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H, 13C and 15N resonance assignments of σS activating protein Crl from Salmonella enterica serovar Typhimurium

 

in particular the possible role of Crl in triggering domain rearrangements in the multi-domain protein σ . Here we provide the H, C and N resonance assignments of Salmonella enterica serovar Typhimurium Crl, as a starting point for Crl structure determination and further structural investigation of the Crl -σ complex.
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Salmonella Typhimurium Crl RpoS Sigma factor RNA polymerase Stress response Bacteria adapt to environmental perturbations like extreme stress conditions by entering into a stationary growth phase, altering their gene expression pattern, cell morphology and physiology. In enterobacteria like Escherichia coli and Salmonella, protection against multiple stress is controlled at the molecular level by the master transcriptional regulator during stationary phase, σ , encoded by the rpoS gene [START_REF] Battesti | The RpoS-mediated general stress response in Escherichia coli[END_REF][START_REF] Hengge | The general stress response in gram-negative bacteria[END_REF].

During exponential growth, the housekeeping σ factor σ associates with the multi-subunit core enzyme E (α ββ′ω) of the RNA polymerase to form the transcription initiation competent holoenzyme Eσ . However, in the stationary growth phase, σ is expressed and competes with σ . It then down-regulates σ -controlled genes involved in nutritional competence and promotes transcription of more than 10 % of the bacterial genome that is essential for cell survival under starvation and multiple stress conditions. In Salmonella enterica serovar Typhimurium, which causes typhoid fever symptoms in mice and gastroenteritis in humans, σ is moreover involved in virulence [START_REF] Hengge | The general stress response in gram-negative bacteria[END_REF].

To balance self-preservation and nutritional competence according to environmental cues, σ -dependent transcription is tightly regulated at multiple levels: transcription, translation, protein stability and activation ( [START_REF] Hengge | The general stress response in gram-negative bacteria[END_REF]. In E. coli and Salmonella, the Crl protein activates σ -dependent transcription and plays an important role in the biosynthesis of curli fibers, involved in adhesion to extracellular matrices and biofilm formation [START_REF] Hengge | The general stress response in gram-negative bacteria[END_REF]. Bacterial genomes containing the crl gene also contain the rpoS gene, underlining the close interplay between Crl and σ (Monteil et al. 2010a ). The transcription factor Crl binds directly to σ , but not to DNA, and stimulates formation of the Eσ holoenzyme, increasing the competitiveness of σ , which is otherwise the σ factor with the weakest in vitro affinity for E [START_REF] Hengge | The general stress response in gram-negative bacteria[END_REF].

Whereas the functions of Crl have been clearly established, the molecular mechanisms underlying the activation of σ by Crl are still poorly understood. Like all σ factors of the σ family, σ is multidomain protein [START_REF] Hengge | The general stress response in gram-negative bacteria[END_REF].

In contrast to housekeeping σ, high-resolution three dimensional structures are not available for σ . It might be speculated that Crl triggers σ conformational rearrangements that favor efficient binding to E. It has been shown that the conserved domain 2 of σ is the only domain that binds Crl, displaying the same Crl binding properties as full-length σ (Monteil et al. 2010b ;Banta et al. 2013 ;[START_REF] Cavaliere | Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/sigmaS subunit of RNA polymerase[END_REF]. In Crl, the conserved Arg51 was found to be essential for σ activation in E. coli [START_REF] Banta | Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with sigma S[END_REF] ), but in Salmonella additional critical aromatic and charged residues were identified [START_REF] Cavaliere | Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/sigmaS subunit of RNA polymerase[END_REF]. In both cases, the σ binding interfaces on Crl were analyzed in light of X-ray structures of a Crl homolog in Proteus mirabilis, Crl [START_REF] Cavaliere | Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/sigmaS subunit of RNA polymerase[END_REF][START_REF] Banta | Structure of the RNA polymerase assembly factor Crl and identification of its interaction surface with sigma S[END_REF]. Crl is much less conserved than σ , and sequence identity is less than 50 % between Crl and each E. coli Crl and S. enterica serovar Typhimurium Crl (Monteil et al. 2010a ). Neither Crl nor Crl could be crystallized, but the small size of Crl made it amenable to NMR spectroscopy. Here we provide the nearly complete H, C and N resonance assignments of Crl , as a prerequisite for structure determination of Crl and for further structural characterization of the Crl -σ complex.

The pVFC681 (pET-MCN-EAVNH) plasmid for overexpression of S. enterica serovar Typhimurium Crl in E. coli BL21(DE3) strain was described in [START_REF] Cavaliere | Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/sigmaS subunit of RNA polymerase[END_REF] in minimal M9 medium, supplemented with 100 µg mL ampicillin, 1 g L NH Cl (Eurisotop) and 3 g L unlabeled or C-labeled glucose (Cortecnet) and inoculated with 10 mL of saturated starter culture in Luria-Bertani broth, were grown at 37 °C until OD = 0.7. Induction was started with 1 mM IPTG at 30 °C for 4 h. For C N-80 % H-labeling, cells grown in 1 L of unlabeled M9 medium were collected by centrifugation at OD = 0.7. They were resuspended in 100 mL of triple labeled M9 medium, prepared in 99.8 % deuterium oxide (Eurisotop) and supplemented with 1 g L NH Cl (Eurisotop) and 2 g L C-labeled glucose (Cortecnet), and incubated for 1 h at 37 °C. Cells were collected again, resuspended in 900 mL triple labeled M9 medium and incubated for 30 min. Protein expression was induced with IPTG at 28 °C for 16 h. Cell pellets were harvested by centrifugation and lyzed at 4 °C in a Cell disrupter (Constant System Ltd.) in buffer A (50 mM sodium phosphate pH 8.0, 300 mM NaCl,10 mM imidazole, supplemented with anti-proteases and benzonase). After clarification by ultracentrifugation, the supernatant was loaded on to a Ni-NTA column (Protino Ni-NTA, 5 ml) and eluted with buffer B (buffer A added with 300 mM imidazole). After dialysis against buffer C (50 mM sodium phosphate pH 8.0, 300 mM NaCl), the protein was finally purified by size exclusion chromatography on a HiLoadTM 16/60 Superdex 75TM column (GE Healthcare) in buffer C. NOESY-HSQC, all other proton side chain assignments from 3D hCCH-TOCSY (15.6 ms spin lock) and 2D H-H NOESY spectra. The NOESY mixing time was 80 ms. H chemical shifts were referenced to DSS. Spectra were processed with Topspin 3.1 (Bruker Biospin) or NMRPipe [START_REF] Delaglio | NMRPipe: a multidimensional spectral processing system based on UNIX pipes[END_REF] and analyzed with CCPNMR 2.2 software (Vranken et al. 2005 ).

The N-HSQC spectrum and amide assignments of Crl at pH 8.0 and 293 K are shown in Fig. 1 . Assignment completeness for Crl was 82.0 % for amide resonances, 90.9 % for backbone resonances ( C , C , C′, H ) and 91.1 % for side chain protons. Taking the His-tag into account, completeness amounted to 81.0, 83.2 and 82.6 %. Exchangeable arginine and lysine side chain protons were not assigned. Assignments are completely missing for Asp30 and Glu89. Crl is a 133 residue protein containing 20 aromatic residues (4 tryptophans, 4 tyrosines, 10 phenyalanines and 2 histidines) that contribute to the core structure of the protein by stacking the two main helices α1 and α3 onto the central five stranded β-sheet (the topology of Crl is indicated in Fig. 2 ). A high proportion of H chemical shift outliers was found in the vicinity of these aromatic moieties, ranging from backbone atoms (Gly55-H , Thr68-H , Gly80-H , His104-H , Leu38-H , L107-H ) to methyl ( Val42-H , Leu60-H , L100-H ) and aromatic protons (Phe76-H ). Conversely the high amount of aromatic residues may explain the difficulty to assist backbone chemical shift assignment of Crl by prediction from homology models based on the X-ray structures of P. mirabilis Crl (47 % sequence identity, PDB IDs 4Q11 and 3RPJ). Nevertheless the secondary structure prediction of Crl by TALOS-N (Shen and Bax 2013 ) matches well with the X-ray structure of Crl , as shown in Fig. 2 . Severe broadening of amide signals constituted a major issue for assignment, even when lowering the pH from 8.0 to 6.5, at which Crl was considerably less stable. In the case of Glu89-Thr90, the lack of N-terminal capping of helix α3 explains line broadening. However most of the broadening occurred in the central β-sheet, in addition to the flexible loop 1 between helix α1 and strand β1 (Fig. 2 , residues in bold green and sky blue type). Amide resonances are missing downstream of and inside strand β1 (Asp30-Phe34, Cys37), in strand β3 (Phe73 and Leu75), but also in the central strand β2 (Trp56, Trp57 and Glu59), suggesting that conformational fluctuations at the millisecond time scale inside the β-sheet contribute to line broadening. Several Crl signals, mostly amides, were duplicated with a 60:40 intensity ratio. In the N-HSQC spectrum (Fig. 1 ) the corresponding peaks are marked "a" and "b". Although Crl crystallized as a dimer with a small intermolecular β-sheet formed by the β4′ extension, Crl dimerization in solution was ruled out by analytic ultracentrifugation [START_REF] Cavaliere | Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/sigmaS subunit of RNA polymerase[END_REF] as well as by N relaxation measurements. N R and R relaxation rates yielded an average effective rotational correlation time of 11.3 ± 1.0 ns and a hydrodynamic radius of 23 Å, compatible with a monomeric state of Crl . No evidence could be found either for significant proline cis-trans isomerization. Duplicated signals were prominently clustered in helix α3 (Glu94-Leu96, Tyr98-L100, Phe103-Glu105) and proximal to those displaying line broadening, i.e. in strands β1 (Phe35, Leu38-Ala39), β2 (Gly55) and β3 (Tyr69, Tyr71, Gly74). The equivalent regions in Crl are in close contact in the Crl X-ray structure [START_REF] Cavaliere | Structural and functional features of Crl proteins and identification of conserved surface residues required for interaction with the RpoS/sigmaS subunit of RNA polymerase[END_REF], indicating that a common perturbation might be responsible for the minor signals (Fig. 2 , residues in magenta). Subsequent NMR spectra of Crl samples purified only by affinity tag displayed a set of additional intense peaks corresponding to the C-terminal sequence Asp122-Ala133 (magenta box in Fig. 2 ), revealing a proteolytic site in the C-terminus. Proteolytic activity was mostly removed from the samples during purification, but full-length and truncated Crl co-eluted during size exclusion chromatography, accounting for signal duplication in differently labeled Crl samples.

The chemical shift assignments for Crl have been deposited in the BioMagResBank (http://www.bmrb.wisc.edu) under accession number 25476. This was supported by the French Research Agency (Grant ANR-11-BSV3-009) and the IR-RMN-THC (CNRS FR3050) 

  ). Crl flanked by a 21-residue N-terminal His-tag was produced with N-, C N-and C N-80 % H-labeling. 1 http://eproofing.springer.com/journals/printpage.php?token=4aJKdVE...

Fig. 1

 1 Fig. 1 H-N HSQC spectrum at 800 MHz of 0.3 mM N-labeled Salmonella enterica serovar Typhimurium Crl at pH 8.0 and 293 K. Peak assignments are indicated according to numbering in the native sequence. N-terminal His-tag residues have negative numbers. In the case of duplicated signals related to partial cleavage of the C-terminus, major and minor species are indicated by letters a and b, respectively. Asn, Gln and Trp side chain resonances are denoted with δ and ε, and NH signals connected by horizontal lines

  http://eproofing.springer.com/journals/printpage.php?token=4aJKdVE...

Fig. 2

 2 Fig. 2 Sequence alignment of the Crl construct used for NMR measurements with Proteus mirabilis Crl. Secondary structure elements determined from the X-ray structure of Crl with PDB accession number 4Q11 (Cavaliere et al. 2014 ) are depicted on top for comparison with the secondary structure prediction of Crl by TALOS-N (Shen and Bax 2013 ). Crl residues with unassigned amide signals are shown in green; those located in the central β-sheet and for which line broadening by exchange precludes amide assignment are in green bold type. Residues with broad but assigned amide signals are in sky blue bold type. The C-terminal stretch that is partly cleaved by proteolysis is boxed in magenta. Residues that are spatially close to this stretch in the Crl structure, or can be relayed to it via side chain contacts, and display two amide signals, corresponding to the full-length and truncated forms, are shown in magenta bold type

  To accelerate back-protonation of amides, C N-80 % H-labeled Crl was treated with 8 M urea for 12 h at 4 °C, then dialyzed into 2 M urea and finally into buffer C. Samples for NMR experiments with aliphatic and aromatic H detection were exchanged on mMicro Bio-Spin 6 columns (Biorad) into buffer C in 100 % deuterium oxide. All other samples contained 7 % D O. 2 mM dithiothreitol was added to all samples. Protein concentrations were 300, 250 and 350 µM for N-Crl, C N-Crl and C N-80 % H-Crl samples, respectively. CO). To retrieve signals in solvent exposed regions like the N-terminal His-tag, a 3D HNCACB experiment was recorded on a N C-
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	NMR were carried out on a Bruker Avance III spectrometer equipped with a cryogenic TCI probe at a magnetic field of 18.8 T and a temperature of 293 K. Assignment of Crl backbone resonance frequencies was achieved by analyzing standard triple resonance experiments recorded on C N-Crl (3D HNCA, 3D HN(CO)CA, 3D HNCO, 3D CBCA(CO)NH) and C N-80 % H-Crl (3D HNCA, 3D HN(CO)CA, 3D HNCO, 3D -1 15 4 -1 1 3 600 13 15 2 600 -1 15 4 -1 13 13 15 2 1 2 15 13 15 13 15 2 STM 13 15 STM 13 15 2 STM HN(CA)-1 15 13
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Crl sample at pH 6.5. H assignments were obtained from a 3D H-N

  Conflict of interestThe authors declare that they have no conflict of interest.Banta Chumanov Yuan AH, Lin H, Campbell EA, Burgess RR, Gourse RL (2013) Key features of sigmaS required for specific recognition by Crl, a transcription factor promoting assembly of RNA polymerase holoenzyme. Proc Natl Acad Sci USA 110(40):15955-15960.

	e.Proofing http://eproofing.springer.com/journals/printpage.php?token=4aJKdVE...
	STM 15	
	PM	
			STM
	15	15
		1	2
			STM
		PM
	PM	
		STM
			STM
	STM	
	STM	
	8 sur 10		03/05/2015 14:29

sur 10 03/05/2015 14:29

sur 10 03/05/2015 14:29