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Abstract (100-120 words) 

Microbial communities are extremely complex and constitute critical actors of our environment. 

Genomic analyses of these populations are a dynamic research area but remain limited by the 

difficulty to assemble full genomes of individual species. Recently, a new method for metagenome 

assembly/analysis based on chromosome conformation capture has emerged (meta3C). This 

approach quantifies the collisions experienced by DNA molecules to identify those sharing the same 

cellular compartments, allowing the characterization of genomes present within complex mixes of 

species. The exploitation of these chromosome 3D signatures holds important premises regarding 

reaching at the genome sequences from discrete species in complex populations. It also has the 

potential to correctly assign extra-chromosomal elements, such as plasmids, mobile elements and 

phages, to their host cells. 

 



Limitations of metagenomic analysis  

Microbial communities and their biochemical activities are ubiquitous and essential components of 

environmental and natural ecosystems. They often play important roles in the maintenance of 

environmental ecosystems as well as in sustaining animal and plant life [1–3]. Microbes that 

associate with a macroscopic host organism can also interact with it and exert a major influence on 

its metabolism with consequences on health, growth and fitness [4,5]. However, and despite their 

established importance, these mixes of microorganisms have often proven difficult to characterize to 

the full extent of their complexity, which often encompasses hundreds or more species engaged in 

co-dependant relationships. Notably, the vast majority (90-99%; reviewed in [6]) of microbes cannot 

be cultivated and therefore isolated, impairing more refined characterization of these species. This 

bottleneck can be bypassed, to some extent, by studying directly DNA extracted from the microbial 

community. Metagenomics (see Glossary) aims at studying microbial ecosystems globally through 

the characterization of the genes that are present in the community as a whole. Pioneering 

metagenomics projects have focused on the ubiquitous 16S RNA gene to explore the diversity and 

nature of the species present within populations. They brought to light the tremendous diversity of 

microbes, unveiling a largely unexplored and unknown world, and paving the way to this flourishing 

field [7–9]. Thanks to important breakthrough in sequencing technologies and computational 

analysis, numerous studies based on shotgun sequencing of metagenomes have then allowed 

exploring the DNA molecules present in a microbial community [10–12]. However, those analysis are 

somehow limited as it remains difficult to assemble these short DNA sequences into larger molecules 

(i.e. contigs and scaffolds; see Glossary; [13]), if not full genomes, hindering in-depth analysis of the 

system as a whole. Improving the ability to discriminate, characterize and assign DNA sequences to a 

specific species, so that eventually its complete genome can be characterize, is challenging for 

complex communities. Furthermore, a complete picture of the genetic content of a microbial 

community goes much beyond the sum of the genomes/chromosome(s) of the microorganisms that 

compose it. Indeed the population also contains numerous DNA molecules, either independent from 



the core genome or exhibiting dynamic behaviours (plasmids, transposon, viruses/prophages) that 

add extra and important layers of complexity to the system.  

The analysis of the individual chromosomes contained within a metagenomic sample has improved 

thanks to continuous advances in sequencing technologies: single-molecule, real-time (SMRT) 

sequencing [14] as marketed by Pacific Biosciences [15] or Nanopore [16] are promising approaches 

likely to become prominent in the field in the future. Alternatively or in complement, single-cell 

technologies offer interesting perspectives as they preserve the cellular integrity [17], though they 

remain prone to important biases, contamination and overall relatively out of reach of many 

laboratories. Computational methods can also overcome to some extent some of those limitations. 

De novo assembly programs such as MetaVelvet [18] and IDBA-UD [19] have been adapted to 

metagenomic data [20]. Finally, assembly of short reads into discrete genomes have also been 

improved by exploiting biases in base composition [21], by leveraging variations in gene abundance 

[22,23] between the genomes of different species, or by combining multiple parameters and 

searching for correlations for instance between variations in reads coverage and cultivation into 

different growth media [24]. However, the assumption that contigs/reads with similar characteristics 

are likely to originate from the same genome is contradicted by horizontal gene transfer events that 

generate genetic heterogeneity. Also, if multiple strains of a species coexist within the mix it is 

difficult or impossible to identify their different haplotypes. Alternative approaches to bypass these 

limitations are therefore actively sought.  

 

Exploiting contact genomic to analyse metagenomes 

A recent and potential breakthrough came from the realization that chromosome 3D physical 

signatures can be exploited to infer 1) the linear sequence of a chromosome and 2) whether different 

chromosomes occupies different cellular compartments or not [25]. This new field, dubbed ‘contact 



genomics’ [25], aims at exploiting the physical contacts experienced by small DNA molecules and 

quantified through genomic derivatives of the chromosome conformation capture technique (3C; see 

Glossary and Box 1; [26,27]). 3C relies primarily on a fixation step, typically achieved using 

formaldehyde cross-linking, to freeze and capture contacts made by DNA regions within (cis) and 

between (trans) chromosomes. The cross-linked DNA is then digested by a restriction enzyme, 

diluted, religated, and pair-end sequenced (Figure 1A and Box 1). Chimeric molecules resulting from 

religation events between non-adjacent DNA regions are identified from the pair-end reads by 

mapping them along chromosomes to generate a genome-wide matrix of contact frequencies. 

Performed on a population of cells, these contact maps presumably reflect the average genome 

organization. An immediate observation made from genomic 3C data is that contact frequencies 

between DNA regions decrease as a function of the distance separating them following, to some 

extent, a power law distribution [28]. Given a frequency of contacts, one should therefore be able to 

get a robust assessment of the distance that separates two loci. This makes it possible to exploit the 

broad distribution of statistically significant cis-contact, ranging from a few kb to up to a Mb, to 

bridge the numerous assembly gaps present in most published genomes (reviewed in [25]). Several 

approaches have recently tackled this challenge and developed programs aiming at improving 

genome assembly through the use of large 3C contact datasets [29–31]. These promising 

approaches, though perfectible, have allowed the scaffolding of contigs (see Glossary) up to several 

hundreds of Mb from incomplete assembly of genomes of various sizes (for instance of human 

contigs obtained de novo, [30,31]). 

Beyond the great promises held by contact genomics approaches to chromosome 

scaffolding/genome assembly, this concept has now started to be applied to the field of 

metagenomics. By analogy with the physical contacts allowing discriminating multiple chromosomes 

within a single nuclear/cell compartment of a homogeneous population, metagenomic 3C (meta3C 

or metaHi-C) considers the entire population as a large ensemble of cellular compartments with 

specific chromosomal sets, and exploits their contact frequencies to discriminate DNA molecules 



occupying different compartments [32–34] (Figure 1). As, physical contacts provide quantitative and 

objective information regarding whether or not two pieces of DNA share the same cellular 

compartment, without requiring any prior knowledge of the content of the sample.  

To test the validity of this approach, a first important unknown was to characterize the 

“background noise” frequency with which two DNA RFs originating from 2 different genomes end up 

fused together after a meta3C experiment. To do so, pair-end reads obtained from meta3C 

experiments performed on mixes of species with known genomes were aligned against those 

sequences, and inter-species ligation events were quantified. Religation events between RFs coming 

from different genomes proved extremely low for both prokaryotic and eukaryotic mixes (< 1%; [32–

34] (Figure 2A-B). One must notice that experimental conditions, notably fixation, have an important 

impact on the end results, with low amounts of crosslinking agent leading to noisier signal, especially 

in bacteria [33,34]. Overall, these control experiments confirmed that DNA/DNA contacts are a 

convenient and sound measurement of the co-existence of two DNA regions within the same 

compartment, if not the same genome (below).  

In the case of environmental/natural samples, prior knowledge regarding the species present 

in the mix remains generally sparse and incomplete. Obtaining the genomes of the species present 

within the sample remains important challenge that is rarely met except for dominant members of 

the community [35]. To apply meta3C to such natural sample, the first step consists in assembling 

the metagenome from the sequencing reads in order to reduce the complexity of the data, which 

typically generates a large number of small contigs of various depths coverage. The paired-end reads 

containing the 3D contact information (Hi-C or 3C-seq, see Glossary) are then mapped on this set of 

contigs, producing a large meta3C network in with the nodes representing the contigs and the edges 

the contacts. This network is typically complex, and exhibits a community structure with subgraphs 

groups of densely connected nodes and sparse connections to the rest of the network. The 

challenges associated with complex network analysis are familiar to many scientific fields such as 



sociology (e.g. friendship/collaborations network) [36,37] and neurobiology [38], and important 

efforts have been made to develop efficient clustering algorithms in recent years [39–43].  

To test this approach, several group performed blind analyses of meta3C networks obtained 

from various controlled mixes (from 3 to 12 species) [32–34]. Metagenome assembly was performed 

using either SOAP de novo [32] or IDBA-UD [33,34] (Table 1), either from an independent library 

[32,33] or directly from the meta3C reads [34]. The later solution is advantageous when only a 

limited amount of biological material is available, especially if the meta3C data was generated using 

3C-seq rather than Hi-C. Indeed, in the 3C-seq protocol the 3C library is directly sequenced, without 

any enrichment step for chimeric ligation products as in Hi-C [28]. Consequently, the sequenced 

library is composed of 80-90% regular paired-end reads that are mainly used during the assembly 

step, whereas the 10-20% chimeric read pairs corresponding to religation events do not result in a 

significant increase of assembly errors [34]. The interaction network between the de novo generated 

contigs is then achieved taking advantage of the 10-20% chimeric read pairs that correspond to 

religation events.  

Different clustering algorithms can be used to identify communities of contigs within the 

global network of interactions generated using the meta3C PE reads (see Table 1). In the studies 

reviewed here, 80% to 98% of the entire genome sequences present in the controlled mixes were 

appropriately pooled together after processing. Interestingly, the clustering also delineated non-

chromosomal DNA sequences such as plasmids. Notably, the distribution of contacts made by a F’ 

plasmid sequence confirmed its presence in the vicinity of the E. coli chromosome, whereas a 

correlation analysis of the these contacts signal further revealed that it carried a large segmental 

duplication of this genome [34]. The clustering also pooled together chromosomes that shared the 

same cellular compartment, and identified multiple chromosomes within a single species.  

 



Current limitations of meta3C approaches 

Although promising, existing meta3C approaches remain perfectible. First, the presence of 

closely related species and/or of strains of the same species in the mix may impair the proper 

clustering of the corresponding sequences [32,33]. Notably, errors occurring during assembly step 

(resulting for instance from repeated sequences) can lead to chimeric contigs and misleading contact 

signal. Cutting the contigs into pieces of DNA of similar sizes can alleviate this problem [34], but 

further computational developments will be needed to fully exploit the information contained within 

meta3C libraries. In addition, and as mentioned above, metagenomes are more than a mix of 

genomic sequences. Homologous sequences, repeats, plasmids, mobile elements or horizontal gene 

transfer events are present, resulting in DNA sequences interacting with different host genomes at 

the same time. Those elements will bend the network by being equally connected to multiple 

communities as evidenced by an experiment performed on an completely unknown metagenome 

stemming from a LB-enriched sediment sample [34] (Figure 2C-D). Detection of overlapping 

communities is a complex problem in the field [44–46], that will require further developments to be 

fully addressed in the case of meta3C data. Finally, another limitation is inherent to the 3C 

technology and results from the enzymatic restriction step (Box 1). The frequency of restriction sites 

is highly correlated with the GC content of the sequence, which can introduce important biases 

[47,48]. Such bias will notable affect meta3C experiments when members of a metagenomic sample 

exhibit large differences in GC content. One possibility to alleviate this problem is to build meta3C 

libraries with different restriction enzymes, so that all genomes are visible in at least one condition. 

Alternatively, other restriction approaches, such as partial DNAse digestion [49], could be envisioned. 

Future directions 

3C/Hi-C based approaches appear as promising tools to study the genomes of microbial 

communities since they give access not only to the chromosomes of the species present within the 

mix but also provide information regarding mobile elements such as plasmids and phages that share 



the same compartment [32–34]. Such data are promising to the study of bacterial genomes dynamics 

and plasticity within population and over time. Microbial communities are not only composed of 

numerous different species of bacteria but also of a tremendous amount of phages, sometimes 

considered to be the most abundant “replicating” organisms on earth [50] and important vectors of 

DNA fragments [51,52]. Although their influence on the balance of bacterial communities is gradually 

being unveiled, not much is known about it because of the difficulty to access their sequences 

[53,54]. Consequently, our understanding of their roles in the size, structures and function of 

microbial communities is only starting. Finding out their bacterial hosts and their precise role in the 

plasticity of bacterial genomes will be necessary to fully understand phages and their integration in 

microbial communities. By analysing contact between phages and bacterial genomes, Meta3C 

appears as a promising method to answer to these important questions. 

Although it is tempting to envision reassembling de novo the individual genomes identify 

within these complex communities using programs such as GRAAL [31,34], this remains challenging 

with such complex samples. However, the stakes of this computational challenge are high, 

considering the importance of these data to understand and characterize the physiology of non-

cultivable organisms and the population equilibrium. Developments in both assembly programs and 

sequencing technologies will therefore likely allow full metagenome reconstruction in the near 

future.  

Interestingly, the meta3C approach also gives access to the genome organization of the 

microorganisms directly captured in their environment. An emerging picture in the field is that the 

high-order chromosome organization in these species reflects, to some extent, metabolic regulation 

and/or cell cycle progression. In Bacillus subtilis for instance, cycles of condensation/decompaction 

of the origin of replication correlate with replication regulation [55]. In Saccharomyces cerevisiae, 

long-term survival following diauxic shift and entry into quiescence necessitate the settling of a 

“hyper-cluster” of telomeres [56]. Therefore, knowing the genome organization of the 



microorganisms within the mix will provide access to their metabolic state, paving the way for an 

integrated analysis of the dynamic physiology of the population.  

 

Concluding remarks 

Metagenomic analyses provide important insights on the dynamics of natural microbial 

communities and their response or interplay with the environment. Approaches based on contact 

genomics, such as meta3C, have the potential to alleviate some of the limitations of traditional 

metagenomic approaches. DNA is an ubiquitous and stable molecule, and using it as a marker of 

“compartmentalization” at cellular and population levels hold great promises. Indeed, the objective 

and quantitative information provided by the collisions of DNA molecule sheds light not only on the 

chromosomal content of various cell compartments but also on the extra-genomic sequences 

present within the population. This paves the way for an exhaustive description of complex 

communities and gene dynamics taking into account the entire pool of DNA molecules present within 

a community, which appears within reach using meta3C (see Outstanding Questions). Taken 

together, contact genomic investigations using meta3C represent a great opportunity to address the 

current challenges metagenomics, such as deciphering how environmental changes influence the 

genome organization, dynamics and plasticity of the organisms present in a given ecological niche, 

and how they adapt in response.  
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Box 1. 3C approaches unveil the multiscale organization of genomes 

Chromosomes from prokaryotes and eukaryotes are long filaments that are tightly folded within a 

relatively confined space. Although the volume occupied by the DNA fibre is only a fraction of the 

total nucleus or nucleoid volume, its folding is of primary importance since it determines its 

accessibility and the cell’s ability to mobilise the information carried by the DNA in a timely manner. 

Hence, complex mechanisms have evolved that drive and regulate this organization by folding the 1D 

genome into a 3D structure. The principles, role and dynamics of this folding have been investigated 

since the birth of cytology, with remarkable advances obtained from microscopy studies. However, 

an important step was recently reached by combining high-throughput sequencing with the 

chromosome conformation capture (3C) technique [26], giving access to the multiscale 3D 

organization of the  DNA sequence. 3C and its genomic derivatives [27] have in recent years become 

popular tools to study spatial chromosome organization. In a 3C assays, a population of cells or a 

single cell is fixed using a crosslinking agent such as formaldehyde. This results in covalent bounds 

between histone proteins, which trap together DNA regions occurring in the vicinity of each other’s. 

The cross-linked DNA is digested with a restriction enzyme then religated under dilute conditions (to 

favour intramolecular ligation over intermolecular ones). After DNA purification, the resulting 3C 

library consists in a collection of restriction fragments (RFs) ligated together, resulting in molecules 

that are chimeric with respect to the reference genome. The relative abundance of the pairs of RFs 

involved in a chimeric religation event reflects the frequency with which these two chromatin 

segments were crosslinked, hence their spatial proximity. The relative proportions of these chimeric 

product were initially quantified using semi-quantitative PCR [26] but 3C assays have  recently 

boomed, mainly thanks to the advent of high-throughput sequencing techniques [57] allowing 

sequencing the extremities of the DNA molecules present in the 3C library and estimating in a 

quantitative way contact frequencies of pairs of RFs within genomes. Genome-wide contact maps are 

built from this quantification step. 3C-based assays have provided important advances in our 

understanding of the genomic architecture of mammals [28,58] or bacteria [59]. In all species, 



chromosomes appear as well individualized entities sometimes presenting large topological domains 

(TADs – Topological Associated Domains). Their precise roles and regulatory mechanisms are the 

subject of intensive investigations, with increasing evidence that the 3D architecture of 

chromosomes is an essential part of the cellular process and cell physiology. The next decade 

promises to be really exciting in this research field as improvements in sequencing technology and 

data treatment will certainly uncover the relationships between genome architectures and cellular 

processes. 

 

  



Glossary 

3C (Chromosome Conformation Capture): see Box 1. 

3C-seq: next-generation sequencing of a 3C library without enriching it for chimeric read pairs (unlike 

Hi-C). 

Contig: a consensus DNA sequence inferred from a set of overlapping DNA fragments. In a contig the 

order of the base pairs is known with a high confidence, without gaps.  

Hi-C: next-generation sequencing of a 3C library that was enriched in chimeric read pairs using 

biotinylation. 

Metagenomics: scientific field that aims at studying genetic material directly obtained from 

environmental samples. It could also be referred as ecogenomics or environmental genomics. 

NGS (next-generation sequencing): generic term applying to a group of sequencing technologies 

developed at the turn of the century (Solexa [60], 454 [61], Ion Torrent [62])  that allow affordable, 

massive and fast sequencing of DNA. Typically, NGS generate tens of millions of short sequences (or 

read), and is commonly applied to genomics and sequencing projects. Also called high-throughput 

sequencing.  

Scaffold: a DNA sequence made out of multiple contigs with intervening gaps (the length of which is 

generally not precisely known).  

 

  



Figures & tables 

 

Table1: Summary of published processes and data using 3C-based metagenome assembly. 

 

Figure1: Principle of a meta3C experiment. 

(A) Starting from a mix of species (metagenomicssample), a shotgun library is generated and used to 

generate a preliminary assembly (a 3C library can also be used here).  

(B) Starting from the same sample, a 3C/HiC library is generated (see Box1).  

(C) Pair-end reads from the 3C library, some of which reflect the collision frequencies between all the 

pairs of DNA restriction fragments present within the population, is then mapped on the contigs. 

(D) Representation of the complex network resulting from the step C). Left panel: contact map 

representation of the contigs. Right panel: 3D representation of the data using a clustering 

visualization tool such as Gephi [63]. 

(E) The disordered contigs are then clustered and reordered based on their frequencies of 

interactions, unveiling the genomic sequences of the organisms present within the mix.  

 

Figure 2 : meta3C experiment on different mix of species [34]. 

(A) Chromosomal contact map of a mixture of three bacteria (Bacillus subtilis, Escherichia coli, Vibrio 

cholerae), with the color code representing contacts between DNA regions from low (white) to high 

(red) frequencies (a.u.). Frequencies of inter-species (chimeric) pairs of reads are directly reported on 

the matrix. 

(B) Contact frequencies plotted as a function of genomic distance (for all 3 bacterial genomes 

together). The score shows a clear decrease at the genome size of these bacteria (i.e. 4Mb). 



 (C) Meta3C contact map of the largest 11 communities of contigs found by analyzing a river 

sediment sample. Each square in the matrix corresponds to a community grouping contigs that 

exhibit significantly more contact with each other than with other communities. Red squares indicate 

signal outside the main diagonal due to contigs exhibiting important contacts between several 

communities (i.e. overlapping communities).  

(D) Illustration of the interactions between the 11 largest communities of contigs using the force-

directed graph-drawing algorithm Force Atlas 2 [64]. Each node corresponds to a contig and each link 

represents at least one meta3C interaction. The colors correspond to the communities identified by 

the Louvain algorithm and described in (A). The red square highlights the overlapping communities 

described in (A). 

 

 

 

  



Table1 

Ref. Samples 

Assembly Network resolution 

Results 

Library used Strategy Library used Algorithm 

          

[32] 

synthetic 

community of 5 

bacteria (P. 

pentosaceus, L. 

brevis + 2 

plasmids, E. coli 

BL21, E. coli 

K12, B. 

thailandensis 

  

Type 
reads 

simulated 
Programm 

 SOAP de 

novo  
Type HiC 

Markov 

Clustering 

Algorithm 

(MCL) [41] 

4 clusters of contigs 

detected (100% of 

contigs used after 

filtering out small 

contigs).  

PE 12 M Contigs 7687 PE  20 M 

length 2x165 pb N50 87 Kb length 2x160pb 

    
Assembly 

size 
15.57Mb RE HindIII 

          

[33] 

synthetic 

commmunity of 

16 yeasts 

strains (four 

strains of S. 

cerevisiae, 12 

species of 

ascomycetes 

with reference 

genome 

available) 

Type 
shotgun + 

MatePair 
program IDBA-UD Type HiC 

Jarvis-Patrick 

nearest-

neighbor 

clustering 

algorithm  [65] 

followed by  

hierarchical 

agglomerative 

clustering [66] 

12 distinct clusters 

(covering 82.2% of 

the total assembly - 

contigs that do not 

contain HindIII sites) 

Shotgun  92 M contigs 48511 PE  81 M 

Mate 

Pair  
9.2 M N50 17 Kb length 2x100pb 

length 2x100pb 
Assembly 

size 
136 Mb RE HindIII 

synthetic 

community of 8 

yeast, 9 

bacteria (1 

bacteria harbor 

2 chromosomes 

and 1 plasmid), 

1 archeon 

  

Type 
assembly 

simulated 
program simulation 

of contigs 

by cutting 

references 

genomes 

into 

contigs of 

10Kb 

Type HiC 

18 distinct clusters 

(covering 99.6% of 

the total simulated 

assembly) 

PE  xxxx contigs PE  14 M 

length xxxx N50 length 2x100pb 

    
Assembly 

size 
RE HindIII 

          



[34] 

synthetic 

community of 3 

bacteria (E. coli 

+ 1 plasmid, B. 

subtilis, V. 

cholerae)  

Type 3C seq program IDBA-UD Type 3C seq 

Louvain 

algorithm [39] 

3 communities of 

contigs detected 

(covering 95% of the 

total assembly) 

PE  4 M contigs 2436 PE 4 M 

length 2x91pb N50 55 Kb length 2x91pb 

    
Assembly 

size 
12.5 Mb RE HpaII 

synthetic 

community of 

11 yeasts 

species 

Type 3C seq program IDBA-UD Type 3C seq 13 communities of 

contigs (11 major 

representing 98% of 

the assembly, one 

contaminant, one 

corresponding to 

misassembled 

contigs) 

PE  60 M contigs 47 614 PE  60 M 

length 2x91pb N50 6.9 Kb length 2x91pb 

    
Assembly 

size 
138 Mb RE DpnII 

LB-enriched 

river sediment 

Type 3C seq program IDBA-UD Type 3C seq 

184 significant 

communities (19 

larger than  1Mb) 

PE  67 M contigs 130 713 PE  67 M 

length 2x91pb N50 1.2 Kb length 2x91pb 

    
Assembly 

size 
111 Mb RE HaeIII 
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