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Abstract

Background: Microglial cells are tissue-resident macrophages of the central nervous system. They are extremely
dynamic, sensitive to their microenvironment and present a characteristic complex and heterogeneous morphology
and distribution within the brain tissue. Many experimental clues highlight a strong link between their morphology
and their function in response to aggression. However, due to their complex “dendritic-like” aspect that constitutes
the major pool of murine microglial cells and their dense network, precise and powerful morphological studies are
not easy to realize and complicate correlation with molecular or clinical parameters.

Methods: Using the knock-in mouse model CX3CR1GFP/+, we developed a 3D automated confocal tissue imaging
system coupled with morphological modelling of many thousands of microglial cells revealing precise and
quantitative assessment of major cell features: cell density, cell body area, cytoplasm area and number of primary,
secondary and tertiary processes. We determined two morphological criteria that are the complexity index (CI) and
the covered environment area (CEA) allowing an innovative approach lying in (i) an accurate and objective study of
morphological changes in healthy or pathological condition, (ii) an in situ mapping of the microglial distribution in
different neuroanatomical regions and (iii) a study of the clustering of numerous cells, allowing us to discriminate
different sub-populations.

Results: Our results on more than 20,000 cells by condition confirm at baseline a regional heterogeneity of the
microglial distribution and phenotype that persists after induction of neuroinflammation by systemic injection of
lipopolysaccharide (LPS). Using clustering analysis, we highlight that, at resting state, microglial cells are distributed
in four microglial sub-populations defined by their CI and CEA with a regional pattern and a specific behaviour after
challenge.

Conclusions: Our results counteract the classical view of a homogenous regional resting state of the microglial
cells within the brain. Microglial cells are distributed in different defined sub-populations that present specific
behaviour after pathological challenge, allowing postulating for a cellular and functional specialization. Moreover,
this new experimental approach will provide a support not only to neuropathological diagnosis but also to study
microglial function in various disease models while reducing the number of animals needed to approach the
international ethical statements.
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Sub-population behaviour, Complexity index
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Background
Microglial cells are parenchymal tissue macrophages that
account for 10 % of brain cells [1] involved in brain im-
mune surveillance and homeostasis. In healthy condi-
tions, they are involved in synaptic development and
maintenance [2], neuronal survival [3] and phagocytosis
[4] to maintain brain homeostasis. Microglia migrate to
interact with other cell types (i.e. astrocyte and neurons)
and produce a variety of factors required to induce
neural progenitor differentiation [5] and neuronal apop-
tosis [6]. Their activation is the main component of the
neuroinflammatory process, which can result either from
direct brain insult or systemic inflammation leading to
either neuroprotective [7, 8] or neurotoxic [9, 10] re-
sponses. Their activation is characterized by both im-
munological and morphological changes, including
mainly a decrease in ramification up to the amoeboid
form (i.e. large non-ramified cells). Hypotheses of an
adaptation of their morphology to their specific function
within the central nervous system (CNS) are formulated
[11, 12] but neither could be actually substantiated due
to two boundaries: (i) the difficulty-to-detect subtle mor-
phological variations of microglia and also probably
intermediate forms between the categories of activation
that are historically described [13, 14] and (ii) the need
to couple a very precise morphological single cell ap-
proach with a proteomic or transcriptomic study using
specific techniques [15] taking into account the
regionalization that is specific to the CNS. In fact, since
the identification of microglial cells in 1932 by del Rio-
Hortega [16], the assessment of microglial morphology
allows characterizing their role or their level of activa-
tion [17, 18] but it remains challenging. The spectacular
complexity of these cells, their morphological variability
and their dense distribution within the tissue underlines
the importance of a precise morphological characterization
in a large number of cells distributed in the different func-
tional CNS regions. The standard nowadays is the use of
immunohistochemistry staining using CD45 or ionized
calcium-binding adapter molecule 1 (Iba-1) localizing in
the monocytic lineage and well expressed in microglia
[19]. Those techniques, however, have some limitations.
Indeed, since the expression of these markers depends on
the intensity of microglial activation, immunostaining can
be insufficient for accurately describing a “dendritic-like”
or ramified phenotype [20, 21] that constitutes more than
90 % of the microglial cells in young mice [11]. Addition-
ally, it required particular histological techniques such as
paraffin embedding that may affect the precision of a mor-
phological study. These limitations might be overcome by
the use of transgenic mice, such as an Iba-1GFP/+ [22] or
CX3CR1GFP/+ [23] mouse in which brain microglia ex-
press spontaneously green fluorescent protein (GFP) re-
spectively under the control of the Iba-1 or the CX3CL1

(fractalkine) receptor locus. These transgenic models
allow very precise visualization of the microglial ramifica-
tions requiring no immunostaining techniques. These
models overcome the technical limits but ask the question
of the quantification methods. Usually, quantification
methods are based on semi-quantitative scoring and man-
ual counting, making them time consuming, susceptible
to inter- or intra-observer variability and imprecise. Fur-
thermore, manual analyses are unable to assess either
large numbers of cells or their network organization. Re-
cently, innovative technical and/or mathematical methods
have been developed allowing automated acquisition, frac-
tal analysis [13] or segmentation of individual microglial
cell shapes [24]. They have enabled to reliably assess the
changes in microglial morphology albeit in limited num-
bers of cells (<70) [25–27]. Because of this limitation, the
range of statistical analyses is also restricted while
methods are available for analysing large numbers of cells
and thus detecting subtle morphological phenotypes and
changes therein. These methods are alternatives to con-
ventional statistics and are able to exploit or highlight the
major heterogeneity of cell populations in the same tissue,
with an underlying organization that cannot be directly
observed. Indeed, plasticity, reflected by slight morpho-
logical changes, is considered as a major functional
property of microglial cells [28]. Using diverse criteria,
it becomes now possible to discern precisely these sub-
populations and structures by applying a clustering ap-
proach [29].
In efforts to develop a method allowing the assessment

of the morphology of a large microglial population, and
therefore for a better understanding of the microglial be-
haviour in different developmental, homeostatic and dis-
ease contexts, we herein propose an innovative strategy.
Our approach is based on the automated acquisition of
fluorescence and the measurement of morphological
indexes in CX3CR1GFP/+ transgenic mice that allows dis-
criminating microglial sub-populations based on a clus-
tering analysis. To validate this method, we compared
clustering analysis to parametric and non-parametric
statistical approaches assessing their capacity to detect
inter-regional variability and post-stimulation changes in
microglial morphology. In conclusion, our approach is
extremely efficient, reproducible and accurate.

Methods
Animals
Male and female C57BL/6 JRj mice purchased from
JANVIER LABS and in-house CX3CR1GFP/+ mice aged
from 9 to 11 weeks were used for these experiments. In
the CX3CR1GFP/+ model, the CX3CL1 receptor gene, the
CX3CR1, was knocked-in with a GFP reporter gene [23].
This gene is constitutively turned on in microglial cells
and thus allows us to image them selectively using the
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GFP without any immunochemistry method. Mice were
housed in cages in groups of seven, in a temperature-
(22 ± 1.5 °C) and humidity-controlled environment, with
a 12-h light/dark cycle. Mice were provided with food
and water ad libitum according to international
guidelines.

Treatment conditions
Two experimental groups were considered. In the lipo-
polysaccharide (LPS) group (n = 6 by strain), the mice
were injected intraperitoneally with 5 mg/kg of LPS
from Escherichia coli serotype 055:B5 (Sigma-Aldrich)
[30, 31] dissolved in 0.9 % saline. Twenty-four hours
later, these mice were killed by cervical dislocation and
the brain was collected. In parallel, mice belonging to
the control group were not anaesthetized and were also
killed by cervical dislocation before brain collection.

Tissue preparation
After cervical dislocation, the brains were immediately
removed and cut in a trans-sagittal plane in the inter-
hemispheric fissure. Cerebral hemispheres were fixed
during 24 h in 4 % buffered formalin (QPath, Labonord
SAS, Templemars, France). Following fixation, tissue
samples were sliced along a sagittal plane on a calibrated
vibratome (VT1000 S, Leica, Germany) into 100-μm-thick
free-floating slices. The most medial slices were used for
analysis.

Histological analysis and immunohistochemistry
Brain sections of the left hemisphere of C57BL/6 JRj
mice were incubated with the rabbit antibody against
Iba-1 (Wako Chemicals, Richmond, VA, 1:500) and re-
vealed by the secondary antibody Dy488 (Jackson Immu-
noResearch Laboratories, Baltimore, PA). A classical
protocol was used: rehydratation, blocking with 20 %
goat serum and 0.5 % Triton-X 100 for 2 h, incubation
with primary antibody (Dako Diluent buffer, Glostrup,
Denmark) overnight at 4 °C followed by incubation with
secondary antibody 4 h at room temperature. The stained
sections were mounted on slides and coverslipped

Image acquisition and processing
Using a spinning disc confocal system (CellVoyager
CV1000, Yokogawa, Japan) with a UPLSAPO 40×/NA
0.9 objective, sample areas were acquired as a square of
10 × 10 fields of view with a depth of 30 μm at 2-μm in-
crements (16 focal depths) generating one volume in
four regions of interest: striatum, frontal cortex, hippo-
campus and cerebellum. These regions were acquired se-
quentially allowing the coverage of approximately
3 mm2 of tissue per region. Each field corresponds to a
matrix of 920 × 920 pixels; the pixel size in X and Y di-
mensions is 0.19 μm according to the objective. The

488-nm laser was used to excite GFP or detect Iba-1 and
thus to image the microglial cells.
Before the shape characterization analysis, focal stacks

of each mosaic were reconstructed by combining images
from the different focal depths. Each stack was subse-
quently divided into three 10-μm sub-volumes to allow a
two-dimensional (2D) maximum intensity projection
analysis (Fig. 1a), consistent with the average size of cell
bodies. Mosaic, volume creation and maximum projec-
tion processing from confocal images were done using
automated free plugins [32] of the ImageJ v1.50 software
interface [33].

Image analysis for characterization of microglial cell
population
An automatic image analysis was performed consecu-
tively on the three maximum projection mosaics de-
scribed above, using a custom-designed script developed
with the Acapella™ image analysis software (version 2.7,
PerkinElmer Technologies, Waltham, USA). This script
was subdivided into two subroutines: the first, for auto-
mated detection of processes (neurite detection module
from Acapella™ [34]), generating morphological charac-
teristics per cell, and the second, for the 2D in situ mor-
phological cartography. The data workflow is illustrated
step by step in Additional file 1.

Microglial morphological criteria
Using the custom-designed script cited above, the fol-
lowing morphological criteria could be extracted for
each microglial cell (Fig. 1b, c): a set of measured criteria
as cell body and cytoplasm area, defined as the cell body
area associated with the cytoplasmic area of the primary
ramifications, expressed in μm2; branching characteris-
tics such as the total number and length (μm) of ramifi-
cations and the number of primary, secondary and tertiary
ramifications; and roundness (ratio between surface and
perimeter squared of the cell body) and GFP intensity by
whole cell.
A second set of calculated criteria extrapolated from

the previous ones yielded the complexity index (CI) and
the covered environment area (CEA). First, we defined
the CI using two different criteria extracted from the
Acapella™ script: the number of segments of each cell, a
segment being defined as the length of process between
two nodes, and the number of its primary ramifications.
By dividing these two criteria, we obtain also a mean
complexity by primary ramification for each microglial
cell (Additional file 2). On the other hand, CEA repre-
sents the 2D total surface covered by its ramifications
and defined as the area of the polygon formed by linking
the extremities of its processes, expressed in μm2. The
areal density of microglial cells by region or by brain
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was calculated by dividing the number of microglial cells
selected by the scanned tissue area.
The CI revealed a completely distinct microglial

phenotype, the amoeboid cells. The amoeboid or rod
cells are characterized by a CI = 1 (no nodes) and are
characteristic for activated cells, displaying engulfing,
phagocytic properties [11]. Because of their particular
role, we distinguish them from the other microglial
cells.

Elimination of outliers and redundant cells
We proceeded to the filtration of outliers by size (infer-
ior to 10 μm2 or superior to 500 μm2) and roundness
(inferior to 0.7 considered as the limit of a noisy form)
to eliminate artefacts due to tissue noise. Using the

property of our Acapella™ script to generate in situ 2D
cartographies (Additional file 1), cell duplicates on two
adjacent sub-volumes were rejected for analysis to avoid
data duplication. This 2D localization in situ allowed us
also to remove the cells located at the edges of the mosaic
reasoning that they may be truncated.

Manual and semi-automated method workflow
To assess the accuracy of the 2D reconstruction of the
custom-designed script cited, we compared the criteria
measured by the cell using our automated method with
the analysis realized manually by three independent ex-
perimenters, as a technical benchmark: the cell body
area, the number of segments, the number of primary
ramifications and the measure of the CEA. The manual

Fig. 1 The characterization of microglial cells by morphological criteria. a Confocal images, representing a sub-part of the analysed image in the
frontal cortex region after maximum intensity projection. The individual microglia based on GFP fluorescence appears in white outline. The scale
bar equals 50 μm. b Ramification detection based on GFP fluorescence with AcapellaTM software. The segmented ramifications linked to an
individual microglia are shown artificially in green, the unattributed ramifications in white. The scale bar equals 50 μm. c The morphological criteria
to characterize a microglial cell. The cell body detection (blue) and cytoplasm area (pink) have performed as a starting point to characterize a
microglial cell. The complexity index (green) and the covered environment area (CEA in orange) have been deduced from ramification detection.
The scale bar equals 10 μm. d Two-dimensional cartography at a single cell resolution. Colours correspond to the range of complexity and CEA
with a gradient from a low level of complexity and CEA (yellow) to a high level of complexity and CEA (red). The scale bar equals 50 μm. For
illustration, the images are contrast adjusted to aid in visualizing the GFP expression
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method has been performed using Fiji environment
(Additional file 3).
In parallel, to assess that the criteria analysis is not

software specific, a free semi-automated method has
been implemented in a Fiji macro using Skeletonize
(2D/3D) and Sholl Analysis plugins [35, 36]. The cell
body area, the number of segments and the number of
primary ramifications have been extracted by this custom-
designed macro.
These two methods were tested and compared with

our automated method in two regions of interest, the
hippocampus and the cerebellum, and in the two condi-
tions, LPS and control.

Data analysis and statistics
All the data extracted from Acapella™ after elimination
of outliers and redundant cells were exploited following
two levels: (i) by the brain and (ii) by specific region. We
conducted this study using two different statistical
methods. The first conventional method consisted in an
approach considering only the median or the average for
each morphological criterion by animal. The second ap-
proach, more powerful and original, presented results
using k-means clustering by cell population.
To realize the conventional approach, Prism 6.0

(GraphPad Software Inc.©, USA) was used for statistical
analysis by animal and regions of interest. Data were
analysed via Mann-Whitney test or Student’s t test after
being assessed for normality of sample distribution. Inter-
sample/inter-region variability was tested by ANOVA
Kruskal-Wallis method. Qualitative traits (i.e. clustering
phenotype distribution) were analysed with a chi-square
(χ2) test. Spearman coefficient has been expressed to rep-
resent the correlation between two sets of data. Statistical
significance is shown on the graphs (*p < 0.05; **p < 0.01;
***p < 0.001; ****p < 0.0001). Statistical tests used for each
data set are indicated in the figure legends.
The required number of samples per group (n) has been

evaluated with pwr.t.test R function [37], with α = 5 % and
1 − β = 90 %.

The clustering analysis
In a second time, Prism data were transferred into JMP®
version 11.0 (Statistical Analysis System Institute Inc.,
USA) for a complete multivariate analysis by cell popula-
tion. A principal component analysis (PCA) was per-
formed to identify the correlation between the different
analysed features. To detect and characterize the sub-
population of microglial cells, a k-means clustering
method, appropriated for a large set of data, has been
applied (k = 4). The statistics of each cluster (mean and
frequency) were used to characterize sub-populations
and determine their phenotype, later named clusters 1
to 4. For each condition, the amount of microglial cells

analysed was about 810 by region, 2870 by brain or
20,000 by group.

Data storage and annotations by in situ 2D cartography
All acquired and analysed mosaics have been imported
into the OMERO (“OME Remote Objects technology”)
image database [38] including visual results in 2D car-
tographies by phenotyped cell (Fig. 1d and Additional
file 1). An open-source script (OMERO.csv) has been
used to annotate automatically by textual information
(i.e. sex, condition or clinical observation by sample or
region appurtenance) our large set of imported images
in the database.

Results
Using data extracted from more than 20,000 cells per
condition, we performed and compared two types of
complementary statistical approaches at an inter-
regional and an inter-group level. To validate the acqui-
sition process, the GFP intensity of each microglial cell
was measured. No difference in the microglial cell GFP
intensity between the two conditions, whatever the brain
region, was found (Table 1 and Additional file 4).

Conventional statistical approach
For this conventional approach, two statistical analyses
were performed: one to observe an inter-region variabil-
ity (Figs. 2 and 3), the other to detect a difference inter-
group by brain region (Tables 1 and 2).

Microglial cell body area, cytoplasm area and density
Mean cell body and cytoplasm areas of microglial cells
in the LPS group brains are significantly higher than in
the control group brains (respectively, 149 vs. 74 μm2

for the cytoplasm area in the hippocampus, p = 0.0012,
Table 1). We found a high heterogeneity between the
mean microglial cell body and cytoplasm areas in the
different regions of the brain within a given group (p < 0.01
or p < 0.001). At the opposite, in the context of LPS-
induced inflammation, the mean cell body area was homo-
geneous wherever the region (Fig. 2a). Moreover, in an

Table 1 Morphological variability study for microglial cells
between two groups

Criteria H FC S C

GFP intensity 0.2331 0.5245 0.5245 0.4394

Cell body area 0.0221 0.0221 0.0140 0.0012

Cytoplasm area 0.0012 0.0012 0.0012 0.0082

Complexity 0.1364 0.6154 0.6037 0.0012

CEA 0.9172 0.2925 0.6154 0.1783

Density 0.0734 0.9749 0.9172 0.1014

Values are expressed as Mann-Whitney exact p values; significant differences
in italics
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Fig. 2 The inter-region variability by morphological criteria. Four regions have been explored: hippocampus (H), frontal cortex (FC), striatum (S)
and cerebellum (C) in two different conditions, the control (left column) and the LPS (right column). a Historical parameters to characterize the
microglial morphology: the cell body area and the cytoplasm area defined as the cell body area associated with the cytoplasmic area of the
primary ramifications in μm2. b Calculated criteria extrapolated from the Acapella™ script: the complexity index (CI) and the covered environment
area (CEA), in μm2. Data shown are means ± SD in the control and LPS groups (n = 7 and n = 6, respectively). The scale bars equal 10 μm. ANOVA
Kruskal-Wallis test was used to compare the different regions. *p < 0.05, **p < 0.01, ***p < 0.001
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Fig. 3 Characteristics of the amoeboid population and their inter-region variability. Bar charts represent the characteristics of the amoeboid cell
morphology (characterized by a CI = 1, without nodes) and the distribution within the four explored regions: hippocampus (H), frontal cortex (FC),
striatum (S) and cerebellum (C) in the two different conditions, the control (left column) and the LPS (right column). a Parameters to characterize
the amoeboid cells morphology: the cell body area and the cytoplasm area defined as the cell body area associated with the cytoplasmic area of
the primary ramifications in μm2. b Parameters to characterize the amoeboid cell distribution: density calculated by dividing the number of
microglial cells selected by the scanned tissue area (3.03 mm2) and frequency as the ratio between the number of amoeboid cells and the total
number of microglial cells analysed. Data shown are means ± SD per condition (n = 7, n = 6 for control and LPS, respectively); we used ANOVA
Kruskal-Wallis test. **p < 0.01, ***p < 0.001
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inter-regional comparison, the mean cytoplasm area was
significantly greater in the cerebellum than in the other re-
gions, in either the control or LPS groups (Additional file
4); it did not statistically differ between the hippocampus,
frontal cortex and striatum, in both conditions. In an inter-
group comparison (Table 1), we observed a significant in-
crease of cell area (body and cytoplasm) in the LPS group;
the microglial cell cytoplasm was twice greater after the
LPS challenge regardless of the region. In each condition,
the microglial density varied significantly among regions,
with a higher mean density in the frontal cortex and a
lower one in the cerebellum (Additional file 4). The micro-
glial density did not differ between the control and LPS
groups, in the total brain or in each region (Table 1).

Complexity index (CI) and covered environment area (CEA)
Both microglial CI, defined as the mean complexity by
primary ramification, and CEA, defined as the 2D total
surface covered by microglial ramifications, showed no
statistical difference between the two different groups.
CI and CEA were significantly lower in the cerebellum
than in the other regions, in both the control and the
LPS group. We did not find any statistical difference be-
tween the hippocampus, frontal cortex and striatum re-
gardless of the conditions (Fig. 2b). CI and CEA did not
statistically differ between the LPS and control groups,
in each region except the cerebellum (Table 1). The
cerebellar microglial CI was significantly lower in the
LPS group than in the control group (Additional file 4).

Comparison with Iba-1 expression based on morphological
criteria by sample
To strengthen our statements about the CX3CR1GFP/+

mice model, we performed the same experiments based
on Iba-1 expression in wildtype C57BL/6 mice and we
were interested in the same morphological criteria
(microglial cell body area, cytoplasm area, cytoplasm in-
tensity, CI and CEA). In the hippocampus, we observed
the same differences between the two groups compared
to the GFP model with a significant increase of cell area
(body and cytoplasm) in the LPS group whereas we
observed no difference considering the CI and CEA

(Additional file 5). In the cerebellum, despite a trend
comparable to what is seen in the GFP mouse model,
there is no significant difference in the cell area. This
isolated difference may be explained by the smaller
number of cells analysed, about 10 times less, linked to
the limits of the immunostaining on thick sections.

Amoeboid cells
In each condition, the frequency of amoeboid cells,
considered as a particular group of microglial cells with
specific morphological characteristics (CI = 1) associ-
ated with a specific function, varied significantly
among regions, with the lowest frequency in the frontal
cortex than in the cerebellum (Fig. 3): control group:
5.64 ± 2.9 % and 14.73 ± 3.11 %, respectively, p =
0.0078; LPS group: 3.13 ± 1.27 % and 17.30 ± 5.53 %,
respectively, p = 0.0018 (Additional file 4). The LPS
challenge was associated with increased amoeboid cell
body and cytoplasm areas among brain regions. There
is no difference by region in terms of amoeboid
frequencies between the two groups (Table 2 and
Additional file 6).
In conclusion, using a conventional statistical approach,

we found that (i) in comparison to other regions, cerebel-
lar microglial cells presented a bigger cytoplasm, were
less dense and complex, more frequently amoeboid and
more responsive to LPS; (ii) the LPS challenge is associ-
ated with an increase, such as twice greater, in cell body
and cytoplasm areas but not with a decrease in CI and
CEA, indicating that there is no evidence for a “derami-
fication” process.

Comparison with benchmark methods
To assess the accuracy of our automated method, after
random extraction of an analysed cell subset, three inde-
pendent experimenters performed manual measures of
the selected criteria as cell body area, CI and CEA. Stat-
istical tests carried out by region showed the same
trends between the control and LPS groups whatever
the method considered (Additional file 7A). It is to be
noted that the analysis time per cell is multiplied by 10
between the automated method and the manual method
and the number of cells studied by condition is 400
times lower (Additional file 7C).
We also tested whether the results of the analysis

were not software specific. Using a semi-automatic
analysis with the Fiji software environment on a greater
number of cells than in the manual comparison, we did
not find any difference in the morphological criteria
between the semi-automatic and automatic methods in
each region. The results obtained showed a strong
correlation between the two methods (Additional files
7B, C).

Table 2 Morphological variability study for amoeboid between
two groups

Criteria H FC S C

GFP intensity 0.7133 0.9021 0.7133 0.8135

Cell body area 0.0023 0.1014 0.8135 0.0082

Cytoplasm area 0.0221 0.0221 0.0012 0.1375

Density 0.1288 0.0221 0.1014 0.0734

Frequency 0.9021 0.2308 0.1276 0.5058

Values are expressed as Mann-Whitney exact p values; significant differences
in italics
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Cell heterogeneity by condition
Although no difference was observed between the mean
CI or CEA of the microglial cells in the two conditions,
considering every cell of every brain in each condition,
we found a high cell heterogeneity between the samples
using Kruskal-Wallis test (p < 0.0001) illustrating the
biological variability across individuals (Additional file 8),
whatever the morphological criteria tested.
Such variability does not allow us to compare directly

populations using classical statistical studies. Moreover,
in order to distinguish sub-populations in our large data-
sets of cells, we pooled all the microglial cells from each
group by region and also conducted a new statistical
study using a clustering method.

Statistical clustering approach
The principal component analysis (PCA) showed that
the CI and CEA did not correlate, allowing proceeding
to the cluster analysis based on these indexes. In the
control group, based on the whole brain without region
discrimination, the rates of the clusters 1, 2, 3 and 4
used to characterize sub-populations by the k-means
clustering were 69, 18, 11 and 2 %, respectively (Fig. 4a).
The cutoff fixing the high or the low characteristic of
one population was set as the average of each morpho-
logical criterion in the control group (Fig. 4b) and there-
fore allowed to discriminate four sub-populations (SP):
SP1: low CEA and low CI (−/−); SP2: low CEA and high
CI (−/+); SP3: high CEA and low CI (+/−); and SP4: high
CEA and high CI (+/+). Considering the whole brain,
the proportions of SP did not differ statistically between
the control and LPS conditions (Fig. 4b). A contrario,
the proportions of these sub-populations varied signifi-
cantly among the regions in the control groups, as
shown in Fig. 5. SP1 was most represented in the cere-
bellum (92 % of the cells). SP2 represented from 28 % of
the cells in the striatum to 15 % in the hippocampus.
SP3 is present uniquely in the striatum at a 16 % rate
and SP4 from 3 % in the striatum to 11 % in the
hippocampus. The regional distribution of the sub-
populations varied significantly between the control and
LPS conditions (p < 0.0001), with a significant increase
in the SP4 in the striatum (from 3 to 46 %) and at the
opposite a significant decrease to disappearance of this
population in the other areas. The SP3 increases largely
in the frontal cortex, hippocampus and cerebellum. The
SP1 remains stable except in the hippocampus with an
increase up to 80 % of the cell population (Fig. 5).
Cluster analysis based on CI and CEA revealed a

regional pattern of microglial sub-population with par-
ticular responsiveness to LPS. Therefore, we obtained a
new frequency of phenotyped cells and hereby defined
sub-populations of microglial cells based on particular
behaviour.

Impact on the number of needed animals
The impact of a high-content automated approach is
also important ethically. It is possible to assess the num-
ber of mice required to highlight the same differences as
those observed using a classical statistical study and con-
sidering only the mean by animal. This evaluation of the
number of subjects required (n) is based on the two-
sample t test defined by the following formula:

n ¼ 2� t � σ2

�mA− �mBð Þ2

in which �mA;B are the mean of criteria for two sets of
data and σ is the common standard deviation of two
samples with the hypothesis that nA = nB.
Considering a power of 90 % and an alpha risk of 5 %,

the expected sample size showing exactly the same
differences is from 1 to 27 times greater considering the
CI depending on the brain area or from 6 to 100 times
greater considering the CEA. This sample size is sum-
marized in Table 3.

Discussion
Microglial morphological analysis is the historical tech-
nique to describe the microglial cells and also the only
way to study these cells within the complex environment
of the central nervous system [39]. In the literature, four
major microglial phenotypes are usually distinguished
based on distinct morphological criteria [11]: ramified
(presenting a small cell body and numerous branched
ramifications) that constitute about 90 % of the micro-
glial pool between 1 and 3 months in the murine model
and are considered to be the microglial “resting” state;
primed (bigger cell body but unchanged ramification
pattern compared to ramified phenotype); reactive (even
bigger cell body, shorter, fewer and thicker ramifica-
tions); and amoeboid (two or less processes without any
branch). Despite a probable link between morphology
and function [40–42] and due to a large panel of slight
microglial morphological changes [28], morphological
analyses are subject to many hurdles, limiting their
strength in terms of objectivity, precision and accuracy
leading to subjective interpretations.
The objective of the present study was to develop a

new powerful tool and method for describing microglial
morphology and for assessing its variability among brain
regions in order to further characterize and understand
its behaviour in the context of development, homeostasis
and disease. We confirmed the added value of our
method by studying the changes related to the LPS chal-
lenge, a well-characterized model to study inflammation.
This method is based on a clustering analysis integrating
new developed and automatically acquired morpho-
logical indexes, the complexity index (CI) and the
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Fig. 4 Approach by clustering to track sub-populations of microglial cells in the whole brain. a The scatter plots illustrate, at a single cell
resolution, the CEA and CI characteristics and their frequency by cluster. The symbols “+” and “x” correspond to the centre of each cluster by the
control and the LPS condition, respectively. The pie charts show the cluster frequencies by k-means clustering method (k = 4), and no significant
difference has been observed between the two conditions using the chi-square test. b Four sub-populations have been defined by the cutoff
(dotted lines) fixing the high (+) or the low (−) characteristic of one sub-population in the whole brain (WB). The cutoff was defined as the average
of each morphological criterion (CI and CEA) in the control group. The centre of each cluster was plotted in the graph. The pie charts represent
the proportions of sub-populations by condition. The same repartitions by sub-population as by cluster were observed
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covered environment area (CEA), the area covered by
microglial ramifications. These two criteria are critical
since different experimental studies [43–45] highlighted
certain kinetics not only in morphological changes after
microglial stimulation including rapid microglial process
growth, extension and reorientation towards injury but
also in response to healthy central nervous system
(CNS) environment [46–48].
For assessing the discriminatory power of our ap-

proach, we compared the clustering analysis to paramet-
ric and non-parametric statistical approaches. We found
that the clustering analysis allowed us to identify differ-
ent microglial phenotypes that are heterogeneously dis-
tributed among brain regions and presenting different

behaviours under the LPS challenge. The parametric
statistical tests failed to identify these sub-populations.
As a first step, we compared available methods that

are manual, qualitative or semi-quantitative to ours.
Differences arise in (i) a number of cells analysed 30
times greater than reported by previous studies [25–27],
(ii) an objective quantification of the morphological pa-
rameters providing a reliability in numerical and resolv-
ing power and (iii) providing a significant savings in
time with an analysis that is 10 times faster. Second,
while the CX3CR1GFP/+ transgenic model is a standard
tool to study microglial morphology in in vivo [49, 50]
or ex vivo experiments [51, 52], we performed the same
experiments based on Iba-1 expression in C57BL/6 mice

Fig. 5 Highlighting sub-populations by region. The pie charts represent the proportions of sub-populations defined by the cutoff previously
described in Fig. 4 by region of interest and by condition: in yellow, sub-population with low CEA and low CI (−/−); in orange, sub-population with
low CEA and high CI (−/+); in dark orange, sub-population with high CEA and low CI (+/−); and in red, sub-population with high CEA and high CI
(+/+). Chi-square test was used to compare the control and the LPS group. ****p < 0.0001

Table 3 Expected sample size to obtain significant differences between the two groups using a conventional approach

�m CTRL �mLPSð Þ σ n �m CTRL �mLPSð Þ σ n

H FC

CI 5.9 (4.9) 1.2 36 5.7 (6.1) 1.2 189

CEA (μm2) 953 (908) 253 643 950 (1184) 349 47

Cytoplasm area (μm2) 74.4 (149.4) 42.2 7 62.4 (123.0) 33.0 7

S C

CI 7.9 (7.3) 1.6 114 4.5 (3.6) 0.5 7

CEA (μm2) 1378 (1499) 435 272 450 (360) 130 45

Cytoplasm area (μm2) 66.3 (129.2) 34.1 7 123.4 (177.0) 37.9 11

Where �m is the mean of criteria for the control (LPS) set of data, σ is the common standard deviation of the two groups and n is the expected number of samples
to obtain a significant difference
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and observed the same trends than those observed with
the GFP model considering the main morphological cri-
teria. Nonetheless, this approach allows to analyse 10
times less cells than the CX3CR1GFP/+ thanks to the im-
munohistochemistry techniques, confirming the interest
of the use of a knock-in model.
The relevance of CI and CEA indexes, easily assessed

with automated methods, is confirmed by their ability to
identify morphological sub-types with a particular re-
gional distribution and sensitivity to LPS. The lack of
collinearity between these two derived indexes indicates
that they provide specific morphological information
that may reflect particular functional status. One may
argue that for a given covered area, hypo- and hyper-
ramified microglial cells have different roles.
The last methodological input concerns the analysis by

k-means clustering, considered to be a simple but effi-
cient algorithm to define sub-populations of identical
phenotyped cells. It divides the data into k clusters, min-
imizing the squared distance between each data point to
the centre of its cluster. The main interests of this algo-
rithm are its speed and ease of interpretation, and it is
particularly adapted for identifying sub-groups in a large
dataset by cellular heterogeneity recognition [53]. The
principal limitations are that it requires an a priori speci-
fication of the number of cluster centres and has a
strong sensitivity to outliers and noise. Together with
Kongsui and colleagues [54] in a recent study interested
in the structural alterations of the microglial cells within
the prefrontal cortex in rats following LPS injection, we
do not find any statistical difference in the mean values
of CI or CEA. Kongsui and colleagues raise the hypoth-
esis (i) that microglial process alteration is a later
phenomenon or (ii) that a substantially larger group of
cells studied associated with improved analytical ap-
proaches may reveal differences. The results of our clus-
ter analysis based on these indexes that identify major
changes in the global and regional distribution of mor-
phological sub-types support the second hypothesis. This
discrepancy clearly illustrates the discriminating power
of cluster analysis, when compared to parametric tests.
The regional heterogeneity of microglial morphology

and the microglial effect of the LPS challenge have long
been studied [1, 55]. In our study, we confirm this
regionalization of the microglial distribution with a de-
crease in density, CI and CEA indexes from the frontal
cortex to the cerebellum. Injection of LPS was associated
with an increase in the cytoplasmic area and in the pro-
portion of amoeboid cells. Kozlowski and Weimer found
the same trend into the cortex in their study in 2012,
correlated with an overexpression of Iba-1 and CD68
[24]. In a more original way, we observed a regional sus-
ceptibility to LPS thanks to the microglial morphology,
as it is also observed at a protein level by various

experimental studies [56, 57]. This regionalization of
pathophysiological processes at cellular and proteic
levels supports the clinical and behavioural specific re-
sponses to neurological challenges [58, 59]. A method
like ours may contribute to assess the nature of the mi-
croenvironmental factors involved in microglial shape
and reactivity [60, 61].
Since the cluster analysis enables the assessment of a

large population of cells per animal, it dramatically re-
duces the number of animals needed for testing a hy-
pothesis. For instance, it would have been necessary to
sacrifice 6 to 100 times more mice to observe a statis-
tical difference in CI (or CEA) between the LPS- and
non-LPS-treated groups, using a parametric test. This is
a major ethical advantage and in compliance with the
European and American requests.1 Thanks to the large
number of cells analysed in the same animal with our
automated method, it is also possible to use an accurate
statistical approach and consequently to dramatically
improve the ethical considerations of experimental
works.
Although we have found and confirmed the hetero-

geneity of microglial cells both in the resting and the
inflammatory brain, a functional assay to correlate the
morphology with function is still required. Many
markers have been described to characterize different
microglial activation stages, but the use of these markers
only would not have been sufficiently precise, and more
parameters are thus needed to further link morphology
and microglial function. However, our results further
confirm data from the literature as Kozlowski and Weimer
showed it [24].
One of the strengths of this approach is that other

functional or morphological parameters could be in-
cluded in the future according to the focus of the experi-
menters to highlight different behaviour or improve the
precision of the study. It is also possible that increasing
the number of parameters could lead to the discovery of
novel microglial cell states before, during and after
pathological conditions.
Moreover, our technique benefits from the ease of ac-

cessibility and will allow all labs to use these parameters
as a tool to characterize the microglial behaviour and
further understand in a standardized manner its role in
healthy and diseased condition.
Two main fields could benefit from this approach.

First, through the use of optical sectioning microscopy,
it is possible and easy with our method to work on a
three-dimensional network. The appearance of clusters
of complex cells or of similar activation states may con-
firm what is already highlighted in 2D or, on the con-
trary, may reveal new behaviours. Second, in subsequent
studies, it would be useful to correlate the precise
morphology of a cell that we are able to identify with its
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function, possibly using single cell techniques in situ
after morphological analysis within tissue.

Conclusions
Our study presents an automated approach of morpho-
logical analysis coupled with a high-content statistical
study that allows highlighting sub-populations of micro-
glial cells, even in a healthy condition, counteracting the
classical view of a homogenous resting state. These sub-
populations present specific behaviour after neuroin-
flammatory challenge induced by LPS, allowing postulating
a cellular specialization specified by its morphology. More-
over, our study confirms the need to work region by region
considering this type of cells. This statistical approach may
become the cornerstone of any study involving dendritic-
shaped cells while seeking the reduction of the number
of animals in accordance with the international guide-
lines for animal welfare.

Endnote
1Directive 2010/63/EU of the European Parliament

and of the Council.

Additional files

Additional file 1: High-content analysis workflow overview, from
acquisition to statistics for the seizure of a large number of brain regions
of mice, their classification and associated statistical analysis. Acquisition
pipeline: four regions of interest were scanned using a spinning disc
confocal system (CV1000-Yokagama): striatum (S), frontal cortex (FC),
hippocampus (H) and cerebellum (C) representing approximately 13 mm2

of the entire brain surface with a depth of 30 μm. The voxel size is equal
to 0.19 × 0.19 × 2.0 μm3, respectively, for the X, Y and Z dimensions by
stack. Analysis pipeline: using a macro implemented in ImageJ free
software, each data stack was divided into three sub-volumes followed
by a maximum projection for two-dimensional (2D) analysis. Each
sub-volume (v1 to v3) was analysed by AcapellaTM software to extract
morphological criteria for each microglial cell. The original image data
and generated in situ 2D cartographies were stored in Image Database
for visualization, sharing and clinical annotations. At the end, statistics were
done with the data extracted from this analysis pipeline. (TIF 1480 kb)

Additional file 2: The complexity index as new morphological criteria.
The complexity index (CI) for each microglial cell was defined by dividing
two different criteria: the number of segments of each cell and the
number of its primary ramifications. (A) A typical schematic microglial cell
presenting a circular cell body area (in red) and some ramified processes.
Each of them is composed of one primary ramification (white arrow) and
several sub-ramifications separated by nodes (blue arrows). One segment
is defined as the length of process between two nodes. Each segment is
visible in a single colour. (B) In the left column, individual microglia based
on GFP fluorescence appears in white outline. In the right column,
schematic representation of the microglial cell characterized by its CI
(white text). The scale bars equal 10 μm. (TIF 676 kb)

Additional file 3: Data analysis workflow with manual and semi-
automated methods. The manual method has been performed using
Fiji environment and selection drawing tools to measure the cell body
area, the number of roots, ramifications and the CEA. The semi-automated
method has been implemented in a Fiji macro using successively Analyze
Particles, Skeletonize (2D/3D) and Sholl Analysis plugins. The scale bars equal
10 μm. (TIF 1987 kb)

Additional file 4: Descriptive statistics for microglial cells by condition.
(PDF 13 kb)

Additional file 5: Characterization of microglial cells by morphological
criteria based on Iba-1 expression. Two regions have been explored:
hippocampus (H) and cerebellum (C) in the control or LPS conditions.
The scatter plots illustrate, by analysed cell, the body area (in blue),
cytoplasm area (in pink) and intensity (in grey), CI (in green) or CEA
(in orange) characteristics for each animal in both groups. Data shown
are means ± SD. The scale bars equal 10 μm. The Mann-Whitney test was
used to compare the control and LPS groups (respectively, n = 5 and
n = 6).*p < 0.05. (TIF 262 kb)

Additional file 6: Descriptive statistics for amoeboid cells by condition.
(PDF 53 kb)

Additional file 7: The comparison of different quantitative analysis
methods for microglial morphological criteria by cell. (A) The scatter plots
illustrate, at a single cell resolution, the body area, CI or CEA
characteristics for the automatic or manual method in the control and
LPS groups. The Mann-Whitney test was used to compare the control
and LPS groups (respectively, n = 5 and n = 6).*p < 0.05. (B) The correlation
plots of two morphological criteria between semi-automatic and
automatic analysis with cell body area (in blue) and CI (in green) at a
single cell resolution. Values indicate the Spearman correlation coefficient.
The lines represent the linear regression. (C) The table indicates the
number of cells (Nb cells), the cell body area, the CI, the CEA and the
mean analysis time per cell for each condition (control and LPS groups)
and each region (hippocampus and cerebellum). (TIF 424 kb)

Additional file 8: Quantitative analysis of microglial cell morphology in
the whole brain considering CI and CEA. The scatter plots illustrate, at a
single cell resolution, the CI or CEA characteristics for each animal in both
groups. ANOVA Kruskal-Wallis was used to test the inter-sample heterogeneity.
Data shown are means ± SD. ****p< 0.0001. (TIF 438 kb)

Abbreviations
CEA, Covered environment area; CI, Complexity index; CNS, Central nervous
system; GFP, Green fluorescent protein; Iba-1, Ionized calcium binding
adapter molecule 1; LPS, Lipopolysaccharide; OMERO, OME Remote Objects
technology; PCA, Principal component analysis; SP, Sub-population
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