Non-human primates in HIV research: Achievements, limits and alternatives.
Thalía Garcia-Tellez, Nicolas Huot, Mickaël J Ploquin, Philippe Rascle,
Beatrice Jacquelin, Michaela Müller-Trutwin

To cite this version:

HAL Id: pasteur-01419521
https://hal-pasteur.archives-ouvertes.fr/pasteur-01419521
Submitted on 19 Dec 2016

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - ShareAlike| 4.0 International License
Non-humanprimates in HIV research: Achievements, limits and alternatives

Thalía Garcia-Telleza, Nicolas Huota,b, Mickaël JPloquin a, PhilippeRascal a,
BeatriceJacqueline a, Michaela Müller-Trutwin a,b

a Institut Pasteur, Unité HIV, Inflammation and Persistence, Paris, France; b Vaccine Research Institute, Créteil, France.

ThaliaGARCIA-TELLEZ thalia.garcia-tellez@pasteur.fr, Nicolas HUOT nicolas.huot@pasteur.fr, Mickael PLOQUINmickael.ploquin@pasteur.fr, Philippe RASCLE philippe.rascle@pasteur.fr, BeatriceJACQUELIN beatrice.jacquelin@pasteur.fr, Michaela MULLER-TRUTWIN michaela.muller-trutwin@pasteur.fr

Corresponding author: Michaela MULLER-TRUTWIN
michaela.muller-trutwin@pasteur.fr
Abstract

An ideal model for HIV-1 research is still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) recapitulates most virological, immunological, and clinical hallmarks of HIV infection in humans. It has become the most suitable model to study the mechanisms of transmission and physiopathology of HIV/AIDS. On the other hand, natural hosts of SIV, such as African green monkeys and sooty mangabeys that when infected do not progress to AIDS, represent an excellent model to elucidate the mechanisms involved in the capacity of controlling inflammation and disease progression. The use of NHP-SIV models has indeed enriched our knowledge in the fields of: i) viral transmission and viral reservoirs, ii) early immune responses, iii) host cell-virus interactions in tissues, iv) AIDS pathogenesis, v) virulence factors, vi) prevention and vii) drug development. The possibility to control many variables during experimental SIV infection, together with the resemblance between SIV and HIV infections, make the NHP model the most appropriate, so far, for HIV/AIDS research. Nonetheless, some limitations in using these models have to be considered. Alternative models for HIV/AIDS research, such as humanized mice and recombinant forms of HIV-SIV viruses (SHIV) for NHP infection, have been developed. The improvement of SHIV viruses that mimic even better the natural history of HIV infection and of humanized mice that develop a greater variety of human immune cell lineages, is ongoing. None of these models is perfect, but they allow contributing to the progress in managing or preventing HIV infection.

Keywords: HIV, SIV, AIDS, non-human primates, animal models
Highlights

- NHP allow studying viral transmission, immunopathology, immune response and prevention.
- Natural SIV hosts help to reveal mechanisms of HIV disease control.
- NHP models of spontaneous or ART-induced control provide insights for HIV cure.
- NHP models have allowed major advances in HIV/AIDS field but they are not perfect.
- Alternative models (humanized mice, SHIV) are useful for specific research questions.
INTRODUCTION

HIV/AIDS is still a major public health issue. According to the World Health Organization, HIV infection figures, even today, among the ten major leading causes of death and the second cause of mortality in adolescents. Since the first report in 1981 and the identification of HIV as a cause of AIDS in 1983, AIDS has claimed for more than 35 million of lives and only in 2015, 2.1 million of people became newly infected with HIV. HIV infection is characterized by a slow progressive loss of CD4+ T cells that, in the absence of treatment, generally lead to an immunosuppressive condition. Nowadays, it is admitted that chronic immune activation is the driving force of such immunodeficiency. Undersuccessful combined antiretroviral therapy (cART), the virus is controlled up to undetectable level in blood, but a residual chronic inflammation persists and is associated with themorbidity and mortality observed in the antiretroviral-treated patients. Despite the great advances obtained in HIV/AIDS knowledge, there are still key problems to solve, in particular the lack of a vaccine and a cure and the absence of treatments for resolution of HIV-induced inflammation. Animal models for HIV have already contributed to answer major questions, but they also have several limitations. The “perfect animal model” for HIV-1 research is indeed still unavailable. However, infection of non-human primates (NHP), such as macaques, with Simian Immunodeficiency Virus (SIV) leads to a disease that is similar to AIDS induced by HIV in humans. So far, this is the most suitable model to study the mechanisms of transmission and physiopathology of the disease. Indeed, SIV infection in macaques fulfills numerous conditions generally requested to constitute a reliable animal model for human disease:

1. The virus causing disease in the model should cause the same disease in humans;
2. The course of the disease in the animals should resemble that in humans;
3. The range of cells, tissues and organs involved should be similar in humans and in the animal;
4. Immune responses to infection in the animal model should be similar to those in humans.
These conditions are not fulfilled by other animal models, such as FIV in cats or HIV-1 in humanized mice (see below). Here, we review characteristics of the SIV infection in NHP that have favored its use as a model for HIV/AIDS research and summarize some of the major past and recent advances in the field obtained thanks to the NHP models (Table 1). We will briefly evoke advances in other models, such as humanized mice, in research toward HIV vaccine and cure. Finally, we will explain the limits of NHP models and discuss how these models could nonetheless help in the global effort to achieve the development of efficient preventive and curative approaches.

1. SIV MODELS AND THEIR CONTRIBUTIONS TO RESEARCH ON HIV PREVENTION AND TREATMENT

Human AIDS is caused by two types of HIV (HIV-1 and HIV-2). These viruses are subdivided into groups (M, N, O, and P for HIV-1; A for HIV-2), subtypes, circulating recombinant forms (CRF) and unique recombinant forms (URF), HIV-1 group M subtype C being the most prevalent in the world\(^3,4\).

Since the first cases of HIV infection, there has been interest in identifying the origin of the epidemic. The first insight came to light when a close relationship between HIV-2 and a virus that infects macaques was found\(^5\). This virus was called SIVmac in analogy to HIV and according to the species from which it was isolated. Thereafter, another phylogenetic association was discovered between HIV-2 and SIVsmm, a virus that infects sooty mangabeys in West Africa\(^6\). Subsequent studies confirmed that SIVmac and HIV-2 derived both from SIVsmm\(^6-9\).

The origin of HIV-1 was traced on non-human primates, as well. The human virus is closely related to SIVcpz, which infects West-Central Africa chimpanzees (\textit{Pan troglodytes troglodytes})\(^7,8,10-12\) and from which HIV-1 MandN derived\(^11-16\). On the other hand, the analysis of fecal samples from Cameroongorillas revealed the existence of SIVgor\(^17,18\). The latter virus is related to HIV-1 O and P. Phylogenetic analyses indicate that chimpanzees constitute most likely the original reservoir and source of SIVgor as well as HIV-1 O and P\(^18-20\) (Figure 1).

More than 40 NHP species have been found to carry SIV in the wild. Noteworthy, natural carriers of SIV are all African species. In contrast, Asian monkeys, such as macaques, are
only infected in captivity.

The first report of AIDS in a NHP was provided by Letvin and colleagues in 198321, soon after the discovery of HIV. This syndrome was detected in captive macaques (Macaca cyclopis and Macaca mulatta) that died of lymphomas or opportunistic infections like Pneumocystis carinii. The revision of autopsy records and laboratory studies revealed that these animals suffered of anemia, neutropenia and monocytosis before death. A lymphocyte ratio (CD4/CD8) reversion and a loss of T cell numbers and functionality were observed as well before death. The causes of death included necrotizing gingivitis, Pneumocystis carinii, and cytomegalovirus infections, as well as three atypical cases of lymphoma.

Macaques infected by SIV mac became the most important animal model for HIV/AIDS research. The disease progression profile during SIV infections in macaques depends both on the macaque species and the SIV mac strain used (Figure 2). The most frequently used animals are Indian and Chinese rhesus macaques as well as cynomolgus macaques infected by the SIVmac239 molecular clone or the SIVmac251 viral isolate. The most rapid disease progression is generally observed in Indian rhesus macaques infected with SIVmac239.

This macaque model revealed the massive CD4+ T cell depletion in the gut in the very early phase of infection22-24. While it was already known that HIV replicates in the gut25, the macaque model helped to underscore the rapidity of the events in this tissue (within the first 24 h upon infection) and to what extent the degree of T lymphocyte loss in the gut is associated with disease progression. It was subsequently shown that resting memory CD4+ T cells were the most frequently infected cells within the gastrointestinal (GI) tract26,27. These cells can live for decades and are now considered as a major reservoir for HIV-128,29. Experimental SIV infections can be performed through the intravenous route. Several additional experimental protocols have been developed for infection through rectal, vaginal, or oral routes in order to mimic the predominant routes of transmission encountered in humans, i.e. sexual or mother-to-child transmission by breastfeeding20,22-24. To better resemble even more what is happening during infection and dissemination of the virus throughout the body in humans, protocols for repetitive low-dose challenge have been set up as well. These models contribute to evaluate vaccine candidates and already lead to the demonstration of two constructions that can confer strong control, i.e. SIVΔnef and rhesus cytomegalovirus (CMV)-based vectors. However, the degree of protection correlates...
inversely with the level of attenuation, the least-attenuated strain giving the greatest protection. Vaccine candidates based on CMV-vectors generate a very strong and persistent T effector memory responses in half of the animals leading to controlled infection and elimination of viral reservoirs. While it is at the moment unclear if such constructions can be used as a vaccine, the studies of these vaccine candidates have already and will continue to provide important clues about the correlates of protection against HIV.

The macaque/SIV mac models also allow to examine the very first immunological events after viral exposure in relation to the transmission route or to study the selection mechanisms of transmitted/founder virus resulting from the genetic bottleneck that occurs during transmission (Table 1). It was shown for instance in the macaque model, that while in most cases the transmission is based on the selection and persistence of only one viral variant from the donor, the number of transmitted founder variants increases with the viral dose in the challenge.

In the search for a vaccine against HIV-1, there is a need for an animal model that can be infected with the human virus. Such a model would help, for instance, in the study of neutralizing antibodies (Nabs) against HIV-1. Macaques are susceptible to HIV-2 but not to HIV-1 infection. Chimpanzees constitute the original reservoir of HIV-1 and therefore are naturally susceptible to HIV-1 viruses. However, HIV-1 had adapted to the new human host, most likely by circumventing restriction factors, among other reasons. Therefore, the results obtained from HIV-1 infection in these primates have been non-conclusive. Some groups have reported the development of AIDS in this model, characterized by marked depletion of CD4+ T cells, sustained viremia, severe CD4:CD8 inversion and increased T cell apoptosis. Others have observed animals that do not or only slowly progress to AIDS, maintaining their normal CD4+ T cell counts and displaying undetectable viremia. The scientific limitations of the model, together with the new guidelines for the use of chimpanzees in biomedical research, led to the interruption of its use for HIV. Infection of macaques with HIV-1 has also revealed to be challenging. Indeed, HIV-1 faces in macaques the existence of cellular proteins that restrict the replication of the human virus, such as TRIM5α, APOBEC3G and Tetherin. This makes it difficult to infect macaques or their CD4+ T cells by HIV-1 in vivo and in vitro, but allowed to contribute
the discovery and extensive characterization of restriction factors (Table 1). Several TRIM5α alleles have been identified and characterized in monkeys. It has been clearly shown that the viral replication differs depending on the TRIM5α allele present in the simian host54,55. The only macaques susceptible to be infected by HIV-1 is the pig-tailed macaque (Macaca nemestrina). This occurs as a result of a2-nucleotide deletion in the 5′-end of TRIM5α transcript, which impairs the action of this RF16. However, the viral replication is not efficient and there is no disease progression.

A recombinant virus has been engineered, which consists of an HIV-1 backbone where target sites of restriction factors were replaced by the corresponding SIVmac sequences56. While this virus induces persistent viremia, disease progression is only observed after in vivo depletion of CD8+ T cells in acute infection. This modified model allows the study of some virus-host interactions, but needs further development for its application in HIV research.

Another attempt to circumvent the lack of a macaque model for HIV-1 consists in the construction of other types of recombinant viruses of HIV and SIV, called SHIV57. These have been used since many years to overcome the lack of an animal model by constructing for instance SIVmac viruses coding for HIV-1 Env instead of SIVmacEnv. Such macaque/SHIV models were essential for providing the proof of concept that antibodies alone can protect against infection by taking advantage of the possibility to passively transfer the antibodies and challenge the animals experimentally58 (Table 1). However, these types of approaches are challenged by the large diversity of the envelope glycoprotein, their glycans, shields, and their high plasma titers of NAb needed for protection. Lately, the improvement of broadly neutralizing monoclonal antibodies (bNAb) allowed to enhance their neutralization potency and to protect, for instance, SHIV-challenged macaques with much lower NAb concentrations59. This new generation of very broad and potent Abs might have a potential not only as pre-exposure blocking agents but also in view of a cure or remission of HIV. The treatment with those Abs resulted in a reduction of viremia and proviral DNA in blood and tissues60,61.

Very early on, SIVs that encode for HIV-1 Pol have also been engineered. Indeed, SIVmac viruses are not susceptible to some drugs used against HIV-1, such as non-nucleoside
reversetranscriptaseinhibitors (NNRTIs), fusion inhibitors and someintegraseinhibitors. The engineering of SHIV expressing the HIV-1 Pol protein makes them susceptible to such antiretrovirals. They contributed to the development of therapeutic approaches. As an example, NHP infection models have demonstrated the effectiveness of subcutaneous, gel, and oral formulations of tenofovir (PMPA) in preventing transmission of SIV or SHIV viruses, even when applied several hours after viral challenge. Such in vivo activity of tenofovir made it a promising agent for prevention of HIV-1 infection. Most SHIV viruses, however, do not reproduce all characteristics of HIV-1 infection in humans. The first generation of SHIV was composed of X4 viruses and therefore displayed a distinct cellular tropism than primary HIV in early infection. CD8+ T cell depletion in monkeys is still often needed for disease progression to AIDS. Nevertheless, SHIV models have allowed overcoming specific hurdles and cannot be missed in far for pre-clinical trials of vaccine and drug candidates.

As we have recapitulated, SIV infection in NHP constitutes a good model in many aspects for HIV research. It is, however, not perfect. One cannot ignore that SIV and HIV are close but different viruses, which can lead to differences in certain aspects of their interactions with the host or susceptibility to drugs and vaccine candidates.

2. MODELS FOR SPONTANEOUS SIV CONTROL

The majority of the individuals infected by HIV progresses to AIDS within 7 to 10 years in the absence of cART. There exist, however, a few individuals (<0.2%) known as HIV-controllers who spontaneously and inefficiently control viral replication. The deep characterization of these individuals and the factors that are involved in the control of the infection have been the focus of many researches. Multiple causes are suspected, and are not mutually exclusive. In particular, the genetic background of the individuals enriched in MHC alleles such as B27 and/or B57, strong CD8+ T cell responses, reduced susceptibility of CD4+ T cells to HIV infection and early control of viral replication are likely involved. All distinct profiles of disease progression in humans are recapitulated by macaques after SIV mac infection, including the occurrence of a spontaneously controlled infection in a minority of macaques that can also be related to a specific MHC background. The disease progression rate depends both on the virus and host species.
(Figure 2), as well as individual host features, as in humans. Studies in the macaque
modelallow deciphering, onebyone, the role of each viral gene \textit{in vivo} by infecting macaques with genetically engineered SIVmac clones containing defective or lacked accessory genes. This is how it was discovered that Nef is essential for high viral replication \textit{in vivo}, while \textit{in vitro}, Nef was dispensable.72 Mutations in Nef indeed are associated with attenuated HIV-1 infection in humans.

The role of MHC alleles (Mamu alleles in rhesus macaques) has been extensively studied in the spontaneous control in macaques. Some Mamu alleles (e.g. Mamu-A*0173) are associated with a better containment of viral replication while others are linked to a faster disease progression.74 Furthermore, the combination of Mamu alleles and KIR receptors in NK cells increases the complexity of the response,75,76 as showed for example in an epistatic analysis of KIR3DL05, KIR3DS05, and KIR3DL10 in association with Mamu-B*012 that contribute to elevate the viral load in rhesus macaques.76

The NHP models allow investigators to address not only the very yearly events that follow SIV exposure, but also to study these events in tissues, such as lymphoid tissues, genital tract, lung, liver, intestine, and central nervous system (CNS).77 Latent reservoirs of HIV are relocatd throughout the body and persist during infection even in presence of highly efficient cART. NHP models allow to study the establishment of these reservoirs in tissues, which occurs in the first hours and days following infection.78–80 Advances in our understanding of the role of the different immunecell populations as viral target cells, have been provided by experiments in which these populations are depleted in NHP models. Depletion of CD4+ T-cells in macaques prior to SIV infection was associated with higher viral load, massive activation and infection of macrophages and microgliathat become the predominant infected cells.81 The SIVmac-infected macaque model was used as a proof-of-concept to demonstrate that CD8+ cells participate in the control of infection, using \textit{in vivo} CD8+ T cell depletion (Table 1).82–84 Additionally, this model allowed to demonstrate the presence of a CTL response as soon as 7 days p.i., and helped to understand how quickly HIV/SIV evades this cellular response through the acquisition of mutations very yearly in acute infection.85 The macaque model also provided the concept that CD8+ T cell responses arrive “too little” and “too late” into vaginal mucosa to control viral dissemination and that the “window of opportunity” to prevent infection is very short.86,87 Furthermore, depletion of NK cells resulted in modest changes in plasmaviral load but ina
significant increase in the gut. However, no tools exist so far to specifically deplete NK cells and CD8+T cells. Noteworthy, cell depletion induces homeostatic proliferations of other cells, this side effect in addition to others need to be taken into consideration in the interpretation of the results.

3. MODELS FOR DISEASE CONTROL

About 40 distinct African NHP are natural hosts of SIV. Only in a few species though, studies could be conducted to evaluate their natural history and its outcome in these animals. Studies based on non-invasive techniques have shown that SIVcpz infection in wild chimpanzees reduces their lifespan, when compared to non-infected animals in the same habitat. One case of AIDS-related symptoms was also reported in a naturally infected Central African chimpanzee, which presented lymphopenia, weight loss and opportunistic infections 7 years after SIV positive screening. Efforts should be made to better characterize the pathogenicity of SIV in natural hosts and to find out whether SIV infection also plays a role in a population decline. Other studies in semi-freemandrills infected by SIVmnd in their natural habitat revealed, in contrast, strong protection against AIDS. Similarly, other African NHP, such as African Green Monkeys (AGM) and Sooty mangabeys (SM) revealed to be resistant to AIDS. The latter serves today as a model to study the control of the disease, in particular SM and AGM, and are called the “natural hosts” models. Cross-species transmissions demonstrated that the same SIV strain can cause opposite outcomes of infection, depending on the host species (Figure 3). On the other hand, not all SIV strains induce AIDS in macaques, some SIV viruses being easily controlled in the animals, while others not. This demonstrates that the outcome of the infection depends on a combination of both viral and host determinants.

Natural hosts of SIV have been used to better understand the mechanisms responsible for disease progression in HIV infection. The most striking difference between non-pathogenic SIV and pathogenic HIV-1/SIV mac infections is the lack of chronic immune activation. Paradoxically, natural hosts of SIV exhibit high titers of virus in plasma, but they do not display chronic activation of the adaptive and innate immune system. This feature resembles the ‘viremic non-progressors’, very rare human individuals who display elevated viremia but maintain CD4 T+ cell counts and avoid disease progression for
years. Extensivestudiesare ongoing in order to elucidate the mechanisms involved in the capacity for controlling inflammation and disease progression. Some non-mutually exclusive hypotheses are listed below:

Intact mucosa barrier, thereby, lack of microbial translocation and lack of microbial products that would drive the continuous stimulation of the immune system. Experimentally mimicking microbial translocation in these non-pathogenic models provided evidence of the link between this phenomenon and immune activation. LPS administration in AGMs led to induced indeed to elevated T cell activation levels. However, it is unlikely that this is the only event involved in the deleterious chronic inflammation as it has been shown that infection of macaques with an attenuated virus still leads to AIDS without acute loss of CD4+ T cells and microbial translocation.

Ancient infection that led to an adaptation of the host’s immune response responsible for differences in the intensity or nature of SIV sensing. The capacity to produce IFN-Is in natural hosts, but other sensoing pathways have only poorly been explored in natural hosts so far.

The ability of the Nef protein to block the activation of infected T cells by downregulation of CD3.

Natural hosts show low levels of CCR5 surface expression on CD4+ T cells and apparent protection of central memory T cells from SIV infection.

Controlled viral replication in secondary lymphoid organs. One hallmark of SIV infection in natural hosts is the low viral burden in lymph nodes in the chronic phase of infection in contrast to other tissues. This constitutes one of the major differences in lymph nodes of AGMs and SMs. Furthermore, lymph nodes in these natural hosts are characterized by: (i) lack of lymphadenopathy and thus no extensive sequestration of lymphocytes in AGMLNs, (ii) no or less folliculardendritic cell deposition of virus in AGM and SM compared to SIVmac infections (iii) more rapid control of interferon-stimulated genes (ISGs) in LNs as compared to blood and gut. The control of viral replication and immune activation in lymph nodes prevents fibrosis and maintains normal immune regulations.
function108,114,115 in this organ which is essential for the induction and shaping of adaptive immune responses. Maintenance of normal immune functions might lead to a better control of other infections in the host (i.e. CMV, virome) that otherwise could also contribute to immune activation.

Depletion of CD4+T cells through apoptosis leading to homeostatic proliferation of T cells116,117

4. SMALL ANIMAL MODELS FOR HIV RESEARCH

Besides NHPs, other animal models have been used for the study of HIV-1. In the past, feline immunodeficiency virus (FIV) infection in cats served as a model of naturally occurring immunodeficiency. During FIV infection, CD4+T cells are depleted and a chronic inflammatory state is established, such as it happens during HIV/SIV infection118. The FIV model has also been useful in the past to test some antiretroviral drugs119. Nowadays, however, this model is generally not used anymore for HIV research since some important features of the infection are clearly different. For example, FIV is able to infect CD8+T cells and B cells in addition to CD4+T cells and macrophages, due to its affinity for CD134 as a receptor. Thus, FIV establishes different viral reservoirs in comparison with the human or primate infection by HIV/SIV.

Other attempts for studying HIV-1 infection in small animals such as rats, mice or rabbits were performed without success. Indeed, rodent cells are refractory to HIV infection. This could not be circumvented by the expression of the human viral receptor on the cell surface. When the murine cells were engineered for allowing HIV to enter, the virus encountered additional problems to effectively replicate, most likely due to restriction factors, among others. The development of humanized mice arose the possibility to infect them with HIV-1 and answer some specific research questions. Examples of humanized mice used in HIV research comprise, \textit{intertalia}, SCID-hu, SCID-hu-PBL, NOD-SCID, Hu-HSC and BLT mice67,68,120–122. Humanized mice have been used to study punctual aspects of HIV-1 infection, such as T cell exhaustion123, mucosal immunity120,124,125, viral latency, antiretroviral drug efficacies and infection of macrophages124,126,127, among others.
2). Humanized mice have already contributed to the knowledge of specific aspects of HIV infection. However, their development requires complex surgical engineering. Moreover, they need to be generated from scratch (denovo) for each experiment, being tailored according to the immunological requirements of the research, which increases the cost of their establishment and maintenance. In addition, there exist anatomical differences, for example, at the level of lymphoid organsthatarenot fully developed andalack of several human immune cell lineages, in particular related to innate immune responses. Of note, the field is evolving fast and much effort is put on the improvement of humanized micromodels121.

5. LIMITATIONS, PERSPECTIVES, AND CONCLUSIONS

Despite the numerous advantages that NHP represent, it is important not to forget that choosing the right model for each research question is an essential point. Macaque models of transmission were established very early as models for HIV128. Animal models offer the possibility to control the viral strain, viral dose, and infection route. However, while it is well admitted that rectal SIV infection mimics what is happening in humans, vaginal infections are more difficult to modelize as menstrual cycle variations impact the thickness of the epithelium and the efficacy of infection32,129. Progesterone is used to control the cycle but to what extent this impacts the relevance of the studies is still under debate.

Also, humans are infected through biological fluids that do not only contain free virus, but also infected cells and other components, such as inflammatory cytokines. Studies are ongoing to evaluate if there are differences depending on the composition of the inoculum130,131.

Natural transmission of SIV in African NHPs is predominantly horizontal and thought to occur through sexual contacts or bite wounds. In contrast to HIV infections, vertical transmission of SIV is extremely rare. The expression of the co-receptor CCR5 on CD4+ T cells in AGMs is low in infants and dramatically increases in adults132. Susceptibility to infection through the vaginal and rectal route was linked to the availability of memory CCR5+ CD4+ T cells in the targeted mucosa and has been suggested that the low rate of vertical SIV infection is associated with the few target cell availability in newborns and infants133,134. Thus, while HIV and SIV infections are distinct in the frequency of motherto
child transmission, NHPmodels can be used to better understand the underlying mechanism of this difference133,135,136.

Once infection takes place at mucosal sites, the virus crosses the epithelial barrier, establishes a first pool of infected cells (foci) and disseminates thereafter draining lymph nodes (LNs)30. It is still under debate which cells are the first targets of the virus. It has been suggested that CD4+CCR5+T cells are the primary targets of infection in mucosa24,26,27,137,138. Dendritic cells (DCs) might also play a role in the process of viral dissemination. The use of macaque models permitted to analyze the role in virus dissemination during the first hours and days in vivo139. Nonetheless, the events leading to the establishment of infection are still not fully elucidated.

Repeated low-dose viral challenges might provide a benefit for the evaluation of vaccine candidates or the understanding of the establishment of viral reservoirs. The low number of animals for ethical and economic reasons renders interpretation of the results however sometimes difficult. Taken this into account, technical improvements are being made. For instance, novel techniques, such as in vivo imaging, are highly promising77. It is important to mention that not only the number of specimens allowed for each research is often limited, but the tools are limited as well. Thus, there are still markers for which no monoclonal antibody exists in monkeys. This is the case for example for most of the KIRs. NHP are the closest animal model for HIV/AIDS research, but an ideal model for HIV-1 is still not available. SIV and HIV are close but distinct viruses, which cause differences in certain aspects of their interactions with the host, vaccines and drugs. To overcome these potential discrepancies between SIV and HIV, recombinant viruses, including SHIVs, have been generated. SHIVs have been and still are particularly useful in the study of humoral responses, vaccine candidates and antiretroviral drugs67. In the future, it would be useful however to dispose of SHIV viruses that mimic even better the natural history of HIV infection. The development of new generations of SHIV strains is already ongoing.

In conclusion, non-human primates infected by SIV represent a model with numerous advantages for the study of HIV infection. Its close resemblance to HIV infection in humans probably makes it the best or at least the most deeply characterized animal model for human disease. NHP-SIV models have allowed the study of: i) viral transmission, ii)
early immune responses, iii) host cell-virus interactions in tissues, iv) prevention and v) drug development (Table 3).

Despite of all the caveats noted and the potential difficulty in translating the findings from primates to humans, these models can be and have been highly instructive in establishing certain basic principles that would have been difficult or impossible to determine by experimentation in humans for safety reasons.

Of note, the suitability of each model depends on the study’s specific question, the available tools and appropriate interpretation of the results. Nonetheless, if used correctly, it constitutes an essential model, in many aspects, for HIV research until a vaccine and therapy for HIV cure or HIV remission are discovered.
Table 1. Examples of major contributions of NHP models to HIV/AIDS research

<table>
<thead>
<tr>
<th>Contribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Discovery of initial founder populations of infected cells (foci)</td>
</tr>
<tr>
<td>CD8+T cell response: «too little, too late» to clear infection</td>
</tr>
<tr>
<td>Short window of opportunity to prevent infection</td>
</tr>
<tr>
<td>CD8+T cells: impact on viral set-point</td>
</tr>
<tr>
<td>Proof of concept that Nab can protect against infection</td>
</tr>
<tr>
<td>Nef viral protein: necessary for high viral load in vivo</td>
</tr>
<tr>
<td>Resting memory T cells: main target of the virus in lymphoid tissues</td>
</tr>
<tr>
<td>Rapid and dramatic depletion of CD4+T cells in gut</td>
</tr>
<tr>
<td>Trafficking of Treg, PDC, NK cells to the gut</td>
</tr>
<tr>
<td>Loss of Tcm associated with disease progression</td>
</tr>
<tr>
<td>Events in acute infection determined disease progression</td>
</tr>
<tr>
<td>TRIM5a alleles restrict viral replication in vivo</td>
</tr>
<tr>
<td>Analyses of the virome and microbiome in tissues</td>
</tr>
<tr>
<td>In vivo imaging of SIV</td>
</tr>
<tr>
<td>Model</td>
</tr>
<tr>
<td>-------</td>
</tr>
<tr>
<td>Alternative viruses</td>
</tr>
<tr>
<td>SHIV</td>
</tr>
<tr>
<td>Alternative hosts</td>
</tr>
<tr>
<td>SCID-hu<sup>150</sup></td>
</tr>
<tr>
<td>Hu-HSC</td>
</tr>
<tr>
<td>BLT<sup>152</sup> (Bone-liver-thymus)</td>
</tr>
</tbody>
</table>
Table 3. NHPuse towards a cure for HIV: advantages and applications

<table>
<thead>
<tr>
<th>Aim</th>
<th>Advantage of NHPuse</th>
<th>Examples of strategies studied</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pharmacological viral suppression and diminution of viral reservoirs<sup>78,155,156</sup></td>
<td>Control of viral strain</td>
<td>Diffusion of antiretroviral drugs in tissues</td>
</tr>
<tr>
<td></td>
<td>Control of viral dose and nature of inoculum</td>
<td>Very early treatment initiation</td>
</tr>
<tr>
<td></td>
<td>Control of route of administration and timing</td>
<td>Treatment with IFN-</td>
</tr>
<tr>
<td></td>
<td>Control of duration, type and combination of antiretrovirals</td>
<td>□ Treatment with bNabs</td>
</tr>
<tr>
<td></td>
<td>Extensive characterization of viral reservoir in tissues</td>
<td>Treatment with Interleukins (IL-7, IL-15, IL-21)</td>
</tr>
<tr>
<td></td>
<td>Analyses of immune responses in tissues including immediately after infection</td>
<td>Treatment with TLR7 agonists</td>
</tr>
<tr>
<td></td>
<td>Intervention in the early stage of primary infection</td>
<td>Treatment with anti PD-1</td>
</tr>
<tr>
<td></td>
<td>Administration of potentially risky substances</td>
<td>Administration of inhibitors of chromatin-remodeling molecules (SAHA-inhibitors)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gene editing</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanoparticles</td>
</tr>
<tr>
<td>Restoration and enhancing of immune response<sup>55,86</sup></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Purge latent HIV-reservoir<sup>159–163</sup></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
FUNDING
TGT is a fellow from the PasteurParis University International PhD program and supported by the InstitutCarnot PasteurMaladiesInfectieuses. NH and MJP were, respectively, supported by fellowships from the Vaccine ResearchInstitute (VRI) and Sidaction. We thank the French Agency for AIDS Research (ANRS), the Institut Pasteur, Sidaction, the «Investissements d’Avenir” program managed by the ANR grant agreement N° ANR-10-LABX-77 and ANR-11-INBS-0008, as well as L’Oréal in partnership with UNESCO for their support. The funding sources had no influence on our studies or in the writing of this report.

ACKNOWLEDGMENTS

We would like to thank Livia Pedroza-Martins and Pierre Roques for contributing with visual material. Furthermore, we acknowledge the state-of-the-art National Center for Infectious Disease Models and Innovative Therapies (IDMIT).

CONFLICT OF INTERESTS

The authors declare not to have any conflict of interests.

43. Ma, Z.-M. et al. SIVmac251Is Inefficiently TransmittedtoRhesusMacaquesbyPenile
Inoculationwith a Single SIVenvVariantFoundinRamp-upPhasePlasm. AIDSRes. Hum.

44. Keele, B. F.&Estes,J.D. Barrierstomucosal transmissionofimmunodeficiencyviruses.

45. Gambhira, R.etal. Transmitted/FounderSimianImmunodeficiencyVirusEnvelope
SequencesinVesicular Stomatitis andSemliki ForestVirus Vector Immunized Rhesus

46. Novembre, F. J. etal. DevelopmentofAIDSin a chimpanzeeinfected with human

47. Davis, I. C., Girard,M.&Fultz, P. N.Lossof CD4+Tcells in humanimmunodeficiency virus type1-
infectedchimpanzeesisis associatedwith increased lymphocyteapoptosis.J. Virol. 72,

49. Ferrari, G. etal. Theimpactof HIV-1infectiononphenotypicandfunctional parametersof

51. InstituteofMedicine(US)andNational ResearchCouncil (US) CommitteeontheUseof
Chimpanzees inBiomedical andBehavioralResearch.ChimpanzeesinBiomedical and

52. Stremlau,M. etal. ThecytoplasmicbodycomponentTRIM5alpha restricshIV-1infectionin

Figure 1

SIVagm
Chlorocebusaapaeus
Chlorocebuspygerythrus

SIVmnd
Mandrillusphinx

SIVsm
Cercocebusatys

SIVcpz
Pantrogloystestroglyotes
Pantroglytesschweinfurthii

SIVgor
Gorillagorilla

HIV-1(M,N)
Human

HIV-1(O,P)
Human

SIVma
Macacafascicularis
Macacamulatta
Macacanemestrina

SIV-2(A-H)
Non-pathogenic infection

Slow progression

Pathogenic infection
Figure 2

AIDS SUSCEPTIBILITY

Macacanemestrina

Macacamulatta
 - Indian
 - Chinese

Macacafascicularis

VIRULENCE

SIVmac239

SIVmac251

SIVmac1A11

SIVmacànef

DISEASE PROGRESSION

Rapid

Slow
SIVsmm9

- **Mangabey** → asymptomatic
- **Rhesus Macaque** → **AIDS**

SIVagm.ver90

- **Rhesus Macaque** → asymptomatic
- **Pigtailed Macaque** → **AIDS**

SIVagm.ver155

- **Pigtailed Macaque** → asymptomatic
Captions

Figure 1. Non-human primate models for the study of HIV infection. Non-human primates can be divided into pathogenic (macaques) and non-pathogenic (sooty mangabeys, mandrills and African Green Monkeys) models for HIV research. The figure depicts the relationship between the HIV and SIV viruses and the type of infection caused by them.

Figure 2. Host and viral determinants of disease progression rate. The progression of the disease depends on the intrinsic susceptibility of each species to develop AIDS and on the virulence of the SIV strain used.

Figure 3. Cross-species transmissions of SIV and fates of infection. The presence or absence of progression depends on both, viral and host factors; i.e., the infection with a given SIV strain will not cause disease in some primates, whereas in others will lead to the development of AIDS. Host and viral determinants interact with each other and a combination of both determines the outcome of infection.