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Chemically Aware Model Builder (camb): 
an R package for property and bioactivity 
modelling of small molecules
Daniel S Murrell1†, Isidro Cortes‑Ciriano2†, Gerard  J P van Westen3, Ian P Stott4, Andreas Bender1, 
Thérèse E Malliavin2* and Robert C Glen1*

Abstract 

Background: In silico predictive models have proved to be valuable for the optimisation of compound potency, 
selectivity and safety profiles in the drug discovery process.

Results: camb is an R package that provides an environment for the rapid generation of quantitative Structure‑
Property and Structure‑Activity models for small molecules (including QSAR, QSPR, QSAM, PCM) and is aimed at both 
advanced and beginner R users. camb’s capabilities include the standardisation of chemical structure representation, 
computation of 905 one‑dimensional and 14 fingerprint type descriptors for small molecules, 8 types of amino acid 
descriptors, 13 whole protein sequence descriptors, filtering methods for feature selection, generation of predictive 
models (using an interface to the R package caret), as well as techniques to create model ensembles using techniques 
from the R package caretEnsemble). Results can be visualised through high‑quality, customisable plots (R package 
ggplot2).

Conclusions:  Overall, camb constitutes an open‑source framework to perform the following steps: (1) compound 
standardisation, (2) molecular and protein descriptor calculation, (3) descriptor pre‑processing and model training, 
visualisation and validation, and (4) bioactivity/property prediction for new molecules. camb aims to speed model 
generation, in order to provide reproducibility and tests of robustness. QSPR and proteochemometric case studies are 
included which demonstrate camb’s application.
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Background
The advent of high-throughput technologies over the last 
two decades has led to a vast increase in the number of 
compound and bioactivity databases [1–3]. This increase 
in the amount of chemical and biological information 
has been exploited by developing fields in drug discov-
ery such as quantitative structure activity relationships 
(QSAR), quantitative structure property relationships 

(QSPR), quantitative sequence-activity modelling 
(QSAM), or proteochemometric modelling (PCM) [4, 5].

The R programming environment provides a flexible 
and open platform for statistical analyses [6]. R is exten-
sively used in genomics [7], and the availability of R pack-
ages for cheminformatics and medicinal chemistry is 
small in comparison. Nonetheless, R currently constitutes 
the most frequent choice in the medicinal chemistry lit-
erature for compound bioactivity and property modelling 
[8]. In general, these studies share a common algorithmic 
structure, which can be summarised in four model gener-
ation steps: (1) compound standardisation, (2) descriptor 
calculation, (3) pre-processing, feature selection, model 
training and validation, and (4) bioactivity/property pre-
diction for new molecules. Fig. 1 illustrates these steps.

Open Access

*Correspondence:  therese.malliavin@pasteur.fr; rcg28@cam.ac.uk 
†Daniel S Murrell and Isidro Cortes‑Ciriano contributed equally to this 
work
1 Department of Chemistry, Centre for Molecular Informatics, University 
of Cambridge, Lensfield Road, Cambridge CB2 1EW, UK
2 Unite de Bioinformatique Structurale, Structural Biology and Chemistry 
Department, Institut Pasteur and CNRS UMR 3825, 25‑28, rue Dr. Roux,  
75 724 Paris, France
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s13321-015-0086-2&domain=pdf


Page 2 of 10Murrell et al. J Cheminform  (2015) 7:45 

Currently available R packages provide the capabil-
ity for only subsets of the above mentioned steps. For 
instance, the R packages chemmineR [9] and rcdk [10] 
enable the manipulation of SDF and SMILES files, the 
calculation of physicochemical descriptors, the cluster-
ing of molecules, and the retrieval of compounds from 
PubChem [3]. On the machine learning side, the caret 
package provides a unified platform for the training of 
machine learning models [11].

While it is possible to use a combination of these 
packages to set up a desired workflow, going from start 
to finish requires a reasonable understanding of model 
building in caret.

Here, we present the R package camb: Chemically 
Aware Model Builder, which aims to address the cur-
rent lack of an R framework comprising the four 
steps mentioned above. Specifically, the camb pack-
age makes it extremely easy to enter new molecules 
(that have no previous standardisation) through a sin-
gle function, to acquire new predictions once model 
building has been done. The package has been con-
ceived such that users with minimal programming 
skills can generate competitive predictive models and 
high-quality plots showing the performance of the 
models under default operation. It must be noted that 
camb does limit practitioners to a limited but eas-
ily used workflow to begin with. Experienced users, 
or those that intend to practice machine learning in 

R extensively are encouraged to neglect this basic 
wrapper completely on their second training attempt 
and learn how to use the caret package from the caret 
related vignettes directly.

Overall, camb enables the generation of predictive 
models, such as Quantitative Structure–Activity Rela-
tionships (QSAR), Quantitative Structure–Property 
Relationships (QSPR), Quantitative Sequence–Activity 
Modelling (QSAM), or Proteochemometric Modelling 
(PCM), starting with: chemical structure files, protein 
sequences (if required), and the associated properties or 
bioactivities. Moreover, camb is the first R package that 
enables the manipulation of chemical structures utilising 
Indigo’s C API [12], and the calculation of: (1) molecu-
lar fingerprints and 1-D [13] topological descriptors cal-
culated using the PaDEL-Descriptor Java library [14], (2) 
hashed and unhashed Morgan fingerprints [15], and (3) 
eight types of amino acid descriptors. Two case studies 
illustrating the application of camb for QSPR modelling 
(solubility prediction) and PCM are available in the Addi-
tional files 1, 2.

Design and implementation
This section describes the tools provided by camb for (1) 
compound standardisation, (2) descriptor calculation, 
(3) pre-processing and feature selection, model training, 
visualisation and validation, and (4) bioactivity/property 
prediction for new molecules.

Fig. 1 Overview of camb functionalities. camb provides an open and seamless framework for bioactivity/property modelling (QSAR, QSPR, QSAM 
and PCM) including: (1) compound standardisation, (2) molecular and protein descriptor calculation, (3) pre‑processing and feature selection, 
model training, visualisation and validation, and (4) bioactivity/property prediction for new molecules. In the first instance, compound structures are 
subjected to a common representation with the function StandardiseMolecules. Proteins are encoded with 8 types of amino acid and/or 13 types of 
full protein sequence descriptors, whereas camb enables the calculation of 905 1D physicochemical descriptors for small molecules, and 14 types of 
fingerprints, such as Morgan or Klekota fingerprints. Molecular descriptors are statistically pre‑processed, e.g., by centering their values to zero mean 
and scaling them to unit variance. Subsequently, single or ensemble machine learning models can be trained, visualised and validated. Finally, the 
camb function PredictExternal allows the user (1) to read an external set of molecules with a trained model, (2) to apply the same processing to 
these new molecules, and (3) to output predictions for this external set. This ensures that the same standardization options and descriptor types are 
used when a model is applied to make predictions for new molecules.
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Compound standardization
Chemical structure representations are highly ambigu-
ous if SMILES are used for representation—for example, 
when one considers aromaticity of ring systems, pro-
tonation states, and tautomers present in a particular 
environment. Hence, standardisation is a step of cru-
cial importance when either storing structures or before 
descriptor calculation. Many molecular properties are 
dependent on a consistent assignment of the above cri-
teria in the first place. If one examines large chemi-
cal databases one can see how important this step is—a 
rather good explanation for  standardisation is found in 
PubChem, one of the largest public databases, can be 
found on the PubChem Blog [16]. Hence, we are of the 
opinion that standardising chemical structures is cru-
cial in order to provide consistent data for later model-
ling steps, in line with perceptions by others (such as the 
PubChem curators). For standardisation, camb provides 
the function StandardiseMolecules which utilises Indigo’s 
C API [12]. SDF and SMILES formats are provided as 
molecule input options. Any molecules that Indigo fails 
to parse are removed during the standardisation step. 
As a filter, the user can stipulate the maximum num-
ber of each halogen atom that a compound can possess 
in order to pass the standardisation process. This allows 
datasets with a bias towards many molecules that contain 
one type of halogen to be easily normalised before train-
ing. Additional arguments of this function include the 
removal of inorganic molecules or those compounds with 
a molecular mass above or below a defined threshold. 
Most importantly, camb makes use of Indigo’s InChI [17] 
plugin to represent all tautomers by the same canonical 
SMILES by converting molecules to InChI, discarding 
tautomeric information, and converting back to SMILES.

Descriptor calculation
Currently, camb supports the calculation of compound 
descriptors and fingerprints via PaDEL-Descriptor [14], 
and Morgan circular fingerprints [15] as implemented 
in RDkit [18]. The function GeneratePadelDescriptors 
permits the calculation of 905 1- and 2-D descriptors 
and 10 PaDEL-Descriptor fingerprints, namely: CDK 
fingerprints [19], CDK extended fingerprints [19], Kier-
Hall E-state fragments [20], CDK graph only fingerprints 
[19], MACCS fingerprints [21], Pubchem fingerprints [3], 
Substructure fingerprints [22], and Klekota–Roth finger-
prints [23].

In addition to the PaDEL-Descriptor fingerprints, 
Morgan fingerprints can be computed with the func-
tion MorganFPs through the python library RDkit [18]. 
Hashed fingerprints can be generated as binary, record-
ing the presence or absence of each substructure, or 
count based, recording the number of occurrences of 

each substructure. Additionally, the MorganFPs function 
also computes unhashed (keyed) fingerprints, where each 
substructure in the dataset is assigned a unique position 
in a binary fingerprint of length equal to the number of 
substructures existing in the dataset. Since the positions 
of substructures in the unhashed fingerprint depend on 
the dataset, the function MorganFPs allows calculation of 
unhashed fingerprints for new compounds using a basis 
defined by the substructures present in the training data-
set. This ensures that substructures in new compounds 
map to the same locations on the fingerprint and allows 
enhanced model interpretation by noting which exact 
substructures are deemed important by the learning 
algorithm.

The function SeqDescs enables the calculation of 13 
types of whole protein sequence descriptors from Uni-
Prot identifiers or from amino acid sequences [24], 
namely: amino acid composition (AAC), dipeptide com-
position (DC), tripeptide composition (TC), normalized 
Moreau–Broto autocorrelation (MoreauBroto), Moran 
autocorrelation (Moran), Geary autocorrelation (Geary), 
CTD (composition/transition/distribution) (CTD), Con-
joint Traid (CTriad), sequence order coupling num-
ber (SOCN), quasi-sequence order descriptors (QSO), 
pseudo amino acid composition (PACC), amphiphilic 
pseudo amino acid composition (APAAC) [25, 26].

In addition, camb permits the calculation of 8 types of 
amino acid descriptors, namely: 3 and 5 Z-scales (Z3 and 
Z5), T-Scales (TScales), ST-Scales (STScales), Principal 
Components Score Vectors of Hydrophobic, Steric, and 
Electronic properties (VHSE), BLOSUM62 Substitu-
tion Matrix (BLOSUM), FASGAI (FASGAI), MSWHIM 
(MSWHIM), and ProtFP PCA8 (ProtFP8). Amino acid 
descriptors can be used for modelling of the activity of 
small peptides or for the description of protein binding 
sites [5, 25, 27, 28]. Multiple sequence alignment gaps are 
supported by this camb functionality. Descriptor values 
for these gaps are encoded with zeros. Further details 
about these descriptors and their predictive signal for 
bioactivity modelling can be found in two recent publica-
tions [25, 26].

Model training and validation
Prior to model training, descriptors often need to be pre-
processed [29] so that they are equally weighted as inputs 
into the learning algorithms and to remove any that 
contain little relevant information content. To this end, 
several functions (see package documentation and tutori-
als) are provided. These functions include the removal of 
non-informative descriptors (function RemoveNearZero-
VarianceFeatures) or highly correlated descriptors (func-
tion RemoveHighlyCorrelatedFeatures), the imputation of 
missing descriptor values (function ImputeFeatures), and 
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descriptor centering and scaling to unit variance (func-
tion PreProcess) among others [30].

The R package caret provides a common interface to 
the most popular machine learning packages that exist 
in R, and, as such, camb invokes caret to set up cross-
validation frameworks and train machine learning mod-
els. These include learning methods in Bagging, Bayesian 
Methods, Boosting, Boosted Trees, Elastic Net, MARS, 
Gaussian Processes, K Nearest Neighbour, Principal 
Component Regression, Radial Basis Function Networks, 
Random Forests, Relevance Vector Machines, and Sup-
port Vector Machines among others. Additionally, two 
ensemble modelling approaches, namely greedy and 
stacking optimisation, have been integrated from the 
R package caretEnsemble [31], which allows the combi-
nation of models to form ensemble models, which have 
proven to be less error prone [28].

In greedy optimization [32], the cross-validated RMSE 
is optimized using a linear combination of input model 
predictions. The input models are all trained using an 
identical fold composition. Each model is assigned a 
weight in the following manner. Initially, all models have 
their weight set to zero. The weight for a given model is 
repeatedly incremented by 1 if the subsequent normal-
ized weight vector results in a closer match between the 
weighted combination of cross-validated predictions and 
the observed values (i.e. lower RMSE of the linear combi-
nation). This repetition is carried out n times, by default 
n = 1,000. The resulting weight vector is then normalized 
to obtain a final weight vector.

In the case of model stacking [28], the predictions 
of the input models serve as training data points for a 
meta-model. This meta-model can have linear, e.g. Par-
tial Least Squares [33], or non-linear, e.g. Random Forest 
[34]  characteristics. If the selected algorithm allows the 
importance of its inputs to be determined, each input 
corresponds to a single model, then the relative contri-
butions of each model to the prediction can be ascer-
tained. These model ensembles can be applied to a test 
set (which was not used when building the ensembles), 
and the error metric (e.g. RMSE) compared to that of the 
single models on the test set.

In the general case, prior to model training, the dataset 
is divided into a training set, comprising e.g. 70% of the 
data, and a test set, which comprises the remaining data. 
The test set is used to assess the predictive power of the 
models on new data points not considered in the train-
ing phase. In the training phase, the values of the model 
parameters (hyper-parameters) are optimized by grid 
search and k-fold cross-validation (CV) [35]. A grid of 
plausible hyper-parameter values covering an exponential 
range is defined (function expGrid). Next, the training set 
is split into k folds by, e.g. stratified or random sampling 

of the bioactivity/property values. For each combination 
of hyper-parameters, a model is trained on k − 1 folds, 
and the values for the remaining fold are then predicted. 
This procedure is repeated k times, each time holding 
out a different fold. The values of the hyper-parameters 
exhibiting the lowest average RMSE (or another metric 
such as e.g. R2) value across the k folds are considered 
optimal. A model is then trained on the whole training 
set using the optimal hyper-parameter values, and the 
predictive power of this model is assessed on the test set. 
The final model, trained on the whole dataset after hav-
ing optimized the hyper-parameter values by CV, can be 
used to make predictions on an external chemical library.

Statistical metrics for model validation have also been 
included:

During cross-validation

where Ntr, yi, ỹi and ȳtr represent the size of the training 
set, observation i, prediction i, and the average value of 
observations in the training set, respectively.

During testing

(1)q2CV or R2
CV = 1−

∑Ntr
i=1

(yi − ỹi)
2

∑Ntr
i=1

(yi − ȳtr)2

(2)RMSECV =

√
(yi − ỹi)2

N

(3)Q2
1 test = 1−

∑Ntest
j=1

(yj − ỹj)
2

∑Ntest
j=1

(yj − ȳtr)2

(4)Q2
2 test = 1−

∑Ntest
j=1

(yj − ỹj)
2

∑Ntest
j=1

(yj − ¯ytest)2

(5)Q2
3 test = 1−

[∑Ntest
j=1

(yj − ỹj)
2
]/

Ntest
[∑Ntr

j=1
(yj − ȳtr)2

]/
Ntr

(6)RMSEtest =

√
(yj − ỹj)2

N

(7)Rtest =

∑Ntest
j=1

(
yj − ȳtest

)(
ỹj − ỹtest

−
)

√∑Ntest
j=1

(
yj − ȳtest

)2∑(
ỹj − ỹtest

−
)2

(8)R2
0 test = 1−

∑Ntest
j=1

(
yj − ỹr0j

)2

∑Ntest
j=1

(
yj − ¯ytest

)2
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where Ntr, Ntest, yj, ỹj, and ¯ytest represent the size of the 
training and test sets, observation j, prediction j, and the 
average value of observations in the test set, respectively. 
ȳtr represents the average value of observations in the 
training set.
R2
0 test is the square of the coefficient of determina-

tion through the origin, being ỹr0j = kỹj the regression 
through the origin (observed versus predicted) and k its 
slope. The reader is referred to Ref. [36] for a detailed dis-
cussion of both the evaluation of model predictive ability 
through the test set and about the three different formula-
tions for Q2

test, namely Q2
1 test, Q

2
2 test, and Q2

3 test. The value 
of these metrics permits the assessment of model per-
formance according to the criteria proposed by Tropsha 
and Golbraikh [37, 38], namely: q2CV > 0.5, R2

test > 0.6,  
(R2test−R2

0 test )

R2test
< 0.1, and 0.85 ≤ k ≤ 1.15.

These values might change depending on the data-
set modelled, as well as on the application context, e.g. 
higher errors might be tolerated in hit identification in 
comparison to lead optimization, nevertheless, these 
criteria can serve as general guidelines to assess model 
predictive ability. The function Validation permits the 
calculation of all these metrics.

In cases where information about the experimental 
error of the data is available, the values for the statisti-
cal metrics on the test set can be compared to the theo-
retical maximum and minimum achievable performance 
given (1) the uncertainty of the experimental measure-
ments, (2) the size of the training and test sets, and (3) 
the distribution of the dependent variable [39]. The dis-
tribution of maximum and minimum R2

0 test ,Rtest ,Q
2
test, 

and RMSEtest values can be computed with the functions 
MaxPerf and MinPerf. The distributions of maximum 
model performance are calculated in the following way. A 
sample, S, of size equal to the test set is randomly drawn 
from the dependent variable, e.g. IC50 values. Next, the 
experimental uncertainty is added to S, which defines the 
sample Snoise. The R2

0 test ,Rtest ,Q
2
test, and RMSEtest values 

for S against Snoise are then calculated. These steps are 
repeated n times, by default 1,000, to calculate the distri-
butions of R2

0 test ,Rtest ,Q
2
test, and RMSEtest values. To cal-

culate the distributions of minimum model performance, 
the same steps are followed, with the exception that S is 
randomly permuted before calculating the values for the 
statistical metrics.

Visualization
Visualization functionality for model performance and 
for exploratory analyses of the data is provided. All plots 
are generated using the R package ggplot2 [40]. Default 
options of the plotting functions were chosen to allow 
the generation of high-quality plots, and in addition, the 
layer-based structure of ggplot objects allows for further 

optimisation by the addition of customisation layers. The 
visualization tools include correlation plots (Correlation-
Plot), bar plots with error bars (ErrorBarplot), and Prin-
cipal Component Analysis (PCA) (PCA and PCAPlot), 
histograms (DensityResponse), and pairwise distance dis-
tribution plots (PairwiseDistPlot). For instance, the camb 
function PCA performs a Principal Component Analy-
sis (PCA) on compound and/or protein descriptors. The 
output can be directly sent to the function PCAPlot, 
which will depict the two fist principal components, with 
the shape and color of a user-defined class e.g. compound 
class or protein isoform (Fig. 2).

Visual depiction of compounds is also possible with the 
function PlotMolecules, utilising Indigo’s C API. Visuali-
zation functions are exemplified in the tutorials provided 
in the Additional file 2 and with the package documenta-
tion (folder camb/doc of the package).

Predictions for new molecules
One of the major benefits of having all tools available in 
one framework is that it is straightforward to perform 
exactly the same processing on new molecules as the 
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Fig. 2 PCA analysis output from PCM. PCA analysis of the binding 
site amino acid descriptors corresponding to the 11 mammalian 
cyclooxygenases considered in the second case study (Proteochemo‑
metrics). Binding site amino acid descriptors (5 Z‑scales) were input to 
the function PCA. The first two principal components (PCs) explained 
more than 80% of the variance. This indicates that there are mainly 
two sources of variability in the data. To generate the plot, we used 
the function PCAPlot using the default options. Cyclooxygenases 
cluster into two distant groups, which correspond to the isoenzyme 
type, i.e. COX-1 and COX-2. Given that small molecules tend to display 
similar binding profiles within orthologues [43], we hypothesised that 
merging bioactivity data from paralogues and orthologues will lead 
to more predictive PCM models [28].
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ones used on the training set, e.g. standardisation of mol-
ecules and centering and scaling of descriptors. The camb 
function PredictExternal allows the user to read an exter-
nal set of molecules together with a trained model, and 
outputs predictions on this external set. This camb func-
tionality ensures that the same standardization options 
and descriptor types are used when a model is applied to 
make predictions for new molecules. An example of this 
is shown in the QSPR tutorial.

Results and discussion
Two tutorials demonstrating property and bioactivity 
modelling are available as Additional files 1 and 2, and 
also within the package documentation. We encour-
age camb users to visit the package repository (https://
github.com/cambDI/camb) for future updated versions 
of the tutorials. In the following subsections, we show 
the results obtained for the two case studies presented in 
the tutorials, namely: (1) QSPR: prediction of compound 
aqueous solubility (logS), and (2) PCM: modelling of the 
inhibition of 11 mammalian cyclooxygenases (COX) by 
small molecules. The datasets are available in the exam-
ples/PCM directory of the package. Further details about 
the PCM dataset can be found in Ref. [28].

Case study 1: QSPR
To illustrate the functionalities of camb for compound 
property modelling, the aqueous solubility values for 
1,708 small molecules were downloaded [41]. Aqueous 
solubility values were expressed as logS, where S corre-
sponds to the solubility at a temperature of 20–25◦C in 
mol/L. A common representation for the compound 
structures was found using the function StandardiseM-
olecules with default parameters, meaning that all mol-
ecules were kept irrespective of their molecular mass or 
the number of halogens present within their structure. 
Molecules were represented with implicit hydrogens, 

dearomatized, and passed through the InChI format 
to ensure that tautomers were represented by the same 
SMILES. 905 one and two-dimensional topological and 
physicochemical descriptors were then calculated using 
the function GeneratePadelDescriptors provided by the 
PaDEL-Descriptor [14] Java library built into the camb 
package. Missing descriptor values were imputed with 
the function ImputeFeatures. Two filtering steps were 
then performed: (1) highly-correlated descriptors with 
redundant predictive signal were removed using the 
function RemoveHighlyCorrelatedFeatures with a cut-off 
value of 0.95, and (2) descriptors with near zero variance 
and hence limited predictive signal, were removed using 
the function RemoveNearZeroVarianceFeatures with a 
cut-off value of 30/1. Prior to model training, all descrip-
tors were centered to have zero mean and scaled to have 
unit variance using the function PreProcess. After apply-
ing these steps the dataset consisted of 1,606 molecules 
encoded with 211 descriptors.

Three machine learning models were trained using 
80% of the data (training set), namely: (1) Support Vector 
Machine (SVM) with a radial kernel, (2) Random Forest 
(RF), and (3) Gradient Boosting Machines (GBM). Five-
fold cross-validation was used to optimize the value of 
the hyperparameters. Cross-validation and testing met-
rics for these three models are summarized in Table  1. 
Overall, the three algorithms displayed high performance 
on the test set, with RMSE/R2

0
 values of: GBM: 0.52/0.93; 

RF: 0.59/0.91; and SVM: 0.60/0.91 (Table 1; Fig. 3a). The 
combination of these three models as an ensemble was 
evaluated for improved predictive ability. To this end, 
two ensemble modelling techniques supported by camb 
were explored, namely: greedy optimization and model 
stacking. First, greedy ensemble was trained using the 
function caretEnsemble with 1,000 iterations. The greedy 
ensemble picked a linear combination of model out-
puts that was a local minimum in the RMSE landscape. 

Table 1 Cross-validation and testing metrics for the single and ensemble QSPR models trained on the compound solubil-
ity dataset

The lowest RMSE value on the test set, namely 0.51, was obtained with the greedy and with the linear stacking ensembles.

GBM Gradient Boosting Machine, RF Random Forest, RMSE root mean square error, SVM Support Vector Machine.

Algorithm R
2

CV
RMSECV R

2

0 test
RMSEtest

A

 GBM 0.90 0.59 0.93 0.52

 RF 0.89 0.62 0.91 0.59

 SVM radial 0.88 0.63 0.91 0.60

B

 Greedy – 0.57 0.93 0.51

 Linear stacking 0.90 0.57 0.93 0.51

 RF stacking 0.89 0.62 0.92 0.55

https://github.com/cambDI/camb
https://github.com/cambDI/camb
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Secondly, linear and non-linear stacking ensembles were 
created. In model stacking, the cross-validated predic-
tions of a library of models are used as descriptors, on 
which a meta-model (ensemble model) is trained. This 
meta model can be a linear model, e.g. SVM with a lin-
ear kernel, or non linear, such as Random Forest. The 
application of ensemble modelling led to a decrease by 
10–15% of RMSEtest values (Table 1). The highest predic-
tive power was obtained with the greedy and the linear 
stacking ensembles, with R2

0 test/RMSEtest of 0.93/0.51 and 
0.93/0.51, respectively. Taken together, these results indi-
cate that higher predictive power can be obtained when 
modelling this dataset by combining different single 
QSPR models with either greedy optimisation or model 
stacking. From this case study it can be seen that by uti-
lizing the camb package, a model training task which 
might involve porting datasets between multiple differ-
ent external tools can be simplified to a few lines of code 
in a reproducible fashion within the R language alone. 
Additionally, predictions can easily be made on new mol-
ecules using a single function call passing in a new struc-
tures file.

Case study 2: proteochemometrics
In the second case study the functionalities of camb are 
illustrated for proteochemoemtric modelling. The tuto-
rial “PCM with camb” (Additional file  2) reports the 
complete modelling pipeline for this dataset [28]. Bioac-
tivity data for 11 mammalian COX (COX-1 and COX-2 
inhibitors) was extracted from ChEMBL 16 [2, 28] 
(Table 2). Only the data satisfying the following criteria 

was kept: (1) assay score confidence higher than 8, (2) 
activity relationship equal to ‘=’, (3) activity type equal to 
“IC50”, and (4) activity unit equal to ‘nM’. The mean IC50 
value was taken for duplicated compound-COX combi-
nations. The final dataset comprised 3,228 distinct com-
pounds and 11 mammalian COX proteins, with a total 
number of 4,937 datapoints (13.9% matrix complete-
ness) [28].

A common representation for the compound struc-
tures was found using the function StandardiseM-
olecules with default parameters. Then, two main 

Table 2 Cyclooxygenase inhibition dataset ("Results and 
discussion" section, case study 2)

We extracted the bioactivity data for 11 mammalian cyclooxygenases from 
ChEMBL 16 [2]. The final bioactivity selection comprised 3,228 distinct 
compounds.

UniProt ID Isoenzyme Organism Number of  
datapoints

P23219 1 Homo sapiens 1,346

O62664 1 Box taurus 48

P22437 1 Mus musculus 50

O97554 1 Oryctolagus cuniculus 11

P05979 1 Ovis aries 442

Q63921 1 Rattus norvegicus 23

P35354 2 Homo sapiens 2,311

O62698 2 Bos taurus 21

Q05769 2 Mus musculus 305

P79208 2 Ovis aries 341

P35355 2 Rattus norvegicus 39

a b

Fig. 3 Observed vs predicted for both case studies. Observed against predicted values on the test set corresponding to a the compound solubility 
(LogS) dataset (case study 1: QSPR), and b the cyclooxygenase (COX) inhibition dataset (case study 2: PCM). Both a and b were generated with the 
function CorrelationPlot. The area defined by the blue lines comprises 1 LogS units (a) and 1 pIC50 units (b). Both plots were generated using the 
predictions on the test set calculated with the Linear Stacking ensembles (Tables 1, 3). Overall, high predictive power is attained on the test set for 
both datasets, with respective RMSE/R2

0
 values of 0.51/0.93 (a), and 0.73/0.63 (b). Taken together, these data indicate that ensemble modelling leads 

to higher predictive power, although this increase might be marginal for some datasets (b).



Page 8 of 10Murrell et al. J Cheminform  (2015) 7:45 

descriptor types were calculated: (1) PaDEL descrip-
tors [14] with the function GeneratePadelDescriptors, 
(2) and Morgan fingerprints with the function Mor-
ganFPs. Substructures with a maximal diameter of 4 
bonds were considered. The length of the fingerprints 
was set to 512. To describe the target space, the bind-
ing site amino acid descriptors were derived from 
the crystallographic structure of ovine COX-1 com-
plexed with celecoxib (PDB ID: 3KK6 [42]) by select-
ing those residues within a sphere of radius equal to 10 
Å centered in the ligand. Subsequently, we performed 
multiple sequence alignment to determine the cor-
responding residues for the other 10 COX, and calcu-
lated 5 Z-scales for these residues with the function 
AADescs.

Prior to model training, missing descriptor values were 
imputed (function ImputeFeatures). Two filtering steps 
were then performed: (1) highly-correlated descriptors 
with redundant predictive signal were removed using the 
function RemoveHighlyCorrelatedFeatures with a cut-off 
value of 0.95, and (2) descriptors with near zero variance 
and hence limited predictive signal, were removed using 
the function RemoveNearZeroVarianceFeatures with a 
cut-off value of 30/1. Prior to model training, all descrip-
tors were centered to have zero mean and scaled to have 
unit variance using the function PreProcess. These steps 
led to a final selection of 356 descriptors: 242 Mor-
gan fingerprint binary descriptors, 99 physicochemical 
descriptors, and 15 Z-scales. The dataset was split into 
a training set, which was comprised of 80% of the data, 
and a test set (20%) with the function SplitSet. Three sin-
gle PCM models were trained using fivefold cross-vali-
dation, namely: GBM, RF, and SVM with a radial kernel 
(Table 3).

These models were subsequently combined into model 
ensembles using (1) greedy optimisation (1,000 itera-
tions), and (2) model stacking (Table  3). The function 
Validation served to calculate the values for the statis-
tical metrics on the test set. The observed against the 
predicted values on the test set were reported with the 
function CorrelationPlot (Fig. 3b).

All model ensembles displayed higher predictive power 
on the test set than single PCM models, except for RF 
Stacking (Table  3). The lowest RMSE value on the test 
set, namely 0.72 was obtained with the Elastic Network 
(EN) Stacking model (Table  3), whereas the highest R2

0
 

value, namely 0.63, was obtained with the greedy, the 
Linear Stacking and the SVM Radial Stacking ensembles. 
As in the previous case study, these data indicate that 
higher predictive power can be obtained by combining 
single PCM models in more predictive model ensem-
bles, although this improvement might be sometimes 
marginal. This case study illustrates the versatility of 
camb to train and validate PCM models from amino acid 
sequences and compound structures in an integrated and 
seamless modelling pipeline.

Availability and future directions
camb is coded in R, C++, Python and Java and is avail-
able open source at https://github.com/cambDI/camb. 
To install camb from R type: library(devtools); install_
github(“cambDI/camb/camb”). We plan to include fur-
ther functionality based on the C++ Indigo API, and to 
implement new error estimation methods for regression 
and classification models. Additionally, we plan to further 
integrate the python library RDkit with camb. The pack-
age is fully documented and includes the usage examples 
and details of the R functions implemented in camb.

Table 3 Cross-validation and testing metrics for the single and ensemble PCM models trained on the COX dataset

Combining single models trained with different algorithms in model ensembles allows to increase model predictive ability. We obtained the highest R2
0 test

 and 
RMSEtest values namely, 0.63 and 0.73 pIC50 unit respectively, with the greedy ensemble, and with the following model stacking techniques: (1) linear, and (2) SVM 
radial.

EN Elastic Net, GBM Gradient Boosting Machine, RF Random Forest, RMSE root mean square error in prediction, SVM Support Vector Machines.

Algorithm R
2

CV
RMSECV R

2

0 test
RMSEtest

A

 GBM 0.59 0.77 0.60 0.76

 RF 0.60 0.78 0.61 0.79

 SVM 0.61 0.75 0.60 0.76

B

 Greedy ensemble – 0.73 0.63 0.73

 Linear stacking 0.63 0.73 0.63 0.73

 EN stacking 0.63 0.72 0.62 0.72

 SVM linear stacking 0.63 0.73 0.62 0.73

 SVM radial stacking 0.63 0.73 0.63 0.73

 RF stacking 0.61 0.76 0.58 0.77

https://github.com/cambDI/camb
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Conclusions
In silico predictive models have proved valuable for 
the optimisation of compound potency, selectivity and 
safety profiles. In this context, camb provides an open 
framework to (1) compound standardisation, (2) molec-
ular and protein descriptor calculation, (3) pre-process-
ing and feature selection, model training, visualisation 
and validation, and (4) bioactivity/property prediction 
for new molecules. All the above functionalities will 
speed up model generation, provide reproducibility and 
tests of robustness. camb functions have been designed 
to meet the needs of both expert and amateur users. 
Therefore, camb can serve as an education platform for 
undergraduate, graduate, and post-doctoral students, 
while providing versatile functionalities for predic-
tive bioactivity/property modelling in more advanced 
settings.
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Additional files

Additional file 1: QSPR with camb.pdf—Tutorial demonstrating the util‑
ity of the camb [1] package by presenting a pipeline which generates vari‑
ous aqueous solubility models using2D molecular descriptors calculated 
by the PaDEL‑Descriptor package as input features. These models are then 
ensembled to create asingle model with a greater predictive accuracy. The 
trained ensemble is then put to use in making predictions for new mol‑
ecules. Additional file 2: PCM with camb.pdf—Tutorial demonstrating 
a pipeline to generate a Proteochemometric (PCM) model for mammal 
cyclooxygenase (COX) inhibitors. Further details about this dataset are 
reserved for a future publication. Similarly, the interested reader is referred 
to ref [1] and [2] forfurther details about PCM.
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