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REVIEW SUMMARY
◥

INNATE LYMPHOID CELLS

Innate lymphoid cells: A new
paradigm in immunology
Gérard Eberl,*† Marco Colonna, James P. Di Santo, Andrew N. J. McKenzie

BACKGROUND: Innate lymphoid cells (ILCs)
are a growing family of immune cells that mir-
ror the phenotypes and functions of T cells.
Natural killer (NK) cells can be considered the
innate counterparts of cytotoxic CD8+ T cells,
whereas ILC1s, ILC2s, and ILC3s may repre-
sent the innate counterparts of CD4+ T helper
1 (TH1), TH2, and TH17 cells. However, in con-
trast to T cells, ILCs do not express antigen
receptors or undergo clonal selection and ex-
pansion when stimulated. Instead, ILCs react
promptly to signals from infected or injured
tissues and produce an array of secreted pro-
teins, termed cytokines, that direct the devel-
oping immune response into one that is adapted
to the original insult. Thus, the power of ILCs
may be controlled or unleashed to regulate or
enhance immune responses in disease preven-
tion and therapy.

ADVANCES: As with B cells and T cells, ILCs
develop from the common lymphoid progeni-
tor, but dedicated transcription factors supress

theB andT cell fates anddirect the generation of
the different types of ILCs. ILC precursors may
migrate from their primary site of production
into infected and injured tissues, where they
complete their maturation, similar to the dif-
ferentiation of naïve T cells into TH effectors.
Cytokines produced by local cells as well as
stress ligands and bacterial and dietary com-
pounds regulate the maturation and activa-
tion of ILCs into effectors that play a major
role in early immune responses to pathogens
and symbionts, helminths, and allergen. The
cytokines they produce induce innate responses
in stromal, epithelial, and myeloid cells and
regulate the activity of dendritic cells (DCs),
which play a central role in the cross-talk
between ILCs and T cells. In particular, ILCs
activate tissue-resident DCs to migrate to
lymph nodes, where they elicit specific T
cell responses, which in turn regulate ILCs.
ILCs also directly regulate T cells through
the presentation of peptide antigens on major
histocompatibility complex II. However, ILCs

are also involved in immunopathology, during
which their production of cytokines exacer-
bates the inflammatory process.
ILCs also play an intriguing role beyond

immunity. In adipose tissues, they regulate
thermogenesis and prevent local inflamma-
tion that may lead to metabolic syndrome,
insulin resistance, and obesity-associated

asthma. The functions of
ILCs in host metabolism
are a new area of re-
search that will lead to
insights into how the im-
mune system is impli-
cated in host functions

not directly related to defense. Furthermore,
ILCs are involved in repair responses upon
infection and injury of epithelial cells, stro-
mal cells, and stem cells.

OUTLOOK: A logical next stepwill be the iden-
tification of molecules that allow manipula-
tion of ILCs and the orchestration of the
optimal immune response after vaccination
and immunotherapy—or in contrast, to block
detrimental responses. The combination of a
prompt activation of ILCs with both effector
and regulatory functions, with the expansion
of antigen-specific B and T cells, should lead
to new and powerful avenues in clinical
immunology.
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Signals from injured or infected tissues expand and activate NK cells, ILC1s, ILC2s, and ILC3s. The effector functions of ILCs mirror the
functions of CD8+ and CD4+ T cells, with the major difference being the prompt activation of ILCs and their lack of (relatively slow) antigen-
dependent clonal selection and expansion.
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REVIEW
◥

INNATE LYMPHOID CELLS

Innate lymphoid cells: A new
paradigm in immunology
Gérard Eberl,1* Marco Colonna,2 James P. Di Santo,3 Andrew N. J. McKenzie4

Innate lymphoid cells (ILCs) are a growing family of immune cells that mirror the
phenotypes and functions of T cells. However, in contrast to T cells, ILCs do not express
acquired antigen receptors or undergo clonal selection and expansion when stimulated.
Instead, ILCs react promptly to signals from infected or injured tissues and produce an
array of secreted proteins termed cytokines that direct the developing immune response into
one that is adapted to the original insult. The complex cross-talk between microenvironment,
ILCs, and adaptive immunity remains to be fully deciphered. Only by understanding these
complex regulatory networks can the power of ILCs be controlled or unleashed in order to
regulate or enhance immune responses in disease prevention and therapy.

D
uring hematopoiesis, the common lymph-
oid progenitor (CLP) gives rise to antigen
receptor–bearing T and B lymphocytes.
Until quite recently, only two types of lymp-
hoid cells had been recognized as deriving

fromCLPsbutdevoid of any antigen receptors. The
first of these cells were the natural killer (NK) cells,
which complement the cytotoxic CD8+ T cells
in killing infected, stressed, or transformed cells
(1). The second were lymphoid tissue inducer
(LTi) cells, which induce the development of lymph
nodes and Peyer’s patches (2, 3). However, since
2008 the world of lymphoid cells has expanded
dramatically. LTi-like cells were found that also
express markers associated with NK cells and
were termed NK22 cells, or natural cytotoxicity
receptor 22 (NCR22) cells, for their concomitant
expression of the cytokine interleukin-22 (IL-22)
(4–7). Natural helper cells and nuocytes were
described that expand in response to helminth
infection and promote anti-worm and pro-allergic
type 2 immune responses (8, 9). Last, noncytotoxic
NK-like cells were isolated from the intestinal
epithelium (10, 11). To avoid chaos in diversity,
it was decided to reunite all these cells into one
family of “innate lymphoid cells,” or ILCs, and to
create three categories—ILC1s, ILC2s, and ILC3s—
that reflect the cytokine expression profiles of
the classical CD4+ T helper (TH) cell subsets TH1,
TH2, and TH17 cells (Box 1) (12).
ILCs share the developmental origin and many

of the phenotypes and functions of T cells. How-
ever, ILCs are activated by stress signals, micro-
bial compounds, and the cytokine milieu of the
surrounding tissue, rather than by antigen, inways

similar to the activation of memory or “innate”
T cells, such as invariantNKT cells and subsets of
gd T cells. This mode of activation makes ILCs
highly reactive and early effectors during the im-

mune response. Furthermore, ILCs express the
effector cytokinesnormally associatedwithThelper
cells, and therefore, ILCs are expected to play a
central role in the regulation of type 1, type 2, and
type 3 (or TH17 cell) responses, which control
intracellular pathogens, large parasites, and ex-
tracellular microbes, respectively. The activity of
ILCsmay thus be harnessed to enhance responses
against pathogens and tumors, during vaccina-
tion and immunotherapy, or inhibited to prevent
autoimmune or allergic inflammation. Recent data
also show that the role of ILCs extends beyond
immunity into physiology through the regulation
of fat metabolism and body temperature (13–15).
In this Review, we discuss these intriguing issues
in the light of the most recent developments.

Development and evolution of ILCs

Developing away from adaptive
lymphocyte fate

ILCs develop from CLPs that give rise to B cell
and T cell precursors, NK cell precursors (NKPs),
and the recently described common helper ILC
precursors (ChILPs) that express Id2 and varia-
ble levels of promyelocytic leukemia zinc finger
(PLZF) (Fig. 1) (16–18). ChILPs generate all ILC
groups but not NK cells, whereas PLZF+ ILC
precursors generate all ILC groups but not NK
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Box 1. Warning: the limits of nomenclature.

The classification of ILCs into ILC1s, ILC2s, and ILC3s reflects both the phenotypical and the
functional characteristics of TH cells and serves to structure research into their phylogeny and
functions. However, this classification also generates some debates because ILCs and TH cells can
coexpress cytokines of more than one type. For example, ILC3s and TH17 cells are found to
coexpress IFN-g and IL-17—which are characteristic of type 1 and type 3 responses, respectively—
during pathological inflammation (56, 103, 128). How should these cells be referred to, ILC3/1 cells
or IFN-g–expressing ILC3s? Furthermore, ILC3s can evolve into ILC1s by down-regulating the
transcription factor RORgt and up-regulating the transcription factor T-bet (103, 129).Therefore, it
is possible that IFN-g–expressing ILC3s are in fact cells that transit from an ILC3 phenotype to an
ILC1 phenotype—“so-called ex-ILC3s.” To further complicate an already opaque ILC world, a
potential ILC2 precursor that is induced by IL-25 has been reported to have the capability to give
rise to ILC3-like IL-17 producers, although in naïve mice or upon helminth infection, they appear to
default to a more conventional and less plastic ILC2 phenotype (43). Last, fate mapping of PLZF+

ILC precursors shows that LTi cells develop along a pathway distinct from that of the other types of
ILCs (17). In addition, LTi cells and NKp46+ ILC3s can be distinguished on the basis of their gene
expression (106).This difference may have an evolutionary basis: because the programmed
development of lymph nodes and Peyer’s patches is induced by LTi cells only in mammals (130),
LTi cells may be a recent acquisition, whereas ILCs may have appeared with the advent of
vertebrates or even before (49).

NK cells present another difficulty for classification. NK cells express T-bet and produce IFN-g and
thus are type 1 cells such as TH1 cells. However, they also express Eomesodermin-dependent
perforin and granzymes, as do cytotoxic CD8+ Tcells. It is therefore suggested that NK cells mirror
CD8+ Tcells, whereas ILC1s mirror CD4+ TH1 cells (16, 131).Thus, NK cells may be termed
“cytotoxic ILCs.” Distinguishing NK cells from ILC1s can be achieved by fate-mapping of Id2+ or
PLZF+ precursor cells (16, 17) or by using Eomesodermin reportermice. However, it ismore difficult
to discriminate these two ILC subsets by using surface markers because they vary from tissue to
tissue. For example, discriminating the two cell types is relatively straightforward in the liver but
more difficult in the spleen and small intestine (106). In the liver, ILC1s selectively express TRAIL
and VLA1. In the spleen and small intestine, there are no distinctive surface markers identified,
although the expression of CXCR6 on ILC1s and of the MHC class I receptors Ly49 and KIRs on NK
cells can be partially informative. Last, surface markers used to discriminate these cell types may
vary depending on cellular activation.
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cells or LTi cells. ILC development from CLP (via
NKPor ChILP) therefore involves a stage of lineage
restriction, inwhichB andT cell potentials are lost
and ILC potential is reinforced. This is achieved
through the coordinated expression of specific
transcription factors that activate or repress target
genes that are critical for subset-specific lym-
phocyte differentiation. For ILC development, sev-
eral transcription factors have been shown to be
critical at the ILC precursor stage, including Id2,
Nfil3, and Gata3 (19–24). Our understanding of
how these transcription factors promote ILC fate
is incomplete, but one emerging concept involves
obligate suppression of alternative lymphoid cell
fates, on the basis of reciprocal repression as a
means to control binary cell fate decisions. Id2 is a
transcriptional repressor that acts to reduce the
activity of E-box transcription factors (E2A, E2-2,
and HEB), which are critical in early B and T cell
development. Thus, increasing expression of Id2
in CLP promotes ILC development at the expense
of the B and T cell fates (20, 25). Accordingly, NKP
and ChILP express variable levels of Id2, whereas
CLPs do not express Id2 (16, 26). In a similar
fashion, Gata3 represses B cell fate by blocking
EBF1 and thereby facilitates T and ILC differen-
tiation from CLPs (23, 24, 27).
How Id2 or Gata3 expression is controlled

as CLPs differentiate into NKP or ChILP is
not fully understood. Signals produced by the
microenvironment—for example, bone morpho-
genic proteins (BMP) andNotch ligands (28, 29)—
regulate Id2 expression, a mechanism that could
apply to CLPs. Furthermore, the transcription
factor Nfil3 links the peripheral circadian clocks
involving the nuclear receptor Rev-ERBa to gene
regulation (30), and its deletion affects multiple
developmental processeswithin the hematopoietic
system. In particular, Nfil3 controls differentia-
tion of ILC via Id2 and the transcription factors
RAR-related orphan receptor–gt (RORgt), Eomeso-
dermin, and Tox (21, 22, 31). In addition, soluble
factors, including cytokines, regulate Nfil3 expres-
sion (32), providing a link between signals from
the tissue and fate decisions into the ILC lineages.

Do ILCs complete development in
response to local cues?

Conventional wisdom suggests that the primary
site of ILC development is the liver in the fetus,
and the bone marrow after birth, because these
primary lymphoid organs harbour CLP, NKP,
and ChILP (16, 33, 34). Once generated, mature
ILCs exit these sites, circulate in the blood, and
enter tissues following codes based on adhesion
molecules andchemokines, similar to theonesused
by T cells. This model is supported by the dearth
of tissue-resident ILCsunder steady-state conditions,
with the exception of mucosal sites, and the rapid
recruitment of ILCs after infection or injury. How-
ever, ILC precursors—the NKP and the ChILP—
may leave the fetal liver or the bone marrow and
complete their maturation in response to local sig-
nals, much in the sameway as naïve T cells differ-
entiate into the different effector subsets during
inflammation. In this view, ILC precursors would
be the innate homologs of naïve T cells.

In support of this hypothesis, NKP and ILC3
precursors are found in human tonsils (35). In
mouse, ILC3 precursors are found in the fetal
gut (19), where their mature progeny induce the
development of Peyer’s patches, as well as after
birth in the lamina propria of the small intes-
tine (36). Fetal ILC precursors with the capacity
to give rise to ILC1s, ILC2s, and ILC3s are present
in the mouse intestine and accumulate in the
developing Peyer’s patches (37). The vitamin A
metabolite retinoic acid (RA), produced by many
types of cells outside lymphoid organs—including
nerve cells (38), dendritic cells (DCs) (39), and
stromal cells (40)—favors the maturation of ILC3s
at the expense of ILC2s (41) and is required for
the full maturation of ILC3s in the fetus and the
adult (42). Furthermore, although IL-25 and IL-
33 produced by epithelial cells both promote
ILC2 differentiation, it has been proposed that
IL-25 may act to expand precursors that retain
ILC3 potential (43). Last, the aryl hydrocarbon
receptor Ahr, which is triggered by ligands from
diet, is also required for the maintenance and ex-
pansion of intestinal ILC3s after birth (44–46).

ILCs as evolutionary precursors to T cells

Even though the adaptive lymphocyte fate has
to be blocked in CLPs to generate ILCs, striking

similarities exist between ILC and T cell differen-
tiation. Gata3, Nfil3, and Tcf1 (21–24, 47, 48) are
shared by the precursor common to T cells and
ILCs, and the signature transcription factors T-bet,
Gata3, and RORgt, which determine the devel-
opment of type 1, 2, or 3 cells, are highly conserved
in both innate and adaptive lymphoid cells in
mice and men. It is therefore tempting to pro-
pose that ILCs are the evolutionary precursors of
T cells, even though definitive evidence has yet to
be found that ILCs exist in invertebrates or early
vertebrates that lack T or B lymphocytes (49).
The emergence of ILCs, and thus of the lymphoid
lineage, must also have provided a fitness advan-
tage. As we now understand the function of ILCs
and TH cells, this advantage would build on the
ability to rapidly direct immunity into type 1, 2,
or 3 responses that are adapted to counter spe-
cific types of threats. Myeloid cells, as well as non-
hematopoietic cells such as epithelial cells and
stromal cells, produce cytokines in reaction to
infection and injury, which activate a particular
ILC subset and the production of effector cyto-
kines. The reason why phagocytic myeloid cells,
presumably the first type of immune cells to ap-
pear during evolution, would not perform this func-
tion is unclear, butmay be related to the superior
capacity of lymphoid cells to expand rapidly.
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Fig. 1. The development of ILCs. The development of ILCs from common lymphoid progenitors (CLPs)
requires Id2-mediated suppression of alternative lymphoid cell fates that generateBandTcells. Factors present
in themicroenvironment, such as Notch ligands, bonemorphogenic proteins (BMPs), and cytokines, as well as
the circadian rhythm, control expression of Nfil3, Gata3, and Id2, which determine the progression toward the
ILC fate. Distinct precursors give rise to NK cells and ILCs (which, unlike NK cells, are noncytotoxic), while the
transcription factorPLZF furtherdivides theprogenyofChILPs into thePLZF-dependent ILC1s, ILC2s, and ILC3s
andPLZF-independent LTi cells (althoughLTi cells tend tobegroupedas ILC3s) required for thedevelopmentof
lymphnodes,Peyer’spatches, and ILFs.Thematurationof ILCprecursors intomature ILCsmayoccuroutsideof
primary lymphoid tissues, in ways similar to thematuration of naïve TH cells into TH1,TH2,TH17, and regulatory
Tcells (Treg cells) and in response to a variety of signals produced by the tissue microenvironment.
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Once established as a diverse family of innate
effector cells, the program of ILC development,
differentiation, and function would serve as a
“blueprint” for T cells. Emergence of the adaptive
arm of the immune system, based on major his-
tocompatibility complex (MHC) restriction and
somatic rearrangements of antigen receptor genes,
would be layered onto the ILC program, provid-
ing an exhaustive range of antigen specificity to
the already existing effector cell diversity. Be-
cause clonal selection via the T cell receptor re-
sults in substantial cellular expansion, T cells
may also be freed from the microenvironmental
constraints that limit ILC expansion, providing
more amplitude to immune effector and regula-
tory functions, as well as antigen-specific immu-
nological memory.

Activation of ILCs

ILCs translate signal cytokines into
effector cytokines

In the absence of adaptive antigen receptors,
ILCs react to the microenvironment through
cytokine receptors. NK cells and ILC1s expand
and secrete interferon-g (IFN-g) in response to
IL-12, IL-15, and IL-18 produced by myeloid
cells as well as by nonhematopoietic cells in
response typically to intracellular pathogens
(Fig. 2) (10, 11, 16, 50). ILC2s, on the other hand,
respond to the epithelium-derived cytokines
IL-25, IL-33, TSLP (thymic stroma lymphopoietin),
basophil-derived IL-4, and products of the arachi-
donic acid pathway, in response to parasite infec-
tion, allergens, and epithelial injury (8, 9, 51–53).
Activation of ILC2s leads to the production of high
amounts of IL-4, IL-5, and IL-13. Last, ILC3s re-
spondmainly to IL-1b andIL-23producedbymyeloid
cells in response to bacterial and fungal infection

(54–56). ILC3s produce lymphotoxins, GM-CSF
(granulocyte-macrophage colony-stimulating fac-
tor), and IL-22, as well as IL-17 in the fetus, early
after birth and during inflammation (57, 58).
Thus, ILCs translate signal cytokines produced

bymyeloid and nonhematopoietic cells in tissues
into effector cytokines that activate local innate
and adaptive effector functions. For example, IFN-g
activates the production of microbicidal reac-
tive oxygen species in myeloid cells, induces the
production of antibodies for antibody-mediated
cytotoxicity, and increases antigen presentation
byMHCmolecules (59). On the other hand, IL-5
induces the recruitment of eosinophils, and IL-13
stimulates the production ofmucus by goblet cells
[the secretion of which can also be induced by
IFN-g (60)] (61), whereas IL-17 and IL-22 induce
the production of antimicrobial peptides by epi-
thelial cells (62) and the recruitment of neutro-
phils through the expression of CXC chemokines
by stromal cells (63).
NK cells also express an array of receptors that

recognize MHC I, the constant domains of anti-
bodies, and cell-surfacemolecules associated with
cellular transformation, stress, and infection, the
activation of which leads to cytotoxicity and the
production of IFN-g (64). These NK receptors
are not antigen receptors but nevertheless confer
some degree of specificity to the reactivity of NK
cells. Because individual NK cells express differ-
ent combinations and levels of NK receptors, trig-
gering of one receptor may lead to the expansion
of a subset of NK cells and thus to an increased
response, or memory, upon reencounter of the
trigger (65). Furthermore, a subset of ILC3s ex-
presses the pan-NKmarker NKp46 inmouse and
NKp44 in human (4–7). NKp46 appears redun-
dant for ILC3 responses against bacterial infec-

tion (66), but NKp44 can activate human ILC3s
(67). Last, ILCs isolated from human tonsils were
found to produce IL-5 and IL-13, as well as IL-22,
in response to ligands that bind the pattern rec-
ognition receptor Toll-like receptor 2 (TLR2) (68),
indicating that ILCs may also react to microbial
compounds. Thus, it is possible that ILCs express
different arrays of innate receptors that enable
them to react to sets of molecules or proxies for
type 1–, 2-, or 3-inducing cellular stresses, injuries
or infections. However, although such receptors
are well studied for NK cells, they remain to be
described for the other types of ILCs.

How diet and the microbiota influence ILC
development and activity

As mentioned earlier, the vitamin A metabolite
RA is required for full maturation of ILC3s at the
expense of ILC2s (41, 42), and food-derived Ahr
ligands are required for themaintenance of ILC3s
after birth (44–46). Furthermore, TLR2 ligands
can activate human ILC2s and ILC3s in vitro (68).
That is, however, the state of our knowledge of
the direct effects of diet and microbiota on ILCs.
In contrast, much more is known on indirect
effects of diet and microbes on the activation
of ILCs.
In the absence of microbiota in germ-free

mice, the activity of ILC3s in the intestine is
substantially perturbed. Although the develop-
ment of lymph nodes and Peyer’s patches, in-
duced by LTi cells, is programmed in the fetus,
the formation of isolated lymphoid follicles (ILFs)
in the intestinal lamina propria after birth is not
(69). Bacteria are required to trigger the produc-
tion of b-defensins and the chemokine CCL20 by
epithelial cells, which induce the morphogene-
sis of ILFs through activation of CCR6+ LTi cells
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Fig. 2. Activation and functions of ILCs. The tissue signals that expand and activate ILC1s, ILC2s, and ILC3s, and the effector functions of ILCs, mirror the
activation and functions of Tcells. In this figure, NK cells, ILC1s, ILC2s, and ILC3s could be replaced by CD8+ Tcells,TH1,TH2, and TH17 cells, respectively. However,
whereas ILCs are activated promptly by tissue signals and therefore act upstream in the immune response,Tcells are first selected and expanded on the basis
of Tcell receptor specificity, a process that typically requires several days.
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clustered in so-called cryptopatches (70) and the
recruitment of CCR6+ B cells to nascent ILFs (71).
The B cell chemoattractant CXCL13, produced by
dedicated stromal cells termed “lymphoid stromal
cells” (LSCs), is also required for the development
of lymphoid tissues through the recruitment of
LTi cells from the bloodstream (72) and is induced
by RA (38). Furthermore, microbiota induce the
expression of CXCL16 by dendritic cells (DCs),
which recruits ILC3s to the lamina propria and
villi of the small intestine (73). Microbiota also
negatively regulate the activity of ILC3s. The
expression of IL-17 and IL-22 by ILC3s is highest
in the fetus and gradually declines after birth as
the intestinal tract is colonized. Microbiota in-
duce the expression of the type 2 cytokine IL-25
by epithelial cells, which activates IL25R+DCs and
the regulation of ILC3s throughmechanisms that
remain to be elucidated (57).
High-fat diet leads to the build-up of visceral

adipose tissue (VAT). Intriguingly, ILC2s are as-
sociated with VAT (74) and were originally de-
scribed as residents of “fat-associated lymphoid
clusters” (FALC) on the mesentery (8). The pro-
duction of IL-5 and IL-13 by ILC2s leads to the
recruitment of eosinophils and the generation of
alternatively activatedmacrophages (AAMs) that
protect the organism from fat-induced ILC3-
mediated inflammatory pathology (74, 75). It is
unclear how fat tissue regulates the activation
of ILC2s or ILC3s, but this possibly involves me-
tabolites of arachidonic acid, suchasprostaglandins
and lipoxins, which are respectively activators
and inhibitors of ILC2s (76).

Roles of ILCs in immunity

Do ILCs have specific
effector functions?

Each cell type in an organism is ex-
pected to have a specific function that
justifies its evolutionary conservation.
However, NK cells, ILC1s, ILC2s, and
ILC3s mirror the cytokine production
and effector functions of CD8+ T cells,
TH1, TH2, and TH17 cells (Fig. 2). Never-
theless, in contrast to T cells, ILCs do
not undergo antigen-driven clonal selec-
tion and expansion, and therefore, ILCs
act promptly like a population of mem-
ory T cells. As a consequence, within
hours after infection or injury, the ef-
fector cytokines IFNg, IL-5, and IL-13,
or IL-17 and IL-22, which can be pro-
duced by both ILCs and T cells, are
produced mostly by ILCs. In certain
tissues, the prompt production of ef-
fector cytokines is shared with “innate”
T cells, such as mucosa-associated in-
variant T (MAIT) cells that produce
IFN-g, IL-17, and IL-22 (77); invariant
NKT (iNKT) cells that produce IFN-g
or IL-4 (78); and subsets of gd T cells
that produce IFN-g and IL-17 within
different epithelial and mucosal com-
partments (79–81). Nevertheless, each
of these cell types reacts to distinct
stimuli. For example,MAIT cells recog-

nize microbial metabolites bound to the MHC-
like molecule MR1, and iNKT cells respond to
glycolipid moieties bound to the MHC-like mol-
ecule CD1d.

Regulation of adaptive immunity by ILCs

Because ILCs are activated early in the immune
response to infection and injury, and produce
type 1, type 2, and type 3 cytokines, it is expected
that they regulate the developing adaptive im-
mune response (82). ILCs have been found to do
that in twoways: directly through the expression
of MHC class II molecules (MHC II), and indi-
rectly through the regulation of DCs (Fig. 3).
ILC3s were shown nearly two decades ago to

express MHC II on their surface (2, 83), but the
importance of this expression became clear only
recently. ILC3s not only express MHC II but also
transcripts formolecules associated with antigen
processing and presentation, such as the invar-
iant chain CD74 and the catalyzer of peptide ex-
changeH2-DM, and canprocess exogenous antigen
for presentation to CD4+ T cells (84). In the
intestine, ILC3s regulate the activity of T cells
specific for microbiota-derived antigens, and
as a consequence, the absence of MHC II on
ILC3s leads to intestinal inflammation. In con-
trast, ILC3s activate CD4+T cells in the spleen upon
antigen processing and presentation on MHC II
(85). ILC2s also present antigen onMHC II and
induce the production of IL-2 and IL-4 by CD4+

T cells, which drive a positive feedback on growth
and cytokine production by ILC2s expressing the
receptors for IL-2 and IL-4 (86, 87). This dialogue

is functionally important as MHC II–deficient
ILC2s fail to cause efficient expulsion of para-
sitic helminths, even in the presence ofMHC II+

DCs (86).
ILCs also regulate DCs. The production of IFN-g

by NK cells increases the production of IL-12, IL-
15, and IL-18 by DCs, driving a positive feedback
loop between NK cells and DCs that promotes
the differentiation of TH1 cells (88). Likewise, the
production of IL-13 by ILC2s leads to the acti-
vation of DCs, their migration into the draining
lymph nodes and the differentiation of TH2 cells
(89). In the absence of ILC2s, the levels of IL-13
are insufficient to instigate the migration of DCs
to the lymph nodes in response to lung injury,
and TH2 responses are impaired (89). Last, ILC3s
activate DCs through membrane-bound lympho-
toxin (LT) a1b2, which in turn produce elevated
levels of IL-23, which promotes the activity of
ILC3s and the differentiation of TH17 cells (90),
as well as nitric oxide, which activates B cells (91).
Because ILCs promote T cell activation through

DCs, it is likely that T cells promote ILC activation
through similar mechanisms, establishing posi-
tive feedback loops between ILC, T cells, and DCs.
However, this cross-talk also provides controls
on the activity of ILCs because a decrease in the
source of T cell antigen and of signals from the
affected tissue should exhaust the positive feed-
back. In addition, competition between ILC and
T cells for common activating cytokines from
DCs and the affected tissuemay also regulate ILC
activity. In agreement with this hypothesis, the
activity of ILC3s is increased in the absence of T
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Fig. 3. Regulation of adaptive immunity by ILCs. ILCs regulate Tcells both directly through antigen presentation on
MHC II, and indirectly through the regulation of DCs. The cross-talk between ILCs, DCs, and T cells establishes a
complex regulatory network involving positive and negative feedbacks, the dynamics of which remain to be elucidated.
The mechanisms by which ILCs repress CD4+ TH cell activation remain unclear but may involve the lack of
costimulatory molecules in the context of steady state (84). It also remains unclear how DCs negatively regulate the
activity of ILCs (57). Red lines depict feedback loops, and “A,” “B,” and “C” list the type 1, type 2, or type 3 cytokines
involved in a specific cross-talk. ILC3s also activate B cells in the intestine through lymphotoxin-mediated recruitment
of TH cells and activation of dendritic cells (91), as well as marginal-zone B cells in the spleen (132).
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cells (57). Furthermore, the dependence of ILC2s
on IL-2 raises the possibility that both ILC2s and
T cells are regulated by regulatory T cells through
the removal of IL-2 from the microenvironment.

ILCs in tissue protective and
repair responses

ILC2s are involved in tissue-repair responses
through the production of amphiregulin (a lig-
and of the epidermal growth factor receptor) and
IL-13. Upon infection of mouse lungs with the
H1N1 influenza virus, ILC2s contribute to tissue
repair through the expression of amphiregulin
(92). Furthermore, injury to the bile duct, which
can lead to severe liver disease, leads to the IL-
33–mediated activation of ILC2s that promote
cholangiocyte proliferation and epithelial resto-
ration through the release of IL-13 (93). In VAT,
IL-13 production by ILC2s protects from fat-induced
inflammation promoted by ILC3s, which leads to
metabolic syndrome, insulin resistance, anddiabetes
(74). More generally, IL-13 leads to the recruitment
of eosinophils and the generation of AAMs (75)
and promotes the production of extracellular
matrix by stroma cells and mucus by epithelial
cells, mechanisms involved both in repair re-
sponses and in defense against large parasites (94).
ILC3s promote tissue protective and repair re-

sponses through the production of LTa1b2 and
IL-22. Infection of lymph nodes with lymphocytic
choriomeningitis virus leads to the destruction of

lymphoid stromal cells (LSCs). ILC3s restore LSCs
through LTa1b2 and activation of LTb receptor on
LSCs (95). IL-22 has a general role in protecting
epithelial cells, mostly through the activation of
antiapoptotic pathways. In amodel of graft-versus-
host disease (GvHD), ILC3s protect intestinal epi-
thelial stem cells from GvHD-induced cell death
(96). In that context, a subset of ILC3s resists full-
body irradiation and provides IL-22 to the stem
cells. A similar ILC3-mediated mechanism was
found to protect the thymus from the conse-
quences of full-body irradiation (97). IL-22 also
protects hepatocytes from acute liver inflamma-
tion, but the source of IL-22 was, at the time,
attributed to TH17 cells (98). The source of IL-22
was later recognized to include ILC3s in the
CD45RA+ cell transfer model of colitis (99).

ILCs and fat: Roles beyond immunity?

Adipose tissue is associated with the immune sys-
tem at several levels. Lymphnodes and lymphoid
clusters on the mesentery are embedded in adi-
pose tissue for reasons that remain unclear (8).
Type 2 responses, including ILC2s, are required
to avoid the induction of type 3 responses that
lead to metabolic syndrome, insulin resistance,
diabetes, as well as obesity-associated asthma
(100). In contrast, high-fat diet increases gut
permeability and leads to the accumulation of
bacteria in VAT, the recruitment and activation
of type 1macrophages, and a shift of the immune

response associated with VAT from a protective
type 2 to a pathogenic type 3 response (101, 102).
Furthermore, ILC2s have recently been shown to
regulate thermogenesis from beige fat in a pro-
cess that appears to involve immune cells beyond
immunity (13–15). The sensing of cold by nerves
triggers their release of catecholamines that acti-
vate the biogenesis and activation of brown adi-
pose tissue (BAT) for thermogenesis. Subcutaneous
white adipose tissue (scWAT) can also undergo
browning under these circumstances, but its low
innervation cannot provide the levels of catechol-
amines required for the conversion of scWAT
into beige fat.Macrophages, however, are recruited
to cold-stressed scWAT and produce catechola-
mines, amplifying the signals released by nerves.
This activity ofmacrophages is dependent on IL-4
produced by eosinophils, as well as on IL-5 and
IL-13 produced by ILC2s, replicating the recruit-
ment and activation process induced by ILC2s in
VAT. ILC2s also produce methionine-enkephalin
peptides, which induce beiging of VAT (15). Last,
IL-4 and IL-13 induce the differentiation of adi-
pocyte precursors directly into beige fat (14).

ILCs in pathology

High frequencies of ILC1s are found in Crohn’s
disease patients and in mouse models of colitis,
contributing to the pathology through the pro-
duction of IFN-g (10, 11). ILC3s are also associated
with inflammatory pathology when producing
both IL-17 and IFN-g during colitis and infection
with Salmonella enterica (56, 103), as well as with
obesity-induced airway hyperreactivity through
the production of IL-17 (Fig. 4) (100). The patho-
genicity of ILC3swasdemonstratedwhencompar-
ing mice deficient in T and B cells only with those
lacking T cells, B cells, and ILCs (56). These studies
show that ILC3s can be pathogenic (or sufficient to
induce pathology) but nevertheless fail to show
that ILC3s are necessary for the development of
pathology in the presence of adaptive immunity.
The difficulty stems from the lack of mutant mice
that lack ILC1s or ILC3s while developing a nor-
mal set of TH1 or TH17 cells. A chimera systemhas
been established to partially alleviate this diffi-
culty (104). In this system, mature T and B cells
are adoptively transferred intoRag-deficientmice,
which lack these cell types but develop ILCs.
Antibody depletion against a congenic marker
depletes ILCs but leaves the T cell compartment
intact.
In contrast, the ILC2s field has benefited from

RORa-deficient mice that lack ILC2s but not oth-
er types of lymphocytes—in particular, TH2 cells
(18, 105). RORamessage is also expressed in ILC1s
and ILC3s (106) but does not appear to be re-
quired for ILC3development (105). RORa-deficient
mice, termed staggerer mice, also develop an un-
dersized cerebellum that translates into behav-
ioral defects (107). Chimeric mice that lack RORa
only in the hematopoietic compartment fail to
develop acute lung pathology in response to
papain, a protease allergen, demonstrating the role
of ILC2s in priming the allergic response involving
TH2 cells (89, 105). RORa-deficient mice were fur-
ther used to show that ILC2s are required to
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Fig. 4. ILCs in pathology. Pathogens, allergens, chemicals, diet, metabolic states, and genetic factors
can induce type 1, type 2, or type 3 inflammatory conditions that lead to pathology involving ILCs. Listed
are examples of pathologies shown to involve ILCs, even though inmost cases the causative role of ILCs, or
their requirement in the pathology, remains to be established. Strong intestinal inflammatory pathology
induced during inflammatory bowel disease (IBD) or by Salmonella enterica generates ILCs that produce
both type 1 (IFN-g) and type 3 (IL-17) effector cytokines.
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expel the helminthNyppostrongylus brasiliensis
from the intestine (18) and to induce pulmonary
fibrosis upon infectionwith Schistosomamansoni
through the production of IL-13 (108). The tools
available to specifically ablate ILC2s recently ex-
panded after the generation of mice that express
the diphtheria toxin receptor (DTR) on ILC2s but
not on T cells, allowing for time-controlled abla-
tion of ILC2s (86).
ILC2s and IL-13 are also associated with he-

patic fibrosis induced in mice by thioacetamide,
carbontetrachloride, and Schistosoma mansoni
(109), and with pulmonary fibrosis (108), chronic
rhinosinusitis (110), and atopic dermatitis (111, 112),
as well as allergen- (112, 113) and rhinovirus-
induced asthma exacerbation in patients (114, 115).
Last, ILC2s are proposed to play a central role in
asthma-induced obesity. ILC2s in VAT protect
from obesity through the release of IL-5 and IL-
13 and the recruitment of eosinophils (74). How-
ever, the accumulation of eosinophils into the
asthmatic lungs may prevent their recruitment
to VAT and thereby type 2 immunity from pro-
tecting the organism from high-fat diet–induced
obesity (116).

Targeting ILCs for prevention and therapy

Because ILCs act promptly in response to infec-
tion and injury, and regulate type 1, type 2, and
type 3 responses, they may be targeted to criti-
cally enhance or block immune responses early
during vaccination, immunotherapy, and inflam-
matory pathology. Toward this goal, it is imper-
ative that the fundamental molecular signals that
regulate ILC diversity and commitment are de-
fined comprehensively. Although ILC-specific tar-
gets have not yet been identified, the activation
pathways and effector molecules they share with
T cells can be targeted early in the immune re-
sponse. For example, inhibitors of RORgt have
been identified primarily to block TH17-mediated
inflammatory pathology, but these inhibitors ob-
viously can be used to block ILC3s aswell (117, 118).
Similarly, RORa, a nuclear hormone receptor sim-
ilar to RORgt, may be targeted to modulate ILC2s.
Agonists for RORgt and RORa may also be de-
veloped to enhance the generation and activity
of ILC3s and ILC2s in order to enhance defense
against mucosal pathogens or to modulate fat-
inducedmetabolic diseases and allergy. A similar
strategymay be followed tomodulate the activity
of NK cells and ILC1s by targeting T-bet.
The activity of ILC2s is promoted by the arachi-

donic acidmetabolites leukotriene D4 (LTD4) and
prostaglandin D2 (PGD2) through the cysteinyl
leukotriene receptor 1 (CysLT1R) and the “chemo-
attractant receptor-homologous molecule expressed
on TH2 cells” CRTH2 (76), respectively, but is
impaired by the arachidonic metabolites lipoxin
A4 (LXA4) and maresin-1 (119). Thus, an arsenal
of lipid mediators, or inhibitors of these media-
tors (Montelukast, a leukotriene receptor antag-
onist), may be developed to control the activity of
ILCs. The cytokines inducing the development
and activity of specific subsets of ILCs—such as
IL-12, IL-25 and IL-33, or IL-1b and IL-23 for
ILC1s, ILC2s, or ILC3s, respectively, as well as

IL-2—may also be targeted, although the precise
involvement of ILCs in specific diseases have not
been determined within the multifarious effects
that arise from blocking these pathways. For ex-
ample, treatment with Daclizumab, an antibody
targeting the IL-2Ra (CD25), ofmultiple sclerosis
patients resulted in a decrease in the frequency
of RORgt+ ILCs and an increase in the numbers
of NK cells that correlatedwith drug efficacy (120).
In addition, Ustekinumab, an antibody directed
against the p40 subunit common to IL-12 and IL-
23, shows high clinical efficacy against psoriasis
(121). Furthermore, antibodies against IL-25 and
IL-33 have shown efficacy in mouse models of
allergic lung inflammation (122, 123), and intra-
venous antibody to TSLP given before allergen
challenge in mild asthmatic patients improves
asthma symptoms (124). These cytokines can also
be blocked bymicrobial compounds. For example,
the excretory/secretory products of the helminth
Heligmosomoides polygyrus impair the activity
of ILC2s in response to airways challenges with
extracts of the fungal allergenAlternaria alternata,
presumably through suppression of the initial A.
alternata–induced IL-33 production (125). Alter-
natively, microbial compounds may be used to
boost one type of ILC in order to block the other
types of ILCs. Last, the effector cytokines produced
by ILCs may be targeted with antibodies against
IFN-g, IL-5, and IL13, or IL-17. For example,
Mepolizumab (antibody to IL-5) andLebrikizumab
(antibody to IL-13) have shownencouraging results
in clinical trials against asthma (126, 127).

Concluding remarks

The multiple facets of ILC development, activa-
tion, and function need to be further explored be-
fore efficientmanipulation of ILCs canbe achieved
in the clinic. The developmental pathways leading
to thedifferent types of ILCs appear to be relatively
complex, and modulation of these pathways by
themicroenvironment remains poorly understood,
with questions remaining about ILC subset plas-
ticity and stability. It will also be insightful to ex-
plore the development of ILCs not only during
ontogeny, but also during evolution, in order to
assess whether “cytotoxic” ILCs (NK cells) and
“helper” ILCs (ILC1s, ILC2s, and ILC3s) served
as a blueprint for the appearance of CD8+ cyto-
toxic and CD4+ TH cells.
Much remains to be uncovered on the activa-

tion and function of ILCs. We propose that ILCs
promptly translate signals produced by infected
or injured tissues into effector cytokines that ac-
tivate and regulate local innate and adaptive ef-
fector functions. Signals produced by the tissues
activating ILCs include cytokines, and possibly
also stress ligands and microbial compounds.
In terms of function, ILCs and T cells produce
similar sets of effector cytokines; however, the hall-
mark of ILCs is prompt and antigen-independent
activation, placing them upstream as probable
orchestrators of adaptive responses. Therefore,
the cross-regulation of ILCs and T cells, involving
DCs as a central platformof information exchange,
needs to be deciphered by using newmousemod-
els that allow targeting each cell type individually.

Furthermore, a role for ILCs beyond immunity,
such as in the regulation of fat metabolism, needs
to be unravelled in order to understand the in-
tegration of the immune system inhost physiology.
Such accumulated knowledge should lead to

a new type of immunotherapies based on the
manipulation of ILCs. Because ILCs appear to
play a major role in adjusting the developing
immune response to the original insult, the manip-
ulation of ILCs should allow the optimal shaping
of immune responses in prevention and therapy.
In the context of immunopathology, the manip-
ulation of ILCs may allow blocking the develop-
ment of detrimental types of immune responses.
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processes regulating these cells may allow for their therapeutic manipulation.
secrete a similar suite of inflammatory mediators as T lymphocytes. Better understanding of the
immune cells, they respond to infection quickly and do not express antigen receptors; however, they 

 review current understanding of innate lymphoid cells. Like innateet al.straddle these two arms. Eberl 
recently, immunologists discovered a family of immune cells termed ''innate lymphoid cells,'' which
types involved in the two arms differ in specificity and in how quickly they respond to infections. More 

For years, scientists divided the immune system into two arms: innate and adaptive. The cell
Cells acting at the intersection of immunity
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