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Abstract

Background

The burden of typhoid in sub-Saharan African (SSA) countries has been difficult to estimate,

in part, due to suboptimal laboratory diagnostics. However, surveillance blood cultures at

two sites in Nigeria have identified typhoid associated with Salmonella enterica serovar
Typhi (S. Typhi) as an important cause of bacteremia in children.

Methods

A total of 128 S. Typhi isolates from these studies in Nigeria were whole-genome

sequenced, and the resulting data was used to place these Nigerian isolates into a world-

wide context based on their phylogeny and carriage of molecular determinants of antibiotic

resistance.

Results

Several distinct S. Typhi genotypes were identified in Nigeria that were related to other clus-

ters of S. Typhi isolates from north, west and central regions of Africa. The rapidly expand-

ing S. Typhi clade 4.3.1 (H58) previously associated with multiple antimicrobial resistances

in Asia and in east, central and southern Africa, was not detected in this study. However,

antimicrobial resistance was common amongst the Nigerian isolates and was associated

with several plasmids, including the IncHI1 plasmid commonly associated with S. Typhi.

Conclusions

These data indicate that typhoid in Nigeria was established through multiple independent

introductions into the country, with evidence of regional spread. MDR typhoid appears to be

evolving independently of the haplotype H58 found in other typhoid endemic countries. This

study highlights an urgent need for routine surveillance to monitor the epidemiology of

typhoid and evolution of antimicrobial resistance within the bacterial population as a means

to facilitate public health interventions to reduce the substantial morbidity and mortality of

typhoid.

Author Summary

Typhoid fever, a serious bloodstream infection caused by the bacterium Salmonella Typhi,
is a major cause of disease and death around the world. There have been limited data on
the epidemiology of typhoid in many countries in sub-Saharan African, including Nigeria.
Recent evidence, however, showed that typhoid was an important cause of bacteraemia in
children residing in two regions of Nigeria. Here, we analyzed the whole genome
sequences of 128 S. Typhi isolates from two studies in order to elucidate the population
structure and characterize the genetic components of antimicrobial resistance. We found
that the multiple S. Typhi genotypes identified were closely related to other S. Typhi from
neighboring regions of Africa and that multidrug resistance (MDR) was common among
these isolates, and in many cases was associated with the IncHI1 plasmid known to cause
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MDR typhoid. These results provide evidence that typhoid was established in Nigeria as a
result of several independent introductions into the country and that there has been exten-
sive exchange of S. Typhi in and around the region of West Africa. This study emphasizes
the importance of surveillance to improve our understanding of the epidemiology of
typhoid, which is needed to underpin public health measures to reduce the spread of dis-
ease and facilitate patient management.

Introduction
Typhoid fever is a systemic infection caused by the Gram-negative bacterium Salmonella enter-
ica serovar Typhi (S. Typhi) that continues to be a serious global health problem and a major
cause of morbidity and mortality in low-middle income countries [1]. It is estimated that the
yearly incidence of typhoid fever exceeds 20 million cases, with over 200,000 deaths [2, 3].
Defining the burden of typhoid fever is a challenge in settings where there are few diagnostic
microbiology facilities, with diagnosis often based on clinical history of fever, malaise, and
abdominal pain. Unfortunately, these symptoms have considerable overlap with several other
febrile illnesses and clinical diagnosis is therefore inaccurate [4].

Nigeria is one of the most densely populated countries in Africa with large areas of urban
development. Thus, it is perhaps surprising that little reliable data are available on microbial
culture of the etiologic agents of bacteremia in children or adults. This poses a challenge for
data comparison with other regions, including other sub-Saharan African countries where
such data are available [5–7]. In general, febrile illnesses among children in Nigeria are pre-
sumed by clinicians to be caused by malaria, which is still very common in many parts of the
country. Only if fever persists following an empiric course of anti-malarials, is typhoid then
considered as a potential cause of infection [8]. In studies from central and northwest Nigeria
[9], we found that S. Typhi was the commonest cause of bloodstream infections in children,
particularly in those living in the proximity of Abuja city located in central Nigeria.

Until recently, molecular epidemiological studies on S. Typhi were compromised by a lack
of genetic resolution, limiting the ability to define the population structure of the bacteria and
identify transmission patterns. This is because S. Typhi is a relatively monomorphic pathogen
with limited genome variation [10]. However, sequencing-based approaches have facilitated
the stratification of S. Typhi into multiple genotypes [11] (see Wong et al. 2016, under review
in Nature Communications, NCOMMS-15-25823, manuscript included). Whole genome
sequencing in particular can unequivocally identify phylogenetic relationships with important
genetic traits such as antimicrobial resistance [12]. Here we report whole genome-based analy-
sis of 128 bloodstream isolates of S. Typhi from children residing in two regions of Nigeria, and
compared these with data from other countries in Africa, including the West African
subregion.

Methods

Settings
Nigeria has a population of approximately 177 million people making it the most populous
country in sub-Saharan Africa [13]. The two study sites in Nigeria were the Federal Capital
Territory (FCT) and Kano. The FCT is a federal territory in central Nigeria and covers a land
area of 8,000 square kilometers. It is the home of the capital city Abuja, a “planned” city, built
in the 1980s. It was officially made Nigeria’s capital in 1991 replacing the previous capital in
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Lagos. In 2006, the population was estimated at 1.7 million [14]. The FCT continue to experi-
ence rapid population growth; it has been reported that some areas around Abuja have been
growing at an annual rate of 20–30%, and the current population may be as high as 5.7 million
[14]. The rapid spread of squatter settlements and shantytowns in and around the city limits
contribute to this rapid growth. The rainy season begins in April and ends in October. Within
this period there is a brief interlude of Harmattan, occasioned by the Northeast Trade Wind,
with the main features of dust haze, intensified coldness and dryness. The annual total rainfall
for the FCT is in the range of 1,100 to 1,600 mm. The population is diverse, with increasing
representation from the major ethnic groups of Hausa, Yoruba, and Igbos following the devel-
opment of the FCT and relocation of the federal capital [15]. Of note, there is also perennial
malaria transmission, mostly due to Plasmodium falciparum, and the HIV prevalence is 7.5%
amongst pregnant women attending antenatal clinics [16].

Kano is the capital of Kano state in northwest Nigeria. According to the 2006 census, Kano
state has a population of 9.38 million, which is comprised predominantly of Hausa and Fulani
ethnic groups [17]. It is recognized as one of the fastest growing cities in Nigeria with a popula-
tion density of about 1,000 inhabitants per km2. It lies within the Sahel savannah region with
daily mean temperature of about 30–33°C during the dry months of March to May and 10°C
during the autumn months of September to February. Rainy season varies from year to year,
but typically commences in May and ends in October, with an average annual rainfall of
600mm. The dry season starts from November to April [18]. The entire state is within the
meningococcal disease belt and malarial transmission is seasonal [17]. HIV prevalence among
women attending antenatal clinic is 1.3% [16].

Enrolment sites
The enrolment sites at FCT are as previously described [9, 15]. Briefly, children aged less than
5 years were enrolled from primary, secondary and tertiary healthcare facilities on presentation
with an acute febrile illness and symptoms suggestive of sepsis. In Kano, we enrolled children
from Aminu Kano Teaching Hospital (AKTH), Hasiya Bayero Pediatric Hospital and Murtala
Specialist Hospital. While AKTH serves as a tertiary referral center, the other two facilities pro-
vide primary and secondary healthcare services. The combined outpatient attendance for chil-
dren at these three facilities is about 1,000 daily. Both study sites included patients from the
newer settlements on the outskirt of Abuja and around Kano where the level of sanitation is
poor and access to potable water limited.

Data collection
A structured questionnaire was used to collate the clinical information. Study data were col-
lected and managed using REDCap electronic data capture tools hosted at the University of
Nebraska Medical Center [19]. IBM SPSS for statistics was used for data analysis. Dichotomous
variables were analyzed using χ2 or χ2 for trend tests [20].

Ethics statement
Clinical information was collected using a structured questionnaire after obtaining a signed
informed consent from the child’s parent or legal guardian. This study was approved by the
ethics committees of the FCT, National Hospital Abuja, Zankli Medical Center, Federal Medi-
cal Center Keffi, Aminu Kano Teaching Hospital, and UNMC, Omaha Institutional Review
Board.
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Blood culture processing
Blood sampling and processing were as previously described [9, 15]. Briefly, we utilized only
aerobic blood culture bottles and held cultures in the Bactec 9050 incubator for a maximum of
5 days. Bacteria were identified by a combination of colony morphology and biochemical
assays. For example, the API 20E system (bioMérieux, France) was used to identify Enterobac-
teriacae. Antimicrobial susceptibility profiles of the bacteria were determined by the Kirby-
Bauer disk diffusion test using standard interpretative criteria [21] for locally available antimi-
crobials (amoxicillin, co-amoxiclav, ceftazidime, ceftriaxone, nalidixic acid, ciprofloxacin,
ofloxacin, sulfamethoxazole, trimethoprim-sulfamethoxazole, chloramphenicol, tetracycline,
streptomycin, gentamicin, kanamycin, azithromycin, imipenem) in order to provide immedi-
ate management of patients. Bacterial isolates were stored in skimmed milk at -70°C and fur-
ther characterized at the Clinical Microbiology Laboratory of the University of Nebraska
Medical Center (UNMC).

Antimicrobial susceptibility testing
Antimicrobial susceptibility testing was performed at the UNMCMicrobiology laboratory
using the Epsilometer test (Etest; bioMérieux, France) according to standard methods. Mini-
mum inhibitory concentration (MIC) values were interpreted according to Clinical Laboratory
Standards Institute (CLSI) standards [21]. Due to the lack of CLSI standards, a streptomycin
MIC of�16 mg/L was considered resistant in these studies.

Salmonella serotyping
All Salmonella isolates were identified to the serotype level using the Bioplex 200 (Bio-Rad) as
previously described using the CDC standard Salmonellamolecular serotyping protocol [22–
24]. A total of 128 S. Typhi isolates were identified in these studies for whole genome
sequencing.

DNA sequencing
S. Typhi DNA was prepared using the Wizard Genomic DNA Kit (Promega, Madison, WI,
USA) as per manufacturer’s instructions. Index-tagged paired end Illumina sequencing librar-
ies were prepared as previously described [25]. These were combined into pools each contain-
ing 96 uniquely tagged libraries and sequenced on the Illumina Hiseq2000 or Miseq platforms
(Illumina, San Diego, CA, USA) according to manufacturer’s protocols to generate tagged 100
or 150 base pair (bp) paired-end reads with an insert size of 300–400 bp. Sequence reads were
deposited in the European Nucleotide Archive under accession ERP005877 and a full list of
accession numbers for each sample is available in S1 Table. Sequence data from 1,831 addi-
tional S. Typhi isolates from 63 countries, generated previously in the same manner (Wong
et al. 2015) [12], were also included in the study (reads are available in the European Read
Archive under accession ERP001718).

Read alignment and SNP detection
For analysis of single nucleotide polymorphisms (SNPs), the paired-end reads were mapped to
the reference genome of S. Typhi CT18 (accession number AL513382), including the chromo-
some and plasmids pHCM1 and pHCM2 [26], using SMALT (version 0.7.4) (http://www.
sanger.ac.uk/resources/software/smalt/). SNPs were identified as previously described, using
samtools mpileup [27] and filtering with a minimummapping quality of 30 and a quality ratio
cut-off of 0.75 [25]. The allele at each locus in each isolate was determined by reference to the
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consensus base in that genome, using samtools mpileup [27] and removing low confidence
alleles with consensus base quality�20, read depth�5 or a heterozygous base call. SNPs called
in phage regions, repetitive sequences (354 kbp; ~7.4% of bases in the S. Typhi CT18 reference
chromosome, as defined previously [10]) or recombinant regions (~180 kbp;<4% of CT18 ref-
erence chromosome, identified using an approach described previously [25, 28]) were
excluded, resulting in a final set of 23,300 chromosomal SNPs.

Phylogenetic analysis
The maximum likelihood (ML) phylogenetic tree was built from 23,300 SNP alignment of
1,961 isolates, including one S. Paratyphi A (accession number ERR326600) to provide an out-
group for tree rooting. We used RAxML (version 7.0.4) [29] with the generalized time-revers-
ible model and a Gamma distribution to model site-specific rate variation (the GTR
+ substitution model; GTRGAMMA in RAxML). Support for the ML phylogeny was assessed
via 100 bootstrap pseudo-replicate analyzes of the alignment data. The ML trees were displayed
and annotated using iTOL [30, 31].

In silico resistance plasmid and resistance gene analysis
Plasmids and acquired antimicrobial resistance genes were detected, and their precise alleles
determined, using the mapping-based allele typer SRST2 [32] together with the ARG-Annot
database of antimicrobial resistance genes [33] and the PlasmidFinder database of plasmid rep-
licons [34]. SRST2 was also used to identify mutations in the gyrA, gyrB, parC and parE genes
that have been associated with resistance to quinolones in Salmonella and other Gram-negative
bacteria [35–38].

Results

Typhoid surveillance
Blood cultures were performed for the evaluation of 10,133 acutely ill children, aged 0–60
months, from September 2008 until April 2015, in the FCT (including Abuja) and Kano
located in central and northwest Nigeria, respectively [9]. At FCT 6,082 children were enrolled
between June 2012 and March 2015, of whom 457 (8%) had clinically significant bacteremia.
Of these 110 (24%) had invasive salmonellosis, consisting of S. Typhi in 84 cases and non-
typhoidal salmonellae (NTS) in 26 cases. In Kano from January 2014 until April 2015 clinically
significant bacteremia was detected in 609 (15%) of 4,051 children: salmonellae accounted for
364 (60%) of 609 cases, of which 296 were S. Typhi and 68 were NTS. Across both regions Sal-
monella species accounted for 24–60% of bacteremia with S. Typhi being the most common
serovar isolated with a total of 380 isolates (76–79%) [9].

Phylogenetic analysis of Nigerian S. Typhi
A selection of one hundred and twenty-two S. Typhi from the FCT and six from Kano, all iso-
lated between 2008–2013, were randomly selected and sequenced via Illumina HiSeq and
MiSeq (see Methods). The genomes of the Nigerian isolates were compared to that of the S.
Typhi CT18 reference strain and a previously published global collection of approximately
2,000 S. Typhi isolates [12]. A phylogeny was built by extracting single nucleotide polymor-
phisms (SNPs) from the whole genome sequences, excluding likely recombination events and
repetitive sequences that could confound phylogenetic analysis as described in Methods. The
SNP data were also used to assign each isolate to one of 62 previously defined genotypes; details
of the source and genotype of all Nigerian isolates is given in Table 1 and S1 Table. The
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Table 1. Summary of genotypes of Nigerian S. Typhi.

Laboratory name Year of isolation Location Roumagnac haplotype* Primary clade Clade Subclade

PO_30 2008 Abuja H56 3 3.1 3.1.1

PO_601 2009 Abuja Untypeable 1 1 0.0.3

PO_132 2009 Abuja Untypeable 2 2.3 2.3.1

PO_107 2009 Abuja Untypeable 2 2.3 2.3.1

PO_1057 2009 Abuja H56 3 3.1 3.1.1

PO_1060 2009 Abuja H56 3 3.1 3.1.1

PO_1063 2009 Abuja H56 3 3.1 3.1.1

PO_187 2009 Abuja H56 3 3.1 3.1.1

PO_227 2009 Abuja H56 3 3.1 3.1.1

PO_293 2009 Abuja H56 3 3.1 3.1.1

PO_351 2009 Abuja H56 3 3.1 3.1.1

PO_355 2009 Abuja H56 3 3.1 3.1.1

PO_771 2009 Abuja H56 3 3.1 3.1.1

PO_812 2009 Abuja H56 3 3.1 3.1.1

PO_919 2009 Abuja H56 3 3.1 3.1.1

PO_575 2009 Abuja H56 3 3.1 3.1.1

PO_260 2009 Abuja H52 4 4.1 4.1.0

PO_1102 2010 Abuja Untypeable 1 1 0.0.3

PO_1131 2010 Abuja Untypeable 1 1 0.0.3

3135STDY5861198 2010 Abuja Untypeable 1 1 0.0.3

3135STDY5861206 2010 Abuja Untypeable 1 1 0.0.3

3135STDY5861239 2010 Abuja Untypeable 1 1 0.0.3

3135STDY5861254 2010 Abuja Untypeable 2 2.1 2.1.0

PO_1255 2010 Abuja H56 3 3.1 3.1.1

PO_1098 2010 Abuja H56 3 3.1 3.1.1

PO_1101 2010 Abuja H56 3 3.1 3.1.1

PO_1210 2010 Abuja H56 3 3.1 3.1.1

PO_1242 2010 Abuja H56 3 3.1 3.1.1

PO_1265 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861190 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861230 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861262 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861271 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861184 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861208 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861216 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861224 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861232 2010 Abuja H56 3 3.1 3.1.1

3135STDY5861183 2010 Abuja H42 3 3.3 3.3.0

PO_1232 2010 Abuja H52 4 4.1 4.1.0

3135STDY5861222 2010 Abuja H52 4 4.1 4.1.0

3135STDY5861246 2010 Abuja H52 4 4.1 4.1.0

3135STDY5861270 2010 Abuja H52 4 4.1 4.1.0

3135STDY5861199 2010 Abuja H52 4 4.1 4.1.0

3135STDY5861247 2010 Abuja H52 4 4.1 4.1.0

PO_1110 2010 Abuja H52 4 4.1 4.1.1

PO_1256 2011 Abuja Untypeable 1 1 0.0.3

(Continued)
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Table 1. (Continued)

Laboratory name Year of isolation Location Roumagnac haplotype* Primary clade Clade Subclade

3135STDY5861272 2011 Abuja Untypeable 2 2.1 2.1.0

3135STDY5861209 2011 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861248 2011 Abuja H56 3 3.1 3.1.1

3135STDY5861256 2011 Abuja H56 3 3.1 3.1.1

3135STDY5861264 2011 Abuja H56 3 3.1 3.1.1

3135STDY5861193 2011 Abuja H56 3 3.1 3.1.1

3135STDY5861201 2011 Abuja H56 3 3.1 3.1.1

3135STDY5861233 2012 Abuja Untypeable 2 2.3 2.3.1

3135STDY5861241 2012 Abuja Untypeable 2 2.3 2.3.1

3135STDY5861273 2012 Abuja Untypeable 2 2.3 2.3.1

3135STDY5861217 2012 Abuja H56 3 3.1 3.1.1

3135STDY5861225 2012 Abuja H56 3 3.1 3.1.1

3135STDY5861195 2012 Abuja Untypeable 2 2.3 2.3.1

3135STDY5861211 2012 Abuja H56 3 3.1 3.1.1

3135STDY5861235 2012 Abuja H56 3 3.1 3.1.1

3135STDY5861243 2012 Abuja H56 3 3.1 3.1.1

3135STDY5861210 2013 Kano Untypeable 2 2.3 2.3.1

3135STDY5861226 2013 Kano H56 3 3.1 3.1.1

3135STDY5861202 2013 Kano H56 3 3.1 3.1.1

3135STDY5861234 2013 Kano H56 3 3.1 3.1.1

3135STDY5861242 2013 Kano H56 3 3.1 3.1.1

3135STDY5861218 2013 Kano H56 3 3.1 3.1.1

3135STDY5861196 2013 Abuja Untypeable 1 1 0.0.1

3135STDY5861244 2013 Abuja Untypeable 1 1 0.0.1

3135STDY5861359 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861290 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861298 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861350 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861287 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861280 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861289 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861337 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861353 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861361 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861369 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861253 2013 Abuja Untypeable 2 2.2 2.2.0

3135STDY5861342 2013 Abuja Untypeable 2 2.3 2.3.1

3135STDY5861334 2013 Abuja Untypeable 2 2.3 2.3.2

3135STDY5861294 2013 Abuja H56 3 3.1 3.1.0

3135STDY5861312 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861320 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861268 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861276 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861229 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861237 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861245 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861314 2013 Abuja H56 3 3.1 3.1.1

(Continued)
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distribution of the 128 Nigerian S. Typhi within the global phylogenetic tree is shown in S1 Fig.
This global phylogeny includes 238 isolates from other countries in Africa, and the Nigerian
isolates all cluster with other African isolates. Detailed phylogenetic relationships amongst the
366 African isolates are shown in Fig 1, and an interactive version of the phylogeny and map
are available for exploration online at http://microreact.org/project/styphi_nigeria.

The majority of Nigerian S. Typhi (84/128, 66%) belonged to genotype 3.1.1 (these isolates
were assigned to H56 under the old typing scheme of Roumagnac et al (2006) [11]). This domi-
nant genotype is relatively common across Africa, predominantly western and central coun-
tries (Fig 1). The Nigerian isolates formed a tight phylogenetically clustered subgroup within
the 3.1.1 subclade (Fig 1), suggesting recent local expansion, and included isolates from both

Table 1. (Continued)

Laboratory name Year of isolation Location Roumagnac haplotype* Primary clade Clade Subclade

3135STDY5861330 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861197 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861338 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861351 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861282 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861306 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861322 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861326 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861366 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861279 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861303 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861319 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861327 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861335 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861343 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861367 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861304 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861328 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861336 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861344 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861260 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861189 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861213 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861278 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861286 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861251 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861259 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861212 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861220 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861228 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861252 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861236 2013 Abuja H56 3 3.1 3.1.1

3135STDY5861368 2013 Abuja Untypeable 3 3.1 3.1.1

3135STDY5861205 2013 Abuja H52 4 4.1 4.1.0

* Reference [11]

doi:10.1371/journal.pntd.0004781.t001
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Abuja and Kano, suggesting intra-country transmission. Interestingly, in the wider African col-
lection genotype 3.1.1 was represented by isolates from neighboring Cameroon and across
West Africa (Benin, Togo, Ivory Coast, Burkina Faso, Mali, Guinea and Mauritania) suggesting
long-term inter-country exchange within the region (Fig 1). Most of the remaining isolates
belonged to four other genotypes, indicating that these are also established genotypes in circu-
lation at the study sites in Nigeria. These genotypes, highlighted in Fig 1, are 2.2.0 (n = 13),
2.3.1 (n = 8), 4.1.0 (n = 8, H52 under the old scheme) and 0.0.3 (n = 7, H12). Nigerian isolates
of genotypes 2.2.0 and 2.3.1 were closely related to isolates from neighboring Cameroon and
West African countries and not found elsewhere, supporting regional transmission similar to
the dominant genotype 3.1.1 (see map in Fig 1), while genotype 4.1.0 was more widespread
across Africa. Interestingly genotype 0.0.3 (previously identified in India and Malaysia), which
accounted for>5% of Nigerian isolates, maps very close to the root of the global S. Typhi tree,
suggestive of older circulating isolates. A further six other genotypes were also detected
amongst the Nigerian isolates, represented by 1–2 isolates each (Table 1). Of note, genotype
4.3.1 (H58), which has become dominant elsewhere in sub-Saharan Africa and accounts for
the majority of antimicrobial resistant typhoid globally, was not detected in the Nigerian
studies.

Fig 1. Distribution of Nigerian S. Typhi isolates in Africa in this study. Amaximum likelihood tree of 366 S. Typhi isolates constructed using 9,352 SNPs
from whole genome sequence from 128 Nigerian isolates and 238 isolates from other regions of Africa is shown on the left. The geographical location of
isolation is highlighted on the maps of Africa displayed on the right (http://microreact.org/showcase/). S. Typhi isolates from Abuja (122 isolates) and Kano
(6) are denoted using red and orange squares, respectively. Colored circles on both the tree and maps represent isolates from other regions of Africa. The
common genotypes of the Nigerian isolate are highlighted by a grey ring surrounding the tree with the corresponding geographical location marked on the
map. Branch lengths are indicative of the estimated substitution rate per variable site.

doi:10.1371/journal.pntd.0004781.g001
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Antimicrobial resistant S. Typhi in Nigeria
Fig 2 shows the proportion of S. Typhi isolates that were resistant to one or more antimicrobi-
als, and the proportion that were multidrug-resistant (MDR; defined as resistance to ampicillin,
chloramphenicol and trimethoprim-sulfamethoxazole), each year from 2008–2013. The major-
ity of isolates were MDR throughout this period (Fig 2).

Fig 3 and Table 2 show the distribution of antimicrobial resistance determinants in the Nige-
rian isolates. Most of the 3.1.1 (H56) isolates carried genes encoding resistance to ampicillin,
chloramphenicol, tetracycline and sulfamethoxazole (blaTEM-1, catA1, tetB, dfrA15, sul1). These
were located on an IncHI1 plasmid, similar to that commonly found in MDR S. Typhi 4.3.1
(H58). The same profile was identified in a single isolate of 0.0.3, indicative of local plasmid trans-
fer between the co-circulating genotypes. Genotype 2.3.1 isolates were found to carry IncHI1 plas-
mids encoding these resistance genes, as well as resistance determinants sul2 and strAB. An
IncHI1 plasmid carrying blaTEM and tetB was also identified in one 2.2.0 isolate. Interestingly,
nine genotype 3.1.1 isolates lacked the IncHI1 plasmid. However, four of these carried plasmids
of other incompatibility groups. Three isolates (3135STDY5861338; 3135STDY5861351;
3135STDY5861282) harbored a novel IncY plasmid (blaTEM-198, catA1, tetB, dfrA14, sul1) and
one (3135STDY5861242) harbored a plasmid-related to the Kpn3 plasmid (blaTEM-198, tetAR,
dfrA14, sul1, sul2, strAB and also qnr-S, which mediates fluoroquinolone resistance). Thus, plas-
mid-mediatedMDR is common in Nigerian S. Typhi from the regions under study.

We identified only six S. Typhi isolates with quinolone resistance-associated mutations in
gyrA (one with S83F; five with S83Y). The affected isolates were all of the dominant genotype
3.1.1, including the three that carried IncY plasmids and three that carried IncHI1 plasmids.
No other polymorphisms were detected in the quinolone resistance determining regions of the
gyrA or parC genes of Nigerian S. Typhi isolates.

Discussion
Here, S. Typhi is shown to be a common cause of bacteremia and fever among children living
in two geographically distinct regions of Nigeria. Studies on typhoid within Nigeria have been

Fig 2. Presence of antimicrobial resistance of S. Typhi in the study areas. The proportion of S. Typhi isolates that
were resistant to one or more antimicrobials (red line) and were multidrug-resistant (MDR; defined as resistance to
ampicillin, chloramphenicol and trimethoprim-sulfamethoxazole, blue line) are shown. Percentages are of the total S.
Typhi isolated per year.

doi:10.1371/journal.pntd.0004781.g002
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relatively rare, even though it is a country with a large population and extensive urbanization.
Indeed, S. Typhi is the most common bacterial cause of bloodstream infections. Phylogenetic
analysis identified distinct clusters of S. Typhi, with isolates of genotype 3.1.1 representing 66%
of all isolates. Other common genotypes included 2.2.0 and 2.3.1, which have been previously
reported in Africa, and genotypes 4.1.0 and 0.0.3, which were previously reported in Asia. The
presence of multiple genotypes in these comparatively small regions suggests typhoid has been
established for some time and that different waves of disease have entered the regions at differ-
ent times. It is also interesting that the different clades of Nigerian isolates distributed across
the phylogeny frequently map adjacent to other S. Typhi isolates from other African countries.
For example, genotype 3.1.1 maps adjacent to S. Typhi isolates from both west and north

Fig 3. Acquiredmultidrug-resistance in Nigerian S. Typhi isolates.Maximum likelihood tree of 128 Nigerian S. Typhi
isolates from 2,541 SNPs is shown on the left. On the right is a heatmap which shows, for each isolate, its multidrug-resistant
(MDR) status (purple), the presence of gyrAmutations (dark green S83Y; light green S83F), resistance genes cat, blaTEM,
dfrA, sul1/2, strAB, tetB/AR, qnr (red) and plasmids, including IncHI1 (dark blue), Kpn3 (light blue), IncY (orange), IncQ1
(light pink), IncFIIs (yellow) and Col(RNAI) (magenta). Different colored bars within the plasmid column show isolates that
harbor multiple plasmids with each bar representing a plasmid type. The absence of a genotype or plasmid was displayed in
grey. Branch lengths are indicative of the estimated substitution rate per variable site.

doi:10.1371/journal.pntd.0004781.g003
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Table 2. Summary of drug resistance of Nigerian S. Typhi.

Laboratory name Subclade Plasmids Resistance genes gyrAmutations

3135STDY5861196 0.0.1 - - -

3135STDY5861244 0.0.1 - cat, dfrA, sul1, bla-TEM, tetB -

PO_601 0.0.3 - - -

PO_1102 0.0.3 - - -

PO_1131 0.0.3 - - -

3135STDY5861198 0.0.3 - - -

3135STDY5861206 0.0.3 - - -

3135STDY5861239 0.0.3 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1256 0.0.3 - - -

3135STDY5861254 2.1.0 - - -

3135STDY5861272 2.1.0 - - -

3135STDY5861209 2.2.0 - - -

3135STDY5861359 2.2.0 IncHI1 bla-TEM, tetB -

3135STDY5861290 2.2.0 - - -

3135STDY5861298 2.2.0 - - -

3135STDY5861350 2.2.0 - - -

3135STDY5861287 2.2.0 - - -

3135STDY5861280 2.2.0 - - -

3135STDY5861289 2.2.0 - - -

3135STDY5861337 2.2.0 - - -

3135STDY5861353 2.2.0 - - -

3135STDY5861361 2.2.0 - - -

3135STDY5861369 2.2.0 - - -

3135STDY5861253 2.2.0 - - -

PO_132 2.3.1 IncHI1 dfrA, sul1, tetB, strA, strB, sul2, aad -

PO_107 2.3.1 IncHI1 dfrA, tetB, strA, strB, sul2, aad -

3135STDY5861233 2.3.1 IncHI1 dfrA, sul1, bla-TEM, tetB, strA, strB, sul2, aad -

3135STDY5861241 2.3.1 IncHI1 dfrA, sul1, bla-TEM, tetB, strA, strB, sul2, aad -

3135STDY5861273 2.3.1 IncHI1 dfrA, sul1, bla-TEM, tetB, aad -

3135STDY5861210 2.3.1 - - -

3135STDY5861195 2.3.1 - - -

3135STDY5861342 2.3.1 IncHI1 dfrA, sul1, bla-TEM, tetB, strA, strB, sul2, aad -

3135STDY5861334 2.3.2 - - -

3135STDY5861294 3.1.0 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_30 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1057 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1060 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1063 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_187 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB S83Y

PO_227 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_293 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_351 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_355 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_771 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_812 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_919 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_575 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

(Continued)
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Table 2. (Continued)

Laboratory name Subclade Plasmids Resistance genes gyrAmutations

PO_1255 3.1.1 - cat, dfrA, sul1 -

PO_1098 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1101 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1210 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1242 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

PO_1265 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861190 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861230 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB S83Y

3135STDY5861262 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861271 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861184 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861208 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861216 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861224 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861232 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861248 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861256 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861264 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861193 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861201 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861217 3.1.1 - - -

3135STDY5861225 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861226 3.1.1 IncHI1 bla-TEM, tetB -

3135STDY5861202 3.1.1 IncHI1 bla-TEM, tetB -

3135STDY5861234 3.1.1 - - -

3135STDY5861242 3.1.1 Kpn3 bla-TEM, strA, strB, sul1, sul2, dfrA, tetA, tetR,
qnrS

-

3135STDY5861218 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB S83F

3135STDY5861211 3.1.1 IncHI1, IncFIIs cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861235 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861243 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861312 3.1.1 - cat, dfrA, sul1 -

3135STDY5861320 3.1.1 - cat, dfrA, sul1 -

3135STDY5861268 3.1.1 - cat, dfrA, sul1 -

3135STDY5861276 3.1.1 - cat, dfrA, sul1 -

3135STDY5861229 3.1.1 - cat, dfrA, sul1 -

3135STDY5861237 3.1.1 - cat, dfrA, sul1 -

3135STDY5861245 3.1.1 - cat, dfrA, sul1 -

3135STDY5861314 3.1.1 - - -

3135STDY5861330 3.1.1 - - -

3135STDY5861197 3.1.1 - - -

3135STDY5861338 3.1.1 IncY bla-TEM, strA, strB, sul1, dfrA, tetA, tetR S83Y

3135STDY5861351 3.1.1 IncY bla-TEM, strA, strB, sul1, dfrA, tetA, tetR S83Y

3135STDY5861282 3.1.1 IncY bla-TEM, strA, strB, sul1, dfrA, tetA, tetR S83Y

3135STDY5861306 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861322 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861326 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

(Continued)
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Africa, with the Nigerian isolates located on a more recent phylogenetic branch. Similarly, geno-
types 2.2.0 and 2.3.1 also map close to other African isolates. This general distribution indicates
substantial exchange of S. Typhi between Nigeria and other parts of Africa. However, the phylo-
genetic analysis was limited to two sites within Nigeria, with only six S. Typhi isolates included in
the analysis from Kano, over a five- year period, resulting in a selection bias towards strains from
a single study site in Nigeria (Abuja). Therefore, a more comprehensive analysis involving a
larger number of strains frommultiple regions across Nigeria and surrounding countries over a
wider time span would be required to further investigate transmission within the region.

It is notable that none of the Nigerian isolates were of the genotype 4.3.1 (H58), which is
now expanding across many other regions with endemic typhoid and is associated with a MDR
phenotype. This suggests that the recent expansion of H58 S. Typhi, estimated to date from the

Table 2. (Continued)

Laboratory name Subclade Plasmids Resistance genes gyrAmutations

3135STDY5861366 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861279 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861303 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861319 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861327 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861335 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861343 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861367 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861304 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861328 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861336 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861344 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861260 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861189 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861213 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861278 3.1.1 IncHI1 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861286 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861251 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861259 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861212 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861220 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861228 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861252 3.1.1 IncHI1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861236 3.1.1 IncHI1 4 cat, dfrA, sul1, bla-TEM, -

3135STDY5861368 3.1.1 IncHI1, IncQ1 5 cat, dfrA, sul1, bla-TEM, tetB -

3135STDY5861183 3.3.0 - 0 - -

PO_260 4.1.0 - 0 - -

PO_1232 4.1.0 - 0 - -

3135STDY5861222 4.1.0 - 0 - -

3135STDY5861246 4.1.0 - 0 - -

3135STDY5861270 4.1.0 - 0 - -

3135STDY5861199 4.1.0 - 0 - -

3135STDY5861247 4.1.0 - 0 - -

3135STDY5861205 4.1.0 - 0 - -

PO_1110 4.1.1 Col(RNAI) 0 - -

doi:10.1371/journal.pntd.0004781.t002
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mid-1980s, has not yet reached Nigeria, unlike other African countries including Kenya, Tan-
zania, Malawi and South Africa. The absence of H58 isolates in the sampled area of Nigeria is
an important finding. It has been postulated that H58 S. Typhi originally emerged in Asia, but
subsequently entered Africa on a number of distinct occasions where they have gone on to
cause large typhoid outbreaks [12]. Thus, it is likely that H58 S. Typhi will reach Nigeria in the
future, potentially changing the epidemiology of the disease in the region and molecular sur-
veillance could be used to monitor for this.

Nevertheless, MDR S. Typhi are common in the regions of study despite the absence of H58
microorganisms. This is an important observation, as the MDR phenotype in other regions of
the world has been driven by the spread of MDR S. Typhi H58. Many of the Nigerian S. Typhi,
including those of genotype 3.1.1, harbored IncHI1 plasmids that have been previously associ-
ated with S. Typhi of other genotypes, particularly H58 [12, 39]. This is consistent with a
genetic compatibility between S. Typhi and such plasmids. Interestingly, genetic analysis indi-
cates that an IncHI1 plasmid recently transferred between 3.1.1 and 0.0.3 Typhi within the
study region. However, several other plasmids of distinct incompatibility types were also
detected within the sampled S. Typhi and it will be interesting to see if any of these are common
elsewhere in Nigeria or whether they solely persist within these study sites.

Mutations associated with resistance to quinolones were relatively rare within the sample
set. This could be because fluoroquinolones are not commonly used to treat typhoid in these
regions, or alternatively, it may be that such mutations have not become fixed in these non-
H58 isolates. Further studies on the use of fluoroquinolones are warranted.

In conclusion, it is clear that typhoid associated with MDR S. Typhi is common in these
parts of Nigeria and that the MDR phenotype is evolving independently of haplotype H58,
which has emerged elsewhere in the world where typhoid is endemic.
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Supporting Information
S1 Fig. Global distribution of African S. Typhi isolates analyzed in this study. Amaximum
likelihood tree of 1,960 S. Typhi isolates from 23,300 SNPs surrounded by colored rings repre-
senting the geographic origin of 502 African isolates, according to the legend. 128 Nigerian iso-
lates are highlighted in black (122 = Abuja) and grey (6 = Kano); neighboring African
countries labeled by black arrows. The genotypes of the Nigerian isolates are labeled in red
with the old Roumagnac haplotypes [11] in parentheses (red � denotes untypeable Nigerian
strains). The 4.3.1 (H58) subclade is indicated in red italics. Branch lengths are indicative of the
estimated substitution rate per variable site.
(TIF)

S1 Table. Details of the 128 Nigerian Salmonella Typhi isolates used in the study (see excel
sheet).
(XLS)
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