Dichlorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**1**) and (*E*) 1-(2,4-Dichlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**2**). Nitromethane (54 mL, 1 mol) and ammonium acetate (15.4 g, 0.2 mol) were stirred in 100 mL of acetic acid at 30°C for 30 min. Then, the mixture of compounds **34** and **35** (12 g, 0.05 mol) was added and the solution was heated at 90°C for 24 h. Then, the reaction was concentrated under vacuum. A saturated solution of sodium hydrogenocarbonate (100 mL) was added to the residue. This aqueous layer was extracted with EtOAc (2x 100mL). The organic layers were washed with water (2x 100 mL), dried over MgSO₄ and concentrated under vacuum. The mixture of compound **1** and **2** was obtained as a yellow solid (8.7 g, 61%). Mp: 114 °C. LC-MS (ESI): t $_{\rm R}$ = 5.22 and 5.32 min; [M+H]⁺ 283.31. HRMS for C ₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

Compound 1: ¹H NMR (400 MHz, CDCl ₃) δ 7.62 (d, J = 2.3 Hz, 1H), 7.56 (d, J = 13.3 Hz, 1H), 7.45 (dd, J = 8.4 and 2.3 Hz, 1H), 7.33 (d, J = 8.4 Hz, 1H), 7.17 (d, J = 13.4 Hz, 1H), 7.00 (m, 1H), 6.95 (m, 1H), 6.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 134.3, 133.4, 132.6, 130.8, 130.3, 130.0, 128.4, 127.4, 125.8, 116.7, 112.3.

Compound **2**: ¹H NMR (400 MHz, CDCl ₃) δ 8.04 (d, J = 13.4 Hz, 1H), 7.58 (d, J = 2.3 Hz, 1H), 7.47 (d, J = 13.2 Hz, 1H), 7.39 (dd, J = 8.4 and 2.3 Hz, 1H), 7.30-7.26 (m, 2H), 6.92 (m, 1H), 6.56 (m, 1H). ¹³C NMR (100 MHz, CDCl ₃) δ 136.0, 134.9, 134.2, 133.2, 130.9, 130.8, 128.3, 128.2, 127.9, 125.5, 116.8, 108.3.

(*E*) 1-(2,4-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (1 or sr7575). See Supplementary Fig.1a.

1-(2,4-Dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (34). Dimethylformamide (2.20 mL, 0.0283 mol) was stirred at 0°C. Phosphorus oxychloride (2.7 mL, 0.0283mol) was then added dropwise and the white solid obtained was cooled for 30 min. After this time, a solution of compound **33** (6 g, 0.0283 mol) in 120 mL of CH $_2$ Cl₂ was added dropwise to the reaction mixture. The reaction was refluxed for 20 h. After cooling to room temperature, 120 mL of water were added and the mixture was stirred at room temperature for 30 min. Then, the layers were separated and the aqueous layer was alkalized with 20% sodium hydroxide solution. This aqueous layer was extracted with Et₂O (2x 120 mL) and the organic layers were dried over MgSO 4 and concentrated under vacuum. The residue was purified by chromatography on silica gel using cyclohexane and CH $_{2}Cl_{2}$ as eluants (50/50) to afford compound **34** as a beige solid (2.1 g, 30%). ¹H NMR (400 MHz, CDCl₃) δ 9.44 (s, 1H), 7.44 (d, J = 2.3 Hz, 1H), 7.26 (dd, J = 8.6 and 2.0 Hz, 1H), 7.20 (d, J = 8.4 Hz, 1H), 7.04 (dd, J = 8.4 Hz4.0 and 1.4 Hz, 1H), 6.86 (m, 1H), 6.37 (dd, J = 4.0 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) & 178.5, 136.0, 135.2, 132.9, 132.9, 131.1, 130.0, 129.6, 127.7, 123.2, 111.2. LC-MS (ESI): $t_R = 4.79 \text{ min}; [M+H]^+ 240.35$. HRMS for C ${}_{11}H_8Cl_2NO [M+H]^+$ calculated mass: 239.9977, measured: 239.9974.

(*E*) 1-(2,4-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (**1**). Nitromethane (54 mL, 1 mol) and ammonium acetate (15.4 g, 0.2 mol) were stirred in 100 mL of acetic acid at 30°C for 30 min. Then, 1-(2,4-dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (12 g, 0.05 mol) was added and the mixture was heated at 90°C for 24 h. Then, the reaction was concentrated under vacuum. A saturated solution of sodium hydrogenocarbonate (100 mL) was added to the residue. The aqueous layer was extracted with EtOAc (2x 100mL). The combined organic layers were washed with water (2x 100 mL), dried over MgSO ₄ and concentrated under vacuum. The resulting residue was purified by chromatography on silica gel using cyclohexane and CH ₂Cl₂ as eluant (50/50) to obtain compound **1** as a yellow solid (6.6 g, 47%). Mp: 118°C. ¹H NMR (400 MHz, CDCl₃) δ 7.62 (d, *J* = 2.3 Hz, 1H), 7.56 (d, *J* = 13.3 Hz, 1H), 7.45 (dd, *J* = 2.3 and 8.3 Hz, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.17 (d, *J* = 13.4 Hz, 1H), 7.00 (m, 1H), 6.95 (m, 1H), 6.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 134.3, 133.4, 132.6, 130.8, 130.3, 130.0, 128.4, 127.4, 125.8, 116.7, 112.3. LC-MS (ESI): t R = 5.20 min; [M+H] ⁺ 283.44. HRMS for C₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0036.

(*E*) 1-(2,4-Dichlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (2 or sr7576). See Supplementary Fig.1b.

1-(2,4-Dichlorophenyl)-1*H*-pyrrole-3-carbaldehyde (35).² 4-chloropyridine, hydrochloride (9.88 g, 0.0617 mol) and 2,5-Dimethoxy-3-tetrahydrofurancarboxaldehyde (8.15 g, 0.0617 mol) were stirred in 150 mL of dioxane at room temperature for 30 min. 2,4-dichloroaniline (10 g, 0.0617 mol) was then added and the mixture was stirred at reflux for 4 h. The reaction was cooled to room temperature and concentrated under vacuum. 150 mL of water were added to the residue, followed by 200 mL of Et₂O. The aqueous layer was extracted with Et₂O (2x 100 mL). The combined organic layers were washed with 1N HCl (200 mL) and water (2x 200 mL), dried over MgSO 4 and concentrated under vacuum. The resulting residue was purified by chromatography on silica gel using CH $_2$ Cl₂ as eluant to afford compound **35** as a

² Dallemagne, P. *et al.* A convenient rearrangement of 1-phenylpyrrole-2-carboxaldehydes into their 3-isomers. *Synthetic Communications*. **13**, 1855-1857 (1994).

beige solid (5.2 g, 35%). Mp: 186°C. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.50 (d, J = 2.3 Hz, 1H), 7.40 (t, J = 1.7 Hz, 1H), 7.31 (dd, J = 8.5 and 2.3 Hz, 1H), 7.25 (d, J = 8.4 Hz, 1H), 6.80 (t, J = 2.8 Hz, 1H), 6.73 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 136.1, 135.0, 130.8, 130.7, 130.0, 128.4, 128.2, 127.8, 124.8, 108.8. LC-MS (ESI): t _R= 4.66 min; [M+H]⁺ 240.35.

(*E*) 1-(2,4-Dichlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**2**). Nitromethane (54 mL, 1 mol) and ammonium acetate (15.4 g, 0.2 mol) were stirred in 100 mL of acetic acid at 30°C for 30 minutes. Then, 1-(2,4-dichloro-phenyl)-1 *H*-pyrrole-2-carbaldehyde (12 g, 0.05 mol) was added and the mixture was heated at 90°C for 24 h. The reaction was concentrated under vacuum. A saturated solution of sodium hydrogenocarbonate (100 mL) was added to the residue. This aqueous layer was extracted with EtOAc (2x 100 mL). The organic layers were washed with water (2x 100 mL), dried over MgSO $_4$ and concentrated under vacuum. The solid resulting residue was purified by chromatography on silica gel using cyclohexane and CH₂Cl₂ as eluant (50/50) to give compound **2** as a yellow solid (6.1 g, 43%). Mp: 186 °C. ¹H NMR (400 MHz, DMSO- d_6) δ 8.11 (d, J = 13.3 Hz, 1H), 7.95 (d, J = 13.3 Hz, 1H), 7.90 (d, J = 2.3 Hz, 1H), 7.78 (m, 1H), 7.60 (dd, J = 6.4 and 8.5 Hz, 1H), 7.58 (d, J = 8.7 Hz, 1H), 7.19 (m, 1H), 6.86 (m, 1H). ¹³C NMR (100 MHz, DMSO- d_6) δ 136.5, 134.8, 134.6, 134.0, 130.6, 130.2, 130.0, 129.7, 129.0, 126.3, 117.5, 109.3. LC-MS (ESI): t _R= 5.34 min; [M+H]⁺ 283.40. HRMS for C₁₂H₉Cl₂N₂O₂ [M+H]⁺calculated mass: 283.0035, measured: 283.0036.

(*E*) 1-(2,4-dichlorophenyl)-2-methyl-5-(2-nitrovinyl)-1*H*-pyrrole (**3**). See **Supplementary Fig.1c**.

1-(2,4-Dichlorophenyl)-2-methyl-1*H*-pyrrole (**36**). A mixture of 1-(2,4-Dichlorophenyl)-1 *H*-pyrrole-2-carbaldehyde (**34**) (1g, 0.02 mol), potassium hydroxide (0.7g, 0.06 mol) and hydrazine monohydrate (0.61 ml, 0.06 mol) in ethylene glycol (20 ml) was stirred at room temperature for 30 min, then slowly heated to 150°C and maintained for 2 h. The reaction mixture was allowed to cool to room temperature, poured into ice-water and extracted with Et₂O (2x 20 ml). The combined organic layers were washed with water, brine, dried over MgSO₄, filtered and concentrated under vacuum. The crude compound was purified by chromatography on silica gel using cyclohexane and CH $_2$ Cl₂ as eluant (90/10) to afford compound **36** as an orange oil (0.78 g, 70%). ¹H NMR (400 MHz, CDCl ₃) δ 7.53 (d, *J* = 2.2 Hz, 1H), 7.33 (dd, *J* = 8.5 and 2.3 Hz, 1H), 7.26 (d, *J* = 8.3 Hz, 1H), 6.60 (dd, *J* = 2.8 and 1.9 Hz, 1H), 6.22 (t, *J* = 3.0 Hz, 1H), 6.04 (m, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl ₃) δ 136.7, 134.6, 133.7, 130.5, 130.1, 130.0, 127.7, 121.3, 108.5, 107.4, 12.1. HRMS for C₁₁H₁₀Cl₂N [M+H]⁺calculated mass: 226.0184, measured: 226.0185.

Synthetic procedure for the compound (3) is the similar as that described for the compound (1) and spectra data are shown below.

1-(2,4-Dichlorophenyl)-5-methyl-1*H*-pyrrole-2-carbaldehyde (**37**). Yellow oil (61%). ¹H NMR (400 MHz, CDCl₃) δ 9.37 (s, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 8.5 and 2.4 Hz, 1H), 7.25 (d, J = 8.5 Hz, 1H), 7.03 (d, J = 3.9 Hz, 1H), 6.22 (d, J = 3.9 Hz, 1H), 2.04 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 177.6, 140.1, 135.4, 134.8, 133.7, 132.7, 130.4, 130.1, 128.0, 123.8, 110.4, 12.1. LC-MS (ESI): t _R= 4.52 min; [M+H] ⁺ 254.37. HRMS for C₁₂H₁₀Cl₂NO [M+H]⁺calculated mass: 254.0133, measured: 254.0133.

(E) 1-(2,4-Dichlorophenyl)-2-methyl-5-(2-nitrovinyl)-1 *H*-pyrrole (**3**). Orange solid (50%). Mp: 90°C. ¹H NMR (400 MHz, CDCl ₃) δ 7.65 (d, *J* = 2.4 Hz, 1H), 7.47 (m, 2H), 7.28 (m,

1H), 6.99 (d, J = 13.4 Hz, 1H), 6.90 (d, J = 4.0 Hz, 1H), 6.27 (d, J = 4.0 Hz, 1H), 2.06 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 136.8, 134.5, 133.1, 131.1, 130.9, 130.6, 128.7, 127.7, 125.3, 118.0, 111.7, 12.8. LC-MS (ESI): t _R = 5.35 min; [M+H] ⁺ 297.42. HRMS for C₁₃H₁₁Cl₂N₂O₂ [M+H]⁺ calculated mass: 297.0192, measured: 297.0193.

(E) 3-[1-(2,4-Dichlorophenyl)-1H-pyrrol-2-yl]-acrylonitrile (4). See Supplementary Fig.1d.

2-Cyano-3-(1-(2,4-dichlorophenyl)-1*H*-pyrrol-2-yl)-acrylic acid ethyl ester (**38**). To a solution of 1-(2,4-dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**34**) (1g, 4.16 mmol) in ethanol (10 ml), were added ethylcyanoacetate (0.49 ml, 4.58 mmol) and triethylamine (0.58 ml, 4.16 mmol). The mixture was refluxed for 4 h. After removal of the solvent under vacuum, CH $_2$ Cl₂ was added to the residue and the organic layer was washed with water, dried over MgSO 4, filtered and concentrated in vacuo. The crude compound was purified by chromatography on silica gel using CH $_2$ Cl₂ as eluant to obtain compound **34** as a yellow solid (1.2 g, 86%). Mp: 138 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.86 (d, *J* = 4.2 Hz, 1H), 7.59 (d, *J* = 1.6 Hz, 1H), 7.52 (s, 1H), 7.41 (dd, *J* = 8.3 and 1.5 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 1H), 7.07 (m, 1H), 6.59 (m, 1H), 4.26 (q, *J* = 7.1 Hz, 2H), 1.32 (t, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 163.5, 140.1, 136.5, 133.6, 133.5, 130.7, 130.7, 130.6, 128.3, 128.3, 119.4, 116.6, 113.3, 95.2, 62.2, 14.2. HRMS for C₁₆H₁₃Cl₂N₂O₂ [M+H]⁺calculated mass: 335.0348, measured: 335.0346.

2-Cyano-3-(1-(2,4-dichlorophenyl)-1*H*-pyrrol-2-yl)-acrylic acid (**39**). To a solution of lithium hydroxyde (340 mg, 0.014 mol) in water (50 ml) was added a solution of 2-cyano-3-(1-(2,4dichlorophenyl)-1H-pyrrol-2-yl)-acrylic acid ethyl ester (38) (3.2 g, 9.54 mmol) in THF (50 ml) and the mixture was heated at 50°C for 5h. After removing THF under vacuum, the aqueous layer was acidified with 6N HCl and then extracted with EtOAc (2x 50 mL). The organic layers were washed with water (2x 50 mL), dried over MgSO ₄ and concentrated in vacuo. The product was purified by recrystallization in CH $_2$ Cl₂ to obtain compound **39** as a yellow solid (1.1 g, 37%). Mp: 110°C. ¹H NMR (400 MHz, CDCl₃) δ 7.95 (d, J = 4.1 Hz, 1H), 7.64 (d, J = 2.2 Hz, 1H), 7.56 (s, 1H), 7.46 (dd, J = 8.3 and 2.2 Hz, 1H), 7.31 (d, J = 8.3 Hz, 1H), 7.15 (m, 1H), 6.65 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.8, 141.2, 136.7, 133.5, 133.2, 131.8, 130.8, 130.6, 128.4, 128.3 120.7, 116.0, 113.8, 93.8. LC-MS (ESI): t $_{\rm R} = 4.55$ min; [M+H] ⁺ 307.32. HRMS for C $_{14}H_9Cl_2N_2O_2$ [M+H]⁺calculated 307.0035, measured: 307.0034.

3-(1-(2,4-Dichlorophenyl)-1*H*-pyrrol-2-yl)-acrylonitrile (**4**). To a solution of copper (155 mg, 2.44 mmol) in quinoleine (10 ml), heated at 190°C, was added 2-cyano-3-(1-(2,4-dichlorophenyl)-1*H*-pyrrol-2-yl)-acrylic acid (**39**) (500 mg, 1.62 mmol). The mixture was stirred vigorously. After the carbon dioxide evolution stopped and TLC indicated complete consumption of the starting material, the reaction was cooled to room temperature and 1N HCl (10 ml) was added. The aqueous layer was extracted with CH $_2$ Cl₂ (2x 15 mL). The combined organic layers were washed with water (2x 20 mL), dried over MgSO $_4$ and concentrated under vacuum. The resulting residue was purified by chromatography on silica gel using cyclohexane and CH₂Cl₂ as eluant (50/50 to 30/70) to obtain compound **4** as a white solid (150 mg, 36%). Mp: 108 °C. 1 H NMR (400 MHz, CDCl $_3$) δ 7.58 (d, *J* = 2.3 Hz, 1H), 7.53 (m, 1H), 7.39 (dd, *J* = 8.4 and 2.3 Hz, 1H), 7.28 (d, *J* = 8.5 Hz, 1H), 6.86 (m, 1H), 6.49 (t, *J* = 3.2 Hz, 1H), 6.44 (d, *J* = 12.1 Hz, 1H), 5.01 (d, *J* = 12.1 Hz, 1H). 13 C NMR (100 MHz, CDCl₃) δ 135.8 135.1, 134.5, 133.7, 130.8, 130.4, 129.3, 128.1, 126.4, 118.2, 114.3, 111.6,

88.7. LC-MS (ESI): $t_R = 5.18 \text{ min}$; $[M+H]^+ 263.51$. HRMS for $C_{13}H_9Cl_2N_2$ $[M+H]^+$ calculated mass: 263.0137, measured: 263.0136.

1-(2,4-Dichlorophenyl)-2-(2-nitroethyl)-1*H*-pyrrole (**5**). See Supplementary Fig.1e. 1-(2,4-Dichlorophenyl)-2-(2-nitroethyl)-1*H*-pyrrole (**1**) (200 mg, 0.70 mmol) in methanol (7 ml) was added portionwise sodium borohydride (53 mg, 1.41 mmol) at 0°C. After the addition, the reaction mixture was stirred at 0°C for 1 h. Then a mixture of ice / water (10 ml) was added and the aqueous layer was extracted with EtOAc (2x 20 ml). The combined organic layers were washed with water (2x 30 ml), dried over MgSO 4, filtered and concentrated under vacuum to give compound **5** as a brown oil (0.1 g, 50%). ¹H NMR (400 MHz, CDCl₃) δ 7.57 (d, J = 2.4 Hz, 1H), 7.39 (dd, J = 8.4 and 2.3 Hz, 1H), 7.30 (d, J = 8.5 Hz, 1H), 6.64 (dd, J = 2.9 and 1.7 Hz, 1H), 6.27 (t, J = 3.2 Hz, 1H), 6.13 (m, 1H), 4.48 (dd, J = 15.2 and 7.7 Hz, 2H), 3.09 (dd, J = 15.4 and 7.5 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 135.4, 133.7, 130.6, 130.3, 128.1, 127.6, 122.8, 109.2, 108.0, 74.1, 24.3. HRMS for C $_{12}$ H₁₁Cl₂N₂O₂ [M+H] ⁺calculated mass: 285.0192, measured: 285.0189.

(E) 1-(4-Chlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (6).

Synthetic procedure for compound (6) is similar as that described for compound (1) and spectra data are shown below.

1-(4-chlorophenyl)-1*H*-pyrrole (**40**).³ Beige solid (85%). Mp: 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.28 (d, *J* = 9.2 Hz, 2H), 7.21 (d, *J* = 9.1 Hz, 2H), 6.94 (t, *J* = 2.2 Hz, 2H), 6.35 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.4, 131.1, 129.8, 121.6, 119.3, 110.8.

1-(4-chlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**41**).⁴ Orange solid (30%). Mp: 98°C. ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.35 (d, J = 8.8 Hz, 2H), 7.21 (d, J = 8.7 Hz, 2H), 7.07 (dd, J = 4.0 and 1.7 Hz, 1H), 6.97 (m, 1H), 6.34 (dd, J = 4.1 and 2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 137.5, 134.1, 132.4, 131.3, 129.2, 127.2, 123.7, 111.1. LC-MS (ESI): t_R= 4.52 min; [M+H]⁺ 206.39.

(*E*) 1-(4-chlorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (6).Yellow solid (54%). Mp: 124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.74 (d, *J* = 13.3 Hz, 1H), 7.49 (d, *J* = 8.6 Hz, 2H), 7.24 (d, *J* =

³ Das, B. *et al*. Novel approach for the synthesis of N-substituted pyrroles starting directly from nitro compounds in water. *Synthetic Communications*. **4**, 548-553 (2012)

⁴ Pina, M. *et al*. Synthesis and spectral data of 1-aryl-2-formylpyrroles. *Khimiya Geterotsiklicheskikh Soedinenii*. **2**, 180-184, (1989).

13.4 Hz, 1H), 7.22 (d, J = 8.6 Hz, 2H), 7.07 (m, 1H), 6.91 (d, J = 3.8 Hz, 1H), 6.42 (t, J = 3.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl ₃) δ 136.5, 134.9, 132.8, 130.0, 129.9, 127.8, 127.6, 125.2, 116.5, 112.1. LC-MS (ESI): t _R= 5.07 min; [M+H] ⁺ 249.44. HRMS for C ₁₂H₁₀ClN₂O₂ [M+H]⁺ calculated mass: 249.0425, measured: 249.0425.

(E) 1-(3-Chlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (7).

Synthetic procedure for compound (7) is similar as that described for compound (1) and spectra data are shown below.

1-(3-chlorophenyl)-1*H*-pyrrole (**42**).⁵ Brown solid (90%). Mp: 54 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.30 (t, *J* = 2.0 Hz, 1H), 7.22 (d, *J* = 7.9 Hz, 1H), 7.18 (ddd, *J* = 8.1, 2.1 and 1.2 Hz, 1H), 7.11 (ddd, *J* = 7.9, 2.0 and 1.2 Hz, 1H), 6.97 (t, *J* = 2.2 Hz, 2H), 6.26 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 141.8, 135.2, 130.6, 125.6, 120.6, 119.2, 118.4, 111.1.

1-(3-chlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**43**).⁴ Brown solid (50%). Mp: 68°C. ¹H NMR (400 MHz, CDCl₃) δ 9.49 (s, 1H), 7.31-7.27 (m, 3H), 7.18-7.15 (m, 1H), 7.06 (dd, *J* = 4.0 and 1.7 Hz, 1H), 6.97 (m, 1H), 6.33 (dd, *J* = 3.9 and 2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.7, 140.0, 134.6, 132.4, 131.2, 130.0, 128.4, 126.3, 124.4, 123.5, 111,2. LC-MS (ESI): t_R = 4.42 min; [M+H]⁺ 206.34.

(*E*) 1-(3-Chlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (7). Red oil (50%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 13.3 Hz, 1H), 7.50-7.48 (m, 2H), 7.35 (m, 1H), 7.32 (d, *J* = 13.3 Hz, 1H), 7.20-7.23 (m, 1H), 7.12 (dd, *J* = 2.6 and 1.1 Hz, 1H), 6.95 (dd, *J* = 4.0 and 2.6 Hz, 1H), 6.45 (dd, *J* = 3.8 and 0.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.1, 135.5, 132.9, 130.7, 129.8, 129.1, 127.7, 126.6, 125.2, 124.7, 116.5, 112.2. LC-MS (ESI): t _R = 5.06 min; [M+H] ⁺ 249.40. HRMS for C₁₂H₁₀ClN₂O₂ [M+H]⁺ calculated mass: 249.0425, measured: 249.0425.

(E) 1-(2-Chlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (8).

⁵ Corsi, C. *et al.* Preparation of pyrrole derivatives as plant growth regulators. PCT Int. Appl., 2010069879, 24 Jun 2010.

Synthetic procedure for compound (**8**) is similar as that described for compound (**1**) and spectra data are shown below.

1-(2-Chlorophenyl)-1*H*-pyrrole (**44**)¹. Brown oil (87%). ¹H NMR (400 MHz, CDCl ₃) δ 7.47 (m, 1H), 7.32-7.22 (m, 3H), 6.88 (t, *J* = 2.2 Hz, 2H), 6.31 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.8, 130.7, 129.7, 128.3, 127.9, 127.6, 122.2, 109.3.

1-(2-Chlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**45**).⁴ Beige solid (29%). Mp: 94°C. ¹H NMR (400 MHz, CDCl₃) δ 9.42 (d, J = 0.5 Hz, 1H), 7.44 (m, 1H), 7.35-7.27 (m, 2H), 7.05 (dd, J = 4.0 and 1.7 Hz, 1H), 7.07 (dd, J = 4.0 and 1.8 Hz, 1H), 6.89 (m, 1H), 6.37 (dd, J = 4.0 and 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 137.1, 133.0, 132.0, 131.0, 130.2, 130.0, 129.0, 127.4, 122.2, 110.9. LC-MS (ESI): t_R = 4.38 min; [M+H]⁺ 206.39.

(*E*) 1-(2-Chlorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**8**). Brown oil (50%). ¹H NMR (400 MHz, CDCl₃) δ 7.62-7.57 (m, 2H), 7.51 (dt, *J* = 7.5 and 1.7 Hz, 1H), 7.46 (dt, *J* = 7.6 and 1.5 Hz, 1H), 7.38 (dd, *J* = 7.6 and 1.7 Hz, 1H), 7.09 (d, *J* = 13.3 Hz, 1H), 7.04 (dd, *J* = 2.5 and 0.9 Hz, 1H), 6.95 (dd, *J* = 2.6 and 1.1 Hz, 1H), 6.49 (dd, *J* = 2.7 and 0.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 132.5, 132.3, 131.0, 130.9, 130.3, 129.6, 128.0, 127.8, 125.8, 116.9, 112.0. LC-MS (ESI): t _R = 4.95 min; [M+H] ⁺ 249.44. HRMS for C ₁₂H₁₀ClN₂O₂ [M+H]⁺ calculated mass: 249.0425, measured: 249.0425.

(E) 1-(3,4-Dichlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (9).

Synthetic procedure for compound (9) is similar as that described for compound (1) and spectra data are shown below.

1-(3,4-Dichlorophenyl)-1*H*-pyrrole (**46**). Brown solid (77%). Mp: 56 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.51-7.48 (m, 2H), 7.24 (dd, *J* = 8.7 and 2.6 Hz, 1H), 7.05 (t, *J* = 2.1 Hz, 2H), 6.39 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.0, 133.5, 131.2, 129.2, 122.1, 119.4, 119.2, 111.4.

1-(3,4-Dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (47). Brown solid (40%). Mp: 104°C. ¹H NMR (400 MHz, CDCl₃) δ 9.50 (d, *J* = 0.7 Hz, 1H), 7.44 (d, *J* = 8.4 Hz, 1H), 7.39 (d, *J* = 2.5 Hz, 1H), 7.14 (dd, *J* = 8.5 and 2.5 Hz, 1H), 7.07 (dd, *J* = 4.0 and 1.8 Hz, 1H), 6.97 (m, 1H), 6.35 (dd, *J* = 4.0 and 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.6, 138.3, 132.9, 132.5, 132.2, 131.6, 130.6, 127.8, 125.5, 124.6, 111,4. LC-MS (ESI): t _R = 4.81 min; [M+H]⁺ 240.30. HRMS for C₁₁H₈Cl₂NO [M+H]⁺ calculated mass: 239.9977, measured: 239.9975.

(*E*) 1-(3,4-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (**9**) : yellow solid (65%). Mp: 128 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.75 (d, *J* = 13.3 Hz, 1H), 7.64 (d, *J* = 8.5 Hz, 1H), 7.46 (d, *J* = 2.4 Hz, 1H), 7.34 (d, *J* = 13.3 Hz, 1H), 7.17 (dd, *J* = 8.5 and 2.4 Hz, 1H), 7.10 (dd, *J* = 2.6 and 1.1 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.3 Hz, 1H), 6.49 (dd, *J* = 3.9 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 135.7, 132.5, 132.3, 131.0, 130.9, 130.3, 129.6, 128.0, 127.8, 125.8, 116.9, 112.0. LC-MS (ESI): t _R = 5.29 min; [M+H] ⁺ 283.44. HRMS for C ₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

(E) 1-(2,3-Dichlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (10).

Synthetic procedure for compound (10) is similar as that described for compound (1) and spectra data are shown below.

1-(2,3-Dichlorophenyl)-1*H*-pyrrole (**48**).³ Pink oil (78%). ¹H NMR (400 MHz, CDCl₃) δ 7.49-7.47 (m, 1H), 7.27 (m, 2H), 6.90 (t, *J* = 2.1 Hz, 2H), 6.36 (t, *J* = 2.1 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 140.5, 134.4, 129.2, 129.0, 127.5, 126.2, 122.2, 109.6.

1-(2,3-Dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**49**). Yellow solid (32%). Mp: 92°C. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.59 (dd, *J* = 7.6 and 2.1 Hz, 1H), 7.35-7.28 (m, 2H), 7.15 (dd, *J* = 4.0 and 1.6 Hz, 1H), 6.98 (m, 1H), 6.48 (dd, *J* = 4.1 and 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 139.0, 134.0, 132.9, 131.3, 131.0, 130.8, 127.3, 127.2, 122.9, 111,1. LC-MS (ESI): t _R = 4.69 min; [M+H] ⁺ 240.30. HRMS for C ₁₁H₈Cl₂NO [M+H]⁺ calculated mass: 239.9977, measured: 239.9975.

(*E*) 1-(2,3-Dichlorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**10**). Yellow solid (53%). Mp: 122 °C. ¹H NMR (400 MHz, CDCl ₃) δ 7.69 (dd, *J* = 8.1 and 1.5 Hz, 1H), 7.56 (d, *J* = 13.3 Hz, 1H), 7.40 (t, *J* = 8.0 Hz, 1H), 7.32 (dd, *J* = 7.9 and 1.5 Hz, 1H), 7.17 (d, *J* = 13.3 Hz, 1H), 7.03 (dd, *J* = 2.5 and 1.5 Hz, 1H), 6.96 (m, 1H), 6.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 137.3, 134.8, 132.6, 131.9, 131.8, 130.0, 128.0, 127.9, 127.4, 125.7, 116.7, 112.3. LC-MS (ESI): t_R = 5.11 min; [M+H] ⁺ 283.44. HRMS for C ₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

(E) 1-(2,5-Dichlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (11).

Synthetic procedure for compound (11) is similar as that described for compound (1) and spectra data are shown below.

1-(2,5-Dichlorophenyl)-1*H*-pyrrole (**50**). Brown oil (79%). ¹H NMR (400 MHz, CDCl ₃) δ 7.35 (d, *J* = 8.4 Hz, 1H), 7.27 (d, *J* = 2.4 Hz, 1H), 7.17 (dd, *J* = 8.6 and 2.4 Hz, 1H), 6.82 (t, *J* = 2.2 Hz, 2H), 6.26 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl ₃) δ 139.5, 133.1, 131.6, 128.1, 127.8, 127.7, 122.0, 109.9. HRMS for C ₁₀H₉Cl₂N [M+H]⁺ calculated mass: 212.0028, measured: 212.0030.

1-(2,5-Dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**51**). Orange solid (45%). Mp: 126°C. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.45 (d, *J* = 8.5 Hz, 1H), 7.40 (m, 1H), 7.37 (m, 1H), 7.13 (dd, *J* = 4.0 and 1.8 Hz, 1H), 6.95 (m, 1H), 6.46 (dd, *J* = 3.9 and 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 138.2, 132.9, 132.8, 130.9, 130.8, 130.6, 130.0, 129.0, 123.1, 111.2. LC-MS (ESI): t _R = 4.72 min; [M+H] ⁺ 240.35. HRMS for C ₁₁H₈Cl₂NO [M+H] ⁺ calculated mass: 239.9977, measured: 239.9972.

(*E*) 1-(2,5-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (**11**) Yellow solid (59%). Mp: 124 °C. ¹H NMR (400 MHz, CDCl ₃) δ 7.55 (d, *J* = 13.2 Hz, 1H), 7.53 (s, 1H), 7.51 (d, *J* = 2.4 Hz, 1H), 7.41 (d, *J* = 2.3 Hz, 1H), 7.16 (d, *J* = 13.4 Hz, 1H), 7.01 (dd, *J* = 2.7 and 1.5 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.3 Hz, 1H), 6.50 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 133.7, 132.8, 131.6, 131.2, 131.1, 129.9, 129.8, 127.4, 125.8, 116.8, 112.5. LC-MS (ESI): t _R= 5.13 min; [M+H]⁺ 283.49. HRMS for C₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

(E) 1-(3,5-Dichlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (12).

Synthetic procedure for compound (12) is similar as that described for compound (1) and spectra data are shown below.

1-(3,5-Dichlorophenyl)-1*H*-pyrrole (**52**). Brown solid (79%). Mp: 60 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.29 (d, *J* = 1.8 Hz, 2H), 7.23 (t, *J* = 1.8 Hz, 1H), 7.05 (t, *J* = 2.2 Hz, 2H), 6.38 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.2, 135.9, 125.4, 119.1, 118.7, 111.6. HRMS for C₁₀H₈Cl₂N [M+H]⁺ calculated mass: 212.0028, measured: 212.0032.

1-(3,5-Dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**53**). Yellow solid (50%). Mp: 144°C. ¹H NMR (400 MHz, CDCl ₃) δ 9.52 (s, 1H), 7.34 (t, *J* = 1.8 Hz, 1H), 7.20 (d, *J* = 1.8 Hz, 2H), 7.07 (dd, *J* = 3.9 and 1.6 Hz, 1H), 6.98 (m, 1H), 6.35 (dd, *J* = 3.9 and 2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl ₃) δ 178.5, 140.7, 135.1, 132.2, 131.3, 128.4, 124.8, 124.6, 111.5. LC-MS (ESI): t_R = 4.69 min; [M+H] ⁺ 240.26. HRMS for C ₁₁H₈Cl₂NO [M+H]⁺ calculated mass: 239.9975, measured: 239.9977.

(*E*) 1-(3,5-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (**12**). Orange solid (65%). Mp: 120°C. ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, *J* = 13.3 Hz, 1H), 7.52 (t, *J* = 1.8 Hz, 1H), 7.46 (d, *J* = 2.4 Hz, 1H), 7.34 (d, *J* = 13.3 Hz, 1H), 7.25 (d, *J* = 1.8 Hz, 1H), 7.10 (dd, *J* = 2.6 and 1.5 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.3 Hz, 1H), 6.46 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.8, 136.2, 133.4, 129.6, 129.2, 127.2, 125.2, 125.1, 116.7, 112.5. LC-MS (ESI): t _R = 5.33 min; [M+H]⁺ 283.44. HRMS for C₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0036.

(E) 1-(2,6-Dichlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (13)

Synthetic procedure for compound (13) is similar as that described for compound (1) and spectra data are shown below.

1-(2,6-Dichlorophenyl)-1*H*-pyrrole (**54**).⁶ Orange solid (83%). Mp: 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.47 (m, 2H), 7.33-7.29 (m, 1H), 6.76 (t, *J* = 2.3 Hz, 2H), 6.43 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.0, 134.5, 129.6, 128.7, 121.9, 109.4.

1-(2,6-Dichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**55**).⁶ Orange solid (45%). Mp: 94°C. ¹H NMR (400 MHz, CDCl₃) δ 9.53 (s, 1H), 7.45 (m, 2H), 7.34 (dd, *J* = 9.0 and 7.3 Hz, 1H), 7.16 (dd, *J* = 3.8 and 1.6 Hz, 1H), 6.92 (m, 1H), 6.52 (dd, *J* = 3.9 and 2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 135.6, 134.2, 132.3, 130.4, 130.2, 128.4, 123.1, 111,4. LC-MS (ESI): t_R = 4.61 min; [M+H]⁺ 240.35.

(*E*) 1-(2,6-Dichlorophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (**13**). Orange solid (60%). Mp: 120°C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (m, 2H), 7.53 (d, *J* = 12.9 Hz, 1H), 7.46 (m, 1H), 7.03-7.01 (d, *J* = 13.1 Hz, 1H), 6.99 (dd, *J* = 4.0 and 1.4 Hz, 1H), 6.96 (dd, *J* = 2.7 and 1.4 Hz, 1H), 6.55 (dd, *J* = 3.9 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 133.8, 132.3, 131.4, 129.5, 129.1, 127.2, 125.1, 117.5, 112.7. LC-MS (ESI): t _R = 5.05 min; [M+H] ⁺ 283.40. HRMS for C₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

(*E*) 1-(2,4,5-Trichlorophenyl)- 2-(2-nitrovinyl)-1*H*-pyrrole (14).

⁶ Ikegami, H. *et al*. Hydrazide compound and their preparation, formulation and pesticidal use. PCT Int. Appl., 2007043677, 19 Apr 2007

Synthetic procedure for compound (14) is similar as that described for compound (1) and spectra data are shown below.

1-(2,4,5-Trichlorophenyl)-1*H*-pyrrole (**56**).⁷ Brown solid (79%). Mp: 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.54 (s, 1H), 7.38 (s, 1H), 6.80 (t, *J* = 2.2 Hz, 2H), 6.27 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 138.0, 131.7, 131.7, 131.6, 128.8, 128.2, 122.0, 110.2.

1-(2,4,5-Trichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**57**). Beige solid (32%). Mp: 96°C. ¹H NMR (400 MHz, CDCl₃) δ 9.55 (s, 1H), 7.62 (s, 1H), 7.46 (s, 1H), 7.13 (dd, *J* = 4.0 and 1.5 Hz, 1H), 6.94 (m, 1H), 6.47 (dd, *J* = 3.9 and 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 136.7, 133.7, 132.9, 131.4, 131.1, 131.0, 130.9, 130.0, 123.7, 111.4. LC-MS (ESI): t_R = 5.07 min; [M+H] ⁺ 274.26. HRMS for C ₁₁H₇Cl₃NO [M+H]⁺ calculated mass: 273.9587, measured: 273.9587.

(*E*) 1-(2,4,5-Trichlorophenyl)- 2-(2-nitrovinyl)-1*H*-pyrrole (**14**). Yellow solid (62%). Mp: 166 °C.¹H NMR (400 MHz, CDCl₃) δ 7.65 (s, 1H), 7.46-7.43 (m, 2H), 7.14 (d, *J* = 13.3 Hz, 1H), 6.91 (dd, *J* = 2.7 and 1.5 Hz, 1H), 6.88 (dd, *J* = 4.0 and 1.3 Hz 1H), 6.42 (dd, *J* = 3.8 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 135.1, 134.9, 133.0, 132.3, 131.8, 131.5, 130.8 129.7, 127.1, 125.8, 116.6, 112.7. LC-MS (ESI): t _R = 5.42 min; [M+H] + 317.27. HRMS for C₁₂H₈Cl₃N₂O₂ [M+H]⁺ calculated mass: 316.9645, measured: 316.9645.

(E) 1-(2,4,6-Trichlorophenyl)- 2-(2-nitrovinyl)-1H-pyrrole (15).

Synthetic procedure for compound (15) is similar as that described for compound (1) and spectra data are shown below.

1-(2,4,6-Trichlorophenyl)-1*H*-pyrrole (**58**). Beige solid (88%). Mp: 90 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 2H), 6.60 (t, *J* = 2.2 Hz, 2H), 6.30 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 135.1, 134.6, 128.6, 121.8, 109.7. HRMS for C ₁₀H₇Cl₃N [M+H]⁺ calculated mass: 245.9638, measured: 245.9642.

⁷ Ma, F *et al*. A recyclable magnetic nanoparticles supported antimony catalyst for the synthesis of N-substituted pyrroles in water. *Applied Catalysis*, *A: General*, **457**, 34-41 (2013)

1-(2,4,6-Trichlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**59**). Yellow solid (30%). Mp: 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.54 (s, 1H), 7.46 (s, 2H), 7.15 (dd, *J* = 4.0 and 1.5 Hz, 1H), 6.89 (m, 1H), 6.52 (dd, *J* = 4.0 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.4, 135.3, 134.8, 134.6, 132.2, 130.4, 128.5, 123.6, 111,7. LC-MS (ESI): t_R = 4.97 min; [M+H]⁺ 274.31. HRMS for C₁₁H₇Cl₃NO [M+H]⁺ calculated mass: 273.9587, measured: 273.9587.

(*E*) 1-(2,4,6-Trichlorophenyl)- 2-(2-nitrovinyl)-1 *H*-pyrrole (**15**). Light brown solid (50%). Mp: 114 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.56 (s, 2H), 7.47 (d, *J* = 13.3 Hz, 1H), 7.10 (d, *J* = 13.3 Hz, 1H), 6.98 (dd, *J* = 4.0 and 1.3 Hz, 1H), 6.92 (dd, *J* = 2.7 and 1.4 Hz 1H), 6.55 (dd, *J* = 3.8 and 2.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.8, 135.7, 132.7, 132.6, 129.3, 129.2, 126.8, 125.1, 117.3, 113.0. LC-MS (ESI): t _R = 5.32 min; [M+H] ⁺ 317.32. HRMS for C₁₂H₈Cl₃N₂O₂ [M+H]⁺ calculated mass: 316.9645, measured: 316.9645.

(E) 1-(2-Chloro-4-fluorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (16).

Synthetic procedure for compound (16) is similar as that described for compound (1) and spectra data are shown below.

1-(2-Chloro-4-fluorophenyl)-1*H*-pyrrole (**60**). Orange oil (80%). ¹H NMR (400 MHz, CDCl₃) δ 7.47 (d, *J* = 8.0 Hz, 2H), 7.31 (dd, *J* = 8.6 and 7.6 Hz, 1H), 6.76 (t, *J* = 2.3 Hz, 2H), 6.43 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 161.1 (d, *J* = 250.7 Hz), 135.3 (d, *J* = 3.9 Hz), 131.0 (d, *J* = 10.7 Hz), 129.0 (d, *J* = 10.7 Hz), 122.3 (s), 117.7 (d, *J* = 25.8 Hz), 114.6 (d, *J* = 21.9 Hz), 109.5 (s). HRMS for C $_{10}$ H₈CIFN [M+H]⁺ calculated mass: 196.0323, measured: 196.0326.

1-(2-Chloro-4-fluorophenyl)-1*H*-pyrrole-2-carbaldehyde (**61**). White solid (61%). Mp: 104°C. ¹H NMR (400 MHz, CDCl ₃) δ 9.43 (s, 1H), 7.25 (dd, *J* = 8.7 and 5.4 Hz, 1H), 7.18 (dd, *J* = 8.0 and 2.8 Hz, 1H), 7.04 (dd, *J* = 4.0 and 1.6 Hz, 1H), 7.02-6.97 (m, 1H), 6.86 (m, 1H), 6.37 (dd, *J* = 4.0 and 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl ₃) δ 178.6 (s), 162.1 (d, *J* = 250.9 Hz), 133.6 (d, *J* = 3.7 Hz), 133.1 (d, *J* = 10.5 Hz), 133.0 (s), 131.2 (s), 129.9 (d, *J* = 9.2 Hz), 123.0 (bs), 117.5 (d, *J* = 25.9 Hz), 114.6 (d, *J* = 21.6 Hz), 111.0 (s). LC-MS (ESI): t _R = 4.49 min; [M+H]⁺ 224.40. HRMS for C ₁₁H₈CIFNO [M+H]⁺ calculated mass: 224.0272, measured: 224.0272.

(*E*) 1-(2-Chloro-4-fluorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**16**). Orange solid (55%). Mp: 102 °C. ¹H NMR (400 MHz, CDCl ₃) δ 7.54 (d, *J* = 13.4 Hz, 1H), 7.40-7.34 (m, 2H), 7.20-7.15 (m, 1H), 7.12 (d, *J* = 13.3 Hz, 1H), 7.01 (dd, *J* = 2.6 and 1.5 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.3 Hz, 1H), 6.49 (dd, *J* = 3.8 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 162.6 (d, *J* = 257.9 Hz), 133.9 (d, *J* = 10.9 Hz), 132.5 (s), 132.0 (d, *J* = 3.7 Hz), 130.8 (d, *J* = 9.5 Hz), 130.3 (s), 127.5 (s), 125.9 (s), 118.3 (d, *J* = 25.7 Hz), 116.8 (s), 115.4 (d, *J* = 22.3 Hz), 112.3 (s). LC-MS (ESI): t R = 4.95 min; [M+H] + 267.41. HRMS for C $_{12}$ H₉ClFN₂O₂ [M+H]⁺ calculated mass: 267.0331, measured: 267.0329.

(E) 1-(4-Chloro-2-fluorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (17).

Synthetic procedure for compound (17) is similar as that described for compound (1) and spectra data are shown below.

1-(4-Chloro-2-fluorophenyl)-1*H*-pyrrole (**62**). Orange oil (75%). ¹H NMR (400 MHz, CDCl₃) δ 7.34 (t, *J* = 8.5 Hz, 1H), 7.27 (m, 1H), 7.21 (ddd, *J* = 8.4, 2.2 and 1.2 Hz, 1H), 7.03 (q, *J* = 2.1 Hz, 2H), 6.38 (t, *J* = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 154.7 (d, *J* = 255.7 Hz), 131.9 (d, *J* = 9.8 Hz), 127.8 (d, *J* = 10.5 Hz), 125.5 (d, *J* = 2.0 Hz), 125.1 (d, *J* = 4.1 Hz), 121.2 (d, *J* = 4.8 Hz), 117.8 (d, *J* = 23.7 Hz), 110.3 (s). HRMS for C $_{10}$ H₈CIFN [M+H]⁺ calculated mass: 196.0323, measured: 196.0329.

1-(4-Chloro-2-fluorophenyl)-1*H*-pyrrole-2-carbaldehyde (**63**). White solid (60%). Mp: 82°C. ¹H NMR (400 MHz, CDCl₃) δ 9.58 (s, 1H), 7.32-7.23 (m, 3H), 7.15 (m, 1H), 7.01 (m, 1H), 6.47 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.6 (s), 156.9 (d, *J* = 253.8 Hz), 135.0 (d, *J* = 9.2 Hz), 132.8 (s), 131.5 (s), 128.9 (s), 126.3 (d, *J* = 12.9 Hz), 124.7 (d, *J* = 3.7 Hz), 124,0 (bs), 117,2 (d, *J* = 22.8 Hz), 111.3 (s). LC-MS (ESI): t _R = 4.55 min; [M+H] ⁺ 224.35. HRMS for C₁₁H₈ClFNO [M+H]⁺ calculated mass: 224.0272, measured: 224.0272.

(*E*) 1-(4-Chloro-2-fluorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**17**). Yellow solid (60%). Mp: 134 °C. ¹H NMR (400 MHz, CDCl ₃) δ 7.60 (dt, *J* = 13.4 and 0.6 Hz, 1H), 7.34 (dd, *J* = 1.9 and 0.5 Hz, 1H), 7.32 (m, 1H), 7.29 (m, 1H), 7.26-7.23 (m, 1H), 7.03 (m, 1H), 6.94 (dd, *J* = 4.0 and 1.4 Hz, 1H), 6.49 (dd, *J* = 3.8 and 2.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 156.9 (d, *J* = 257.9 Hz), 136.2 (d, *J* = 9.6 Hz), 133.0 (s), 130.2 (s), 129.7 (s), 127.3 (s), 125.8 (s), 125.7 (d, *J* = 3.7 Hz), 124.6 (d, *J* = 12.3 Hz), 118.1 (d, *J* = 22.7 Hz), 116.5 (s), 112.5 (s). LC-MS (ESI): t_R = 5.02 min; [M+H]⁺ 267.45. HRMS for C₁₂H₉CIFN₂O₂ [M+H]⁺ calculated mass: 267.0331, measured: 267.0330.

(E) 1-(2,4-Dibromophenyl)-2-(2-nitrovinyl)-1H-pyrrole (18).

Synthetic procedure for compound (**18**) is similar as that described for compound (**1**) and spectra data are shown below.

1-(2,4-Dibromophenyl)-1*H*-pyrrole (**64**). Orange oil (94%). ¹H NMR (400 MHz, CDCl ₃) δ 7.86 (d, *J* = 2.2 Hz, 1H), 7.52 (dd, *J* = 8.1 and 1.9 Hz, 1H), 7.21 (d, *J* = 8.3 Hz, 1H), 6.85 (t, *J* = 2.4 Hz, 2H), 6.35 (t, *J* = 2.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl ₃) δ 139.6, 136.1, 131.3, 129.2, 122.1, 121.4, 120.6, 109.6. HRMS for C ₁₀H₈Br₂N [M+H]⁺ calculated mass: 299.9018, measured: 299.9017.

1-(2,4-Dibromophenyl)-1*H*-pyrrole-2-carbaldehyde (**65**). White solid (30%). Mp: 88 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.55 (d, *J* = 2.3 Hz, 1H), 7.54 (dd, *J* = 8.4 and 2.3 Hz, 1H), 7.22 (d, *J* = 8.5 Hz, 1H), 7.12 (dd, *J* = 3.9 and 1.7 Hz, 1H), 6.93 (m, 1H), 6.45 (dd, *J* = 3.8 and 2.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.2, 138.1, 135.7, 132.7, 131.3, 130.9, 130.0, 123.2, 123.0, 122.9, 111.1. LC-MS (ESI): t_R = 4.92 min; [M+H]⁺ 328.25. HRMS for C₁₁H₈Br₂NO [M+H]⁺ calculated mass: 327.8967, measured: 327.8963.

(*E*) 1-(2,4-Dibromophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**18**). Orange solid (60%). Mp: 122 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, *J* = 2.1 Hz, 1H), 7.63 (dd, *J* = 8.4 and 2.2 Hz, 1H), 7.53 (d, *J* = 13.4 Hz, 1H), 7.26 (d, *J* = 8.3 Hz, 1H), 7.13 (d, *J* = 13.5 Hz, 1H), 7.00 (dd, *J* = 2.7 and 1.5 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.4 Hz, 1H), 6.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.4, 134.3, 133.4, 132.6, 130.8, 130.3, 130.0, 128.4, 127.4, 125.8, 116.7, 112.3. LC-MS (ESI): t_R = 5.30 min; [M+H] ⁺ 371.30. HRMS for C ₁₂H₉Br₂N₂O₂ [M+H]⁺ calculated mass: 370.9025, measured: 370.9023.

(E) 1-(2-Bromo-4-chlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (19).

Synthetic procedure for compound (19) is is similar as that described for compound (1) and spectra data are shown below.

1-(2-Bromo-4-chlorophenyl)-1*H*-pyrrole (**66**).⁸ Orange oil (89%). ¹H NMR (400 MHz, CDCl₃) δ 7.60 (d, J = 2.3 Hz, 1H), 7.25 (dd, J = 8.4 and 2.3 Hz, 1H), 7.15 (d, J = 8.4 Hz, 1H), 6.74 (t, J = 2.2 Hz, 2H), 6.24 (t, J = 2.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.2, 134.6, 133.6, 128.9, 128.5, 122.2, 120.4, 109.6.

1-(2-Bromo-4-chlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**67**). White solid (30%). Mp: 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.43 (s, 1H), 7.61 (d, *J* = 2.4 Hz, 1H), 7.31 (dd, *J* = 8.4 and 2.3 Hz, 1H), 7.20 (d, *J* = 8.3 Hz, 1H), 7.04 (dd, *J* = 4.1 and 1.7 Hz, 1H), 6.85 (m, 1H), 6.38 (dd, *J* = 3.9 and 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 137.6, 135.4, 133.0, 132.8, 131.0, 129.6, 128.3, 123.0, 122.6, 111.1. LC-MS (ESI): t_R = 4.80 min; [M+H]⁺ 284.30. HRMS for C₁₁H₈BrClNO [M+H]⁺ calculated mass: 283.9472, measured: 283.9470.

⁸ Sugita, K *et al*. Preparation of tricyclic compounds such as pyrrolobenzoxazepine derivatives and analogs thereof for treatment of hypercholesteremia, hyperlipemia, and arteriosclerosis. Jpn. Kokai Tokkyo Koho, 2008291018, 04 Dec 2008

(*E*) 1-(2-Bromo-4-chlorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**19**). Yellow solid (53%). Mp: 98 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.79 (d, *J* = 2.2 Hz, 1H), 7.53 (d, *J* = 13.3 Hz, 1H), 7.48 (dd, *J* = 8.3 and 2.3 Hz, 1H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.12 (d, *J* = 13.3 Hz, 1H), 6.99 (dd, *J* = 2.5 and 1.5 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.3 Hz, 1H), 6.49 (dd, *J* = 3.8 and 2.7 Hz 1H). ¹³C NMR (100 MHz, CDCl₃) δ 136.6, 136.0, 133.7, 132.6, 130.4, 130.0, 129.0, 127.4, 125.7, 123.3, 116.9, 112.3. LC-MS (ESI): t_R = 5.23 min; [M+H]⁺ 327.35. HRMS for C ₁₂H₉BrClN₂O₂ calculated mass: 326.9530, measured: 326.9529

(E) 1-(4-Bromo-2-chlorophenyl)-2-(2-nitrovinyl)-1H-pyrrole (20).

Synthetic procedure for compound (20) is similar as that described for compound (1) and spectra data are shown below.

1-(4-Bromo-2-chlorophenyl)-1*H*-pyrrole (**68**). Orange oil (90%). ¹H NMR (400 MHz, CDCl₃) δ 7.68 (d, J = 2.3 Hz, 1H), 7.47 (dd, J = 8.4 and 2.3 Hz, 1H), 7.22 (d, J = 8.4 Hz, 1H), 6.89 (t, J = 2.1 Hz, 2H), 6.35 (t, J = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 137.9, 133.3, 130.8, 130.6, 128.8, 122.0, 120.8, 109.7. HRMS for C₁₀H₈BrClN [M+H]⁺ calculated mass: 255.9523, measured: 255.9523.

1-(4-Bromo-2-chlorophenyl)-1*H*-pyrrole-2-carbaldehyde (**69**). Beige solid (31%). Mp: 92 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.68 (d, J = 2.1 Hz, 1H), 7.50 (dd, J = 8.4 and 2.2 Hz, 1H), 7.22 (d, J = 8.3 Hz, 1H), 7.13 (dd, J = 4.0 and 1.7 Hz, 1H), 6.94 (m, 1H), 6.46 (dd, J = 3.9 and 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 136.5, 133.1, 132.9, 132.8 131.1, 130.7, 129.9, 123.2, 122.9, 111.2. LC-MS (ESI): t _R = 4.83 min; [M+H] ⁺ 284.25. HRMS for C₁₁H₈BrClNO [M+H]⁺ calculated mass: 283.9472, measured: 283.9468.

(*E*) 1-(4-Bromo-2-chlorophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**20**). Orange solid (57%). Mp: 124 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.77 (d, *J* = 2.1 Hz, 1H), 7.59 (dd, *J* = 8.3 and 2.1 Hz, 1H), 7.54 (d, *J* = 13.3 Hz, 1H), 7.25 (d, *J* = 8.3 Hz, 1H), 7.16 (d, *J* = 13.3 Hz, 1H), 7.00 (dd, *J* = 2.7 and 1.4 Hz, 1H), 6.95 (dd, *J* = 4.0 and 1.4 Hz, 1H), 6.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 134.8, 133.6, 133.7, 132.6, 131.4, 130.6, 130.0, 127.4, 125.7, 124.1, 116.7, 112.4. LC-MS (ESI): t_R = 5.26 min; [M+H] ⁺ 327.35. HRMS for C ₁₂H₉BrClN₂O₂ calculated mass: 326.9530, measured: 326.9529.

(E) 1-(4-Chloro-2-iodophenyl)-2-(2-nitrovinyl)-1H-pyrrole (21).

Synthetic procedure for compound (21) is similar as that described for compound (1) and spectra data are shown below.

1-(4-Chloro-2-iodophenyl)-1*H*-pyrrole (**70**).⁹ Yellow solid (88%). Mp: 72 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.84 (d, J = 2.3 Hz, 1H), 7.31 (dd, J = 8.4 and 2.2 Hz, 1H), 7.13 (d, J = 8.5 Hz, 1H), 6.74 (t, J = 2.2 Hz, 2H), 6.26 (t, J = 2.2 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 142.7, 139.2, 134.2, 129.1, 128.4, 122.1, 109.5, 96.0.

1-(4-Chloro-2-iodophenyl)-1*H*-pyrrole-2-carbaldehyde (**71**). Pink solid (30%). Mp: 62 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.51 (s, 1H), 7.91 (d, *J* = 2.3 Hz, 1H), 7.42 (dd, *J* = 8.3 and 2.2 Hz, 1H), 7.24 (d, *J* = 8.3 Hz, 1H), 7.12 (dd, *J* = 4.0 and 1.7 Hz, 1H), 6.90 (m, 1H), 6.46 (dd, *J* = 4.0 and 2.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 141.2, 138.8, 135.3, 132.5, 130.8, 129.1, 128.8, 122.9, 111.2, 97.8. LC-MS (ESI): t_R = 4.86 min; [M+H]⁺ 332.23. HRMS for C₁₁H₈CIINO [M+H]⁺ calculated mass: 331.9333, measured: 331.9329.

(*E*) 1-(4-Chloro-2-iodophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**21**). Orange solid (57%). Mp: 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 2.0 Hz, 1H), 7.52 (m, 2H), 7.28 (d, *J* = 8.2 Hz, 1H), 7.07 (d, *J* = 13.3 Hz, 1H), 6.94 (m, 2H), 6.49 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.6, 136.5, 132.6, 132.5, 129.9, 129.8, 129.5, 127.5, 125.4, 117.2, 112.4, 98.6. LC-MS (ESI): t_R = 5.35 min; [M+H] ⁺ 375.29. HRMS for C ₁₂H₉ClIN₂O₂ calculated mass: 374.9391, measured: 374.9391

(E) 1-(2-Chloro-4-iodophenyl)-2-(2-nitrovinyl)-1H-pyrrole (22).

Synthetic procedure for compound (22) is similar as that described for compound (1) and spectra data are shown below.

1-(2-Chloro-4-iodophenyl)-1*H*-pyrrole (**72**). Orange oil (95%). ¹H NMR (400 MHz, CDCl₃) δ 7.78 (d, *J* = 2.0 Hz, 1H), 7.57 (dd, *J* = 8.3 and 1.9 Hz, 1H), 6.99 (d, *J* = 8.3 Hz, 1H), 6.80 (t, *J* = 2.3 Hz, 2H), 6.27 (t, *J* = 2.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 139.0, 138.6, 137.8,

⁹ Chai, D. *et al*. Mechanistic Studies of Pd-Catalyzed Regioselective Aryl C-H Bond Functionalization with Strained Alkenes: Origin of Regioselectivity. *Chemistry - A European Journal*, **29**, 8175-8188, S8175/1-S8175/54 (2011).

130.5, 129.0, 122.0, 109.8, 91.6. HRMS for C $_{10}H_8CIIN [M+H]^+$ calculated mass: 303.9384, measured: 303.9384.

1-(2-Chloro-4-iodophenyl)-1*H*-pyrrole-2-carbaldehyde (**73**). Yellow solid (32%). Mp: 92 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.52 (s, 1H), 7.87 (d, *J* = 2.0 Hz, 1H), 7.69 (dd, *J* = 8.3 and 2.0 Hz, 1H), 7.13 (dd, *J* = 3.8 and 1.6 Hz, 1H), 7.07 (d, *J* = 8.3 Hz, 1H), 6.94 (m, 1H), 6.46 (dd, *J* = 3.9 and 2.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 178.5, 138.5, 137.2, 136.6, 133.0, 132.8, 131.0, 130.1, 123.2, 111.2, 94.1. LC-MS (ESI): t_R = 4.98 min; [M+H]⁺ 332.28. HRMS for C₁₁H₈CIINO [M+H]⁺ calculated mass: 331.9333, measured: 331.9329.

(*E*) 1-(2-Chloro-4-iodophenyl)-2-(2-nitrovinyl)-1*H*-pyrrole (**22**). Orange solid (57%). Mp: 96 °C. ¹H NMR (400 MHz, CDCl₃) δ 7.96 (d, *J* = 2.0 Hz, 1H), 7.78 (dd, *J* = 8.2 and 1.9 Hz, 1H), 7.56 (d, *J* = 13.4 Hz, 1H), 7.17 (d, *J* = 13.3 Hz, 1H), 7.09 (d, *J* = 8.3 Hz, 1H), 7.00 (dd, *J* = 2.1 and 1.3 Hz, 1H), 6.95 (m, 1H), 6.49 (t, *J* = 3.3 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 137.3, 135.5, 133.4, 132.6, 130.8, 130.0, 127.4, 125.7, 116.8, 112.4, 95.4. LC-MS (ESI): t _R = 5.35 min; [M+H] ⁺ 375.29. HRMS for C ₁₂H₉ClIN₂O₂ calculated mass: 374.9391, measured: 374.9391.

(E) 1-(3-Chlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole (23).

Synthetic procedure for compound (23) is similar as that described for compound (2) and spectra data are shown below.

1-(3-Chlorophenyl)-1*H*-pyrrole-3-carbaldehyde (74).¹⁰ Brown solid (50%). Mp: 68°C. ¹H NMR (400 MHz, CDCl ₃) δ 9.86 (s, 1H), 7.66 (t, *J* = 2.0 Hz, 1H), 7.44 (t, *J* = 2.0 Hz, 1H), 7.41 (d, *J* = 8.0 Hz, 1H), 7.37-7.31 (m, 2H), 7.07 (m, 1H), 6.81 (dd, *J* = 3.1 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl ₃) δ 185.4, 140.5, 135.6, 131.0, 128.5, 127.4, 127.0, 122.2, 121.4, 119.2, 110,0. LC-MS (ESI): t_R = 4.42 min; [M+H]⁺ 206.34.

(*E*) 1-(3-chlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**23**). Brown solid (50%). Mp: 104 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 13.3 Hz, 1H), 7.46 (d, *J* = 13.3 Hz, 1H), 7.43-7.40 (m, 3H), 7.33 (dt, *J* = 8.1 and 1.0 Hz, 1H), 7.39 (dt, *J* = 8.0 and 1.0 Hz, 1H), 7.11 (t, *J* = 2.7 Hz, 1H), 6.57 (dd, *J* = 3.0 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.4, 135.7, 134.3, 133.1, 131.0, 127.2, 124.9, 122.7, 121.1, 118.8, 118.2, 109.5. LC-MS (ESI): t _R = 5.15 min; [M+H]⁺ 249.40. HRMS for C ₁₂H₁₀ClN₂O₂ [M+H]⁺ calculated mass: 249.0425, measured: 249.0424.

¹⁰ McInnes, Campbell and Liu, Shu. Cyclin based inhibitors of CDK2 and CDK4. U.S. Pat. Appl. Publ., 20130289240, 31 Oct 2013.

(E) 1-(3,4-Dichlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole (24).

Synthetic procedure for compound (24) is similar as that described for compound (2) and spectra data are shown below.

1-(3,4-Dichlorophenyl)-1*H*-pyrrole-3-carbaldehyde (**75**).¹¹ Orange solid (30%). Mp: 112 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.78 (s, 1H), 7.56 (t, *J* = 1.9 Hz, 1H), 7.48 (m, 2H), 7.21 (dd, *J* = 8.6 and 2.6 Hz, 1H), 6.98 (t, *J* = 2.6 Hz, 1H), 6.74 (dd, *J* = 3.0 and 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 138.8, 134.0, 131.6, 131.4, 128.7, 126.8, 123.0, 122.1, 120.2, 110.0. LC-MS (ESI): t_R = 4.92 min; [M+H]⁺ 240.26.

(*E*) 1-(3,4-Dichlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**24**). Brown solid (40%). Mp: 128 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.01 (d, *J* = 13.2 Hz, 1H), 7.58 (d, *J* = 8.6 Hz, 1H), 7.54 (d, *J* = 2.9 Hz, 1H), 7.47 (d, *J* = 13.4 Hz, 1H), 7.41 (t, *J* = 2.0 Hz, 1H), 7.27 (dd, *J* = 8.6 and 2.6 Hz, 1H), 7.10 (t, *J* = 2.5 Hz, 1H), 6.59 (dd, *J* = 3.1 and 1.8 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 138.6 134.6, 134.0, 132.8, 131.6, 131.2, 124.7, 122.7, 122.6, 119.9, 118.4, 109.8. LC-MS (ESI): t_R = 5.37 min; [M+H] ⁺ 283.44. HRMS for C ₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0036.

(E) 1-(3,5-Dichlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole (25).

Synthetic procedure for compound (**25**) is similar as that described for compound (**2**) and spectra data are shown below.

1-(3,5-Dichlorophenyl)-1*H*-pyrrole-3-carbaldehyde (**76**). Brown solid (35%). Mp: 154 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.86 (s, 1H), 7.65 (t, *J* = 2.1 Hz, 1H), 7.36-7.34 (m, 3H), 7.07 (t, *J* = 2.8 Hz, 1H), 6.83 (dd, *J* = 3.0 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 141.1, 136.3, 128.8, 127.3, 126.7, 122.0, 119.7, 110.4. LC-MS (ESI): t _R = 4.85 min; [M+H]⁺ 240.35. HRMS for C₁₁H₈Cl₂NO [M+H]⁺ calculated mass: 239.9975, measured: 239.9977.

¹¹ Haldar, P. *et al.* Sodium borohydride-iodine mediated reduction of γ -lactam carboxylic acids followed by DDQ mediated oxidative aromatization: a simple approach towards N-aryl-formylpyrroles and 1,3-diaryl-formylpyrroles. *Tetrahedron*, **14**, 3049-3056 (2007)

(*E*) 1-(3,5-Dichlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**25**). Brown solid (40%). Mp: 190°C. ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 13.3 Hz, 1H), 7.45 (d, *J* = 13.4 Hz, 1H), 7.41 (t, *J* = 1.9 Hz, 1H), 7.34 (t, *J* = 1.7 Hz, 1H), 7.31 (d, *J* = 1.8 Hz, 2H), 7.10 (t, *J* = 2.7 Hz, 1H), 6.58 (dd, *J* = 3.0 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 140.9, 136.3, 134.7, 132.6, 127.1, 124.5, 122.6, 119.3, 118.6, 109.9. LC-MS (ESI): t R = 5.49 min; [M+H] + 283.40. HRMS for C₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

(E) 1-(2,6-Dichlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole (26).

Synthetic procedure for compound (26) is similar as that described for compound (2) and spectra data are shown below.

1-(2,6-Dichlorophenyl)-1*H*-pyrrole-3-carbaldehyde (77).⁶ White solid (30%). Mp: 92°C. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.42-7.39 (m, 2H), 7.30 (m, 1H), 7.27 (dd, *J* = 3.7 and 1.1 Hz, 1H), 6.75 (dd, *J* = 3.1 and 1.5 Hz, 1H), 6.66 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 135.5, 133.9, 130.6, 130.4, 128.9, 127.7, 124.7, 108.5. LC-MS (ESI): t _R = 4.85 min; [M+H]⁺ 240.39.

(*E*) 1-(2,6-Dichlorophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**26**). Yellow solid (50%). Mp: 108 °C. ¹H NMR (400 MHz, CDCl₃) δ 8.04 (d, *J* = 13.2 Hz, 1H), 7.49-7.46 (m, 3H), 7.37 (dd, *J* = 8.8 and 7.3 Hz, 1H), 7.12 (m, 1H), 6.77 (m, 1H), 6.61-6.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 134.1, 133.9, 133.4, 130.5, 129.9, 128.9, 128.1, 125.3, 117.1, 108.0. LC-MS (ESI): t_R = 5.08 min; [M+H] ⁺ 283.40. HRMS for C ₁₂H₉Cl₂N₂O₂ [M+H]⁺ calculated mass: 283.0035, measured: 283.0035.

(E) 3-(2-Nitrovinyl)-1-(2,4,6-trichlorophenyl)-1H-pyrrole (27).

Synthetic procedure for compound (27) is similar as that described for compound (2) and spectra data are shown below.

1-(2,4,6-Trichlorophenyl)-1*H*-pyrrole-3-carbaldehyde (**78**). Beige solid (30%). Mp: 74°C. ¹H NMR (400 MHz, CDCl₃) δ 9.87 (s, 1H), 7.50 (s, 2H), 7.31 (t, *J* = 2.0 Hz, 1H), 6.83 (dd, *J* = 3.1 and 1.5 Hz, 1H), 6.71-6.69 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.3, 135.8, 134.6, 134.3, 130.1, 128.9, 127.9, 124.6, 108.8. LC-MS (ESI): t_R = 4.86 min; [M+H]⁺ 274.31. HRMS for C₁₁H₇Cl₃NO [M+H]⁺ calculated mass: 273.9587, measured: 273.9582.

(*E*) 3-(2-Nitrovinyl)-1-(2,4,6-trichlorophenyl)-1*H*-pyrrole (**27**). Yellow solid (50%). Mp: 90 °C. ¹H NMR (400 MHz, CDCl ₃) δ 8.02 (d, *J* = 13.2 Hz, 1H), 7.50 (s, 2H), 7.47 (d, *J* = 13.3 Hz, 1H), 7.08 (t, *J* = 1.7 Hz, 1H), 6.73 (t, *J* = 6.7 Hz, 1H), 6.58 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 135.8, 134.5, 134.3, 134.2, 133.1, 128.9, 127.9, 125.2, 117.3, 108.3. LC-MS (ESI): t_R = 5.39 min; [M-H] ⁻ 315.31. HRMS for C ₁₂H₈Cl₃N₂O₂ [M+H]⁺ calculated mass: 316.9645, measured: 316.9645.

(E) 1-(2-Bromo-4-chlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole (28).

Synthetic procedure for compound (28) is similar as that described for compound (2) and spectra data are shown below.

1-(2-Bromo-4-chlorophenyl)-1*H*-pyrrole-3-carbaldehyde (**79**). Rose solid (32%). Mp: 86 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.74 (d, *J* = 2.3 Hz, 1H), 7.44 (t, *J* = 1.8 Hz, 1H), 7.42 (dd, *J* = 8.4 and 2.2 Hz, 1H), 7.30 (d, *J* = 8.3 Hz, 1H), 6.83 (m, 1H), 6.78 (dd, *J* = 3.0 and 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 137.8, 135.3, 133.7, 130.1, 128.7, 128.7, 127.7, 124.9, 120.4, 108.7. LC-MS (ESI): t _R = 4.72 min; [M+H] ⁺ 284.25. HRMS for C₁₁H₈BrClNO [M+H]⁺ calculated mass: 283.9472, measured: 283.9470.

(*E*) 1-(2-Bromo-4-chlorophenyl)-3-(2-nitrovinyl)-1 *H*-pyrrole (**28**). Yellow solid (53%). ¹H NMR (400 MHz, CDCl₃) δ 8.08 (d, *J* = 13.2 Hz, 1H), 8.00 (d, *J* = 2.4 Hz, 1H), 7.93 (d, *J* = 13.1 Hz, 1H), 7.72 (t, *J* = 1.8 Hz, 1H), 7.61 (dd, *J* = 8.5 and 2.4 Hz, 1H), 7.53 (d, *J* = 8.6 Hz 1H), 7.13 (t, *J* = 1.8 Hz, 1H), 6.82 (dd, *J* = 2.8 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃)

 δ 138.2, 134.9, 134.5, 134.3, 133.3, 130.3, 130.0, 129.4, 126.4, 120.4, 117.4, 109.2. LC-MS (ESI): t_R = 5.36 min; [M+H] ⁺ 327.35. HRMS for C ₁₂H₉BrClN₂O₂ [M+H]⁺ calculated mass: 326.9530, measured: 326.9529.

(E) 1-(4-Bromo-2-chlorophenyl)-3-(2-nitrovinyl)-1H-pyrrole (29).

Synthetic procedure for compound (29) is similar as that described for compound (2) and spectra data are shown below.

1-(4-Bromo-2-chlorophenyl)-1*H*-pyrrole-3-carbaldehyde (**80**). Orange solid (34%). Mp: 100 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.88 (s, 1H), 7.75 (d, J = 2.1 Hz, 1H), 7.55 (dd, J = 8.4 and 2.1 Hz, 1H), 7.50 (t, J = 1.7 Hz, 1H), 7.28 (d, J = 8.3 Hz, 1H), 6.89 (t, J = 2.7 Hz, 1H), 6.82 (dd, J = 2.9 and 1.5 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 136.6, 133.6, 131.2, 130.8, 130.0, 128.7, 127.8, 124.8, 122.5, 108.9. LC-MS (ESI): t_R = 4.76 min; [M+H]⁺ 284.21. HRMS for C₁₁H₈BrClNO [M+H]⁺ calculated mass: 283.9472, measured: 283.9470.

(*E*) 1-(4-Bromo-2-chlorophenyl)-3-(2-nitrovinyl)-1 *H*-pyrrole (**29**). Yellow solid (55%). Mp: 182°C. ¹H NMR (400 MHz, DMSO-d₆) δ 8.09 (d, *J* = 13.3 Hz, 1H), 8.00 (dd, *J* = 2.1 and 0.9 Hz, 1H), 7.93 (d, *J* = 13.3 Hz, 1H), 7.76 (bs, 1H), 7.71 (ddd, *J* = 8.5, 2.1, and 0.9 Hz, 1H), 7.49 (dd, *J* = 8.4 and 0.8 Hz, 1H), 7.17 (m, 1H), 6.83 (m, 2.8 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ 136.9, 134.8, 134.6, 133.3, 132.0, 130.2, 130.1, 130.0, 126.3, 122.1, 117.6, 109.3. LC-MS (ESI): t_R = 5.38 min; [M+H]⁺ 327.35. HRMS for C₁₂H₉BrClN₂O₂ [M+H]⁺ calculated mass: 326.9530, measured: 326.9528.

(E) 1-(2,4-Dibromophenyl)-2-(2-nitrovinyl)-1H-pyrrole (30).

Synthetic procedure for compound (30) is similar as that described for compound (2) and spectra data are shown below.

1-(2,4-Dibromophenyl)-1*H*-pyrrole-3-carbaldehyde (**81**). Pink solid (32%). Mp: 86 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.89 (d, J = 2.1 Hz, 1H), 7.57 (dd, J = 8.5 and 2.1 Hz, 1H), 7.45 (t, J = 1.8 Hz, 1H), 7.24 (d, J = 8.4 Hz, 1H), 6.84 (m, 1H), 6.78 (m, 1H), . ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 138.2, 136.4, 131.7, 130.0, 129.1, 127.7, 124.8, 123.0, 120.6, 108.7. LC-MS (ESI): t_R = 4.81 min; [M+H]⁺ 328.25.

(*E*) 1-(2,4-Dibromophenyl)-2-(2-nitrovinyl)-1 *H*-pyrrole (**30**). Yellow solid (52%). Mp: 190 °C. ¹H NMR (400 MHz, DMSO-d ₆) δ 8.10 (s, 1H), 8.08 (d, J = 13.2 Hz, 1H), 7.92 (d, J = 13.1 Hz, 1H), 7.73 (dd, J = 8.4 and 2.1 Hz, 1H), 7.45 (d, J = 8.5 Hz, 1H), 7.12 (m, 1H), 7.17 (m, 1H), 6.80 (dd, 3.0 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d ₆) δ 138.6, 136.0, 134.9, 134.5, 132.4, 130.3, 130.2, 126.4, 122.6, 120.6, 117.4, 109.2. LC-MS (ESI): t _R = 5.44 min; [M+H]⁺ 369.37. HRMS for C₁₂H₉Br₂N₂O₂ [M+H]⁺ calculated mass: 370.9025, measured: 370.9023.

(E) 1-(4-Chloro-2-iodophenyl)-3-(2-nitrovinyl)-1H-pyrrole (31).

Synthetic procedure for compound (31) is similar as that described for compound (2) and spectra data are shown below.

1-(4-Chloro-2-iodophenyl)-1*H*-pyrrole-3-carbaldehyde (**82**). Yellow solid (31%). Mp: 102 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.79 (s, 1H), 7.89 (d, J = 2.4 Hz, 1H), 7.38 (dd, J = 8.4 and 2.3 Hz, 1H), 7.31 (t, J = 1.8 Hz, 1H), 7.18 (d, J = 8.4 Hz, 1H), 6.71 (m, 2H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 141.3, 139.5, 135.5, 130.0, 129.5, 128.2, 127.7, 124.8, 108.8, 95.6. LC-MS (ESI): t_R = 4.81 min; [M+H] ⁺ 332.23. HRMS for C ₁₁H₈CIINO [M+H] ⁺ calculated mass: 331.9333, measured: 331.9328.

(*E*) 1-(4-Chloro-2-iodophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**31**). Yellow solid (53%). ¹H NMR (400 MHz, CDCl₃) δ 8.03 (d, *J* = 13.3 Hz, 1H), 7.96 (d, *J* = 2.3 Hz, 1H), 7.47 (d, *J* = 13.3 Hz, 1H), 7.45 (dd, *J* = 2.3 and 8.3 Hz, 1H), 7.24 (d, *J* = 8.4 Hz, 1H), 7.16 (t, *J* = 1.8 Hz, 1H), 6.82 (t, *J* = 2.8 Hz, 1H), 6.55 (dd, *J* = 2.9 and 1.6 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.9, 137.2, 137.1, 134.2, 133.2, 130.5, 128.7, 127.8, 125.3, 117.3, 108.3. LC-MS (ESI): t_R = 5.40 min; [M-H] ⁻³373.32. HRMS for C ₁₂H₉ClIN₂O₂ [M+H]⁺ calculated mass: 374.9391, measured: 374.9390.

(E) 1-(2-Chloro-4-iodophenyl)-3-(2-nitrovinyl)-1H-pyrrole (32).

Synthetic procedure for compound (32) is similar as that described for compound (2) and spectra data are shown below.

1-(4-Chloro-2-iodophenyl)-1*H*-pyrrole-3-carbaldehyde (**83**). Beige solid (35%). Mp: 118 °C. ¹H NMR (400 MHz, CDCl₃) δ 9.85 (s, 1H), 7.91 (d, *J* = 1.8 Hz, 1H), 7.72 (dd, *J* = 8.3 and 1.8 Hz, 1H), 7.48 (t, *J* = 1.8 Hz, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 6.87 (m, 1H), 6.79 (dd, *J* = 3.2 and 1.7 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 185.4, 139.3, 137.2, 137.1 130.6, 130.0, 128.9, 127.8, 124.7, 108.8, 93.5. LC-MS (ESI): t $_{\rm R}$ = 4.87 min; [M+H] ⁺ 332.28. HRMS for C₁₁H₈CIINO [M+H]⁺ calculated mass: 331.9333, measured: 331.9328. (*E*) 1-(2-Chloro-4-iodophenyl)-3-(2-nitrovinyl)-1*H*-pyrrole (**32**). Yellow solid (53%). ¹H NMR (400 MHz, CDCl₃) δ 8.02 (d, *J* = 13.4 Hz, 1H), 7.91 (d, *J* = 1.9 Hz, 1H), 7.72 (dd, *J* = 8.2 and 2.0 Hz, 1H), 7.46 (d, *J* = 13.5 Hz, 1H), 7.25 (t, 1.9 Hz, 1H), 7.08 (d, *J* = 8.4 Hz, 1H), 6.91(m, 1H), 6.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 139.3, 138.9, 137.2, 137.1, 134.2, 133.2, 130.5, 128.7, 127.8, 125.3, 117.3, 108.3. LC-MS (ESI): t $_{\rm R}$ = 5.47 min; [M-H]⁻ 373.27. HRMS for C₁₂H₉CIIN₂O₂ [M+H]⁺ calculated mass: 374.9391, measured: 374.9390.