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Abstract 60	  

Small GTPases of the Rab protein family control intracellular vesicular trafficking to allow 61	  

their communication and maintenance. It is a common strategy for intracellular bacteria to 62	  

exploit these pathways to shape their respective niches for survival. The subversion of 63	  

Rabs for the generation of an intracellular environment favoring the pathogen has been 64	  

described almost exclusively for intracellular bacteria that reside within bacterial containing 65	  

vacuoles (BCVs). However, less is known about Rab subversion for bacteria that rupture 66	  

the BCV to reach the host cytoplasm. Here, we provide recent examples of Rab targeting 67	  

by both groups of intracellular bacteria with a special focus on Shigella, the causative 68	  

agent of bacillary dysentery. Shigella recruits Rab11, the hallmark of the perinuclear 69	  

recycling compartment to in situ formed macropinosomes at the entry foci via the bacterial 70	  

effector IpgD. This leads to efficient BCV rupture and cytosolic escape. We discuss the 71	  

concept of diverted recycling through host Rab GTPases that emerges as a novel 72	  

pathogen strategy. 73	  

 74	  

 75	  
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Main text 76	  

Introduction 77	  

 Intracellular bacteria have evolved molecular weapons to subvert host cells for their 78	  

own benefit. They manipulate eukaryotic pathways for the promotion of efficient cellular 79	  

invasion within a bacterial containing vacuole (BCV), intracellular survival, evasion of 80	  

immune responses, and for their own propagation.1 The bacterial weaponry that achieves 81	  

such complex control is often constituted of an “effector cocktail”, secreted bacterial 82	  

proteins into the host cytosol through specialized injection devices, like the type-3 83	  

secretion system (T3SS). These effectors interplay with host factors involved in the 84	  

pathogenicity pathways. It has been recognized that the subversion of the vesicular 85	  

trafficking machinery represents a key strategy by the bacteria in order to physically shape 86	  

their local intracellular environment.2-4 87	  

Rab GTPases in vesicular trafficking  88	  

Cell membrane trafficking is regulated by the Rab family of proteins, which is part of the 89	  

Ras superfamily of small GTPases. In humans, almost 70 different Rab proteins have 90	  

been identified. They coordinate sequential trafficking steps by switching between their 91	  

active GTP-bound form and the inactive GDP-bound form, participating at different levels 92	  

for example during vesicle formation, motility, tethering or docking and fusion.5  93	  

 Vesicles carrying internalized cargo from different entry pathways, such as clathrin 94	  

and caveolae-mediated endocytosis, macropinocytosis and phagocytosis traffic to 95	  

lysosomes for degradation. The pair Rab5-Rab7 is considered as the master regulator of 96	  

endosomal trafficking and maturation. Rab5 determines the identity of early endosomal 97	  

compartments.6 One of its effectors, the phosphatidylinositol 3-kinase catalytic subunit 98	  

type 3 (PI3KC3), produces phosphatidylinositol 3-phosphate (PI3P) on endosome 99	  
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membranes, which in turn exerts a positive feedback loop resulting in increased Rab5 100	  

recruitment.7 Rabex5, a GDP/GTP exchange factor (GEF) for Rab5, contributes to the 101	  

positive loop by stabilizing Rab5 on the membranes.8 More than 60 downstream effectors 102	  

of Rab5 have been identified,9 but their functions remain most often poorly understood. 103	  

The progressive replacement of Rab5 by Rab7 is essential for proper maturation of early 104	  

endosomes into lysosomes.10-12 Upon Rab7 recruitment and activation, Rab5 is released 105	  

allowing the maturation of early endosomes into late endosomes.10 Retrograde transport of 106	  

late endosomes along microtubules is necessary for efficient fusion with lysosomes. It is 107	  

mediated by the binding of active Rab7 to Rab-interacting lysosomal protein (RILP), which 108	  

induces the subsequent interaction with dynein-dynactin motor complexes.13 In addition, 109	  

the protein Hook has been shown to be involved in endosome maturation; its N-terminus 110	  

interacts with microtubules and its C-terminus with membranes.14 111	  

 Alternatively to catabolic degradation, and as a requirement for cell surface 112	  

homeostasis, a part of the endosomal membrane and cargo are recycled back to the 113	  

plasma membrane.15 The membrane recycling system is highly dynamic; multiple 114	  

pathways for entry and exit from the endocytic recycling compartment have been 115	  

described with Rab11 present in most of them. Rab11 attracts effectors responsible for the 116	  

trafficking of recycling endosomes.16 It mediates vesicular transport along microfilaments 117	  

by binding the globular tail domain of myosin V (MyoV).17 Rab11 also interacts with the C-118	  

terminal of MyoV forming a ternary complex through Rab11 family-interacting protein 2 119	  

(FIP2).18 In addition, Rab11 employs kinesins (KIFs) for anterograde transport along 120	  

microtubules. FIP5 drives the interaction of Rab11 with KIF3.19 Rab11 can bind directly 121	  

KIF13 promoting the formation of tubules.20 The effector protrudin directs the interactions 122	  

of Rab11 with KIF5. Intriguingly, protrudin interacts selectively with GDP-Rab1121. This 123	  

changes the concept of Rab11 being switched off in its GDP form, and could explain the 124	  
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large promiscuity of Rab11 functions. FIP3 regulates the retrograde transport of Rab11 125	  

endosomes along microtubules mediated by dynein. This has been proposed for the 126	  

sorting of peripheral endosomes to the perinuclear recycling compartment.22 In addition, 127	  

Rab11 is involved in the tethering and fusion of recycling endosomes with the plasma 128	  

membrane 23,24.  129	  

 Although Rab11 is the hallmark of the slow recycling pathway, its highly versatile 130	  

nature and its complex localization profile in different cell types have led to numerous 131	  

hypotheses about its roles. Importantly, only one Rab11 GEF, Crag, has been recently 132	  

identified in Drosophila.25 In mitosis, Rab11 has a role in organizing the mitotic spindle and 133	  

spindle poles, and centriole distribution.26 It is involved in ciliogenesis, cytokinesis, 134	  

neuritogenesis, and oogenesis.16 It controls the maintenance of microvilli and 135	  

apical/basolateral specialization in epithelial cells,27 and it is a regulator of autophagosome 136	  

maturation.28 137	  

 Besides the three Rabs, Rab5, Rab7 and Rab11, described in some detail above, 138	  

other Rabs have been analyzed in the context of several local trafficking pathways. 139	  

Exemplarily, Rab1 and Rab2 mediate endoplasmic reticulum (ER)-Golgi trafficking, Rab3 140	  

controls exocytic events, Rab32 is involved in the biogenesis of lysosome-related 141	  

organelles (LROs) and mitochondrial fission, Rab6 regulates intra-Golgi trafficking, Rab9 142	  

and Rab7L1 mediate retrograde trafficking from late endosomes and lysosomes to the 143	  

trans-Golgi network (TGN), Rab4 is involved in the fast recycling pathway, as has been 144	  

reviewed in detail by Mizuno-Yamasaki and cols.29 In addition, many of the Rabs have 145	  

been described to be frequently involved in more than one single pathway. 146	  

Manipulation of Rabs by intracellular bacteria 147	  

 Intracellular bacterial pathogens use different mechanisms to hijack Rab proteins 148	  

(see table 1 for an overview), especially those that reside within BCVs. They can mimic 149	  
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Rab GEFs and GTP-hydrolysis activating proteins (GAPs) through their effector proteins, 150	  

either favoring recruitment to or displacement of certain Rabs from their vacuoles. For 151	  

instance, the phosphatase activity of the Salmonella enterica effector SopB is required for 152	  

Rab5 recruitment to the BCV. SopB produces PI3P at the BCV membrane, which prolongs 153	  

the association of Rab5 allowing BCV maturation. In addition, active Rab5 associates with 154	  

the PI3KC3, which is responsible for augmented PI3P formation on the BCV membrane.30 155	  

SopE, another Salmonella effector, has been found to act as a GEF for Rab5, recruiting 156	  

non-prenylated Rab5 on the BCV.31 Mycobacterium tuberculosis also interferes with Rab5. 157	  

The glycolipid lipoarabinomannan (LAM), released from the bacterial membrane into the 158	  

phagosomal membrane, inactivates the PI3KC3 impairing Rab5 recruitment.32 159	  

Concomitantly, the Mycobacterium phosphatase SapM depletes PI3P contributing to the 160	  

arrest of BCV maturation.33  161	  

  Alternatively, some bacterial effectors bind Rabs and thus prevent subsequent 162	  

interactions with their cognate host effectors. For instance, the Legionella effector VipD 163	  

forms a complex with Rab5 and Rab22 preventing the interaction with their effectors, such 164	  

as Rabaptin-5 and early endosome antigen 1 (EEA1).34 This leads to a generalized 165	  

impairment in endosomal maturation and, consequently, in pathogen degradation.35 166	  

Another example is the complex formed by the Salmonella effector SifA and host protein 167	  

pleckstrin homology domain-containing family M member 2 (SKIP). The SifA-SIKP 168	  

complex induces the formation of Salmonella induced filaments (SIFs).36 It also binds and 169	  

recruits Rab9 to the BCV and SIFs. Sequestration of Rab9 by SifA-SKIP avoids the 170	  

recycling of mannose phosphate receptors (MPRs), which prevents the delivery of 171	  

lysosomal hydrolytic enzymes to the BCV and SIFs.37 In addition, the C-terminus of SifA, 172	  

which shows similar structure of other bacterial GEFs, binds RhoA although it does not 173	  

change its GTPase status.38 SIF formation is indirectly supported through another 174	  
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Salmonella effector, SopD2, which binds directly to Rab7. This effector inhibits the 175	  

nucleotide exchange of this Rab. It impairs the recruitment of the Rab effectors to the BCV, 176	  

and subsequenly avoids degradation within lysosomes, thus allowing BCV maturation. 39 177	  

  Other bacterial effectors are able to covalently modify Rab proteins and 178	  

therefore completely change their properties. It has been described that the Legionella 179	  

effector DrrA, which is a GEF for Rab1,40 covalently modifies Rab1 by AMPylation of its 180	  

Switch II region. Then, the AMPylated Rab1 restricts the access of GAPs, becoming 181	  

constitutively active at the BCV.41 With opposed function, SidD reverses Rab1 182	  

AMPylation.42 The effector LidA has also an auxiliary role on Rab1 recruitment thought the 183	  

action of DrrA,43 and the effector LepB functions as a Rab1 GAP.44 Another Legionella 184	  

effector named AnkX also covalently modifies Rab1. It transfers a phosphocoline group 185	  

from CDP-choline to a serine also in the Swich II region, leading to a strong inhibition of its 186	  

interaction with GEFs and Rab GDP dissociation inhibitors (GDIs).45 Therefore, as 187	  

phosphocolinated Rab1 cannot be solubilized by the GDI, it remains membrane bound 188	  

even in the GDP form. The Listeria monocytogenes enzyme glyceraldehyde-3-phosphate 189	  

dehydrogenase (GAPDH) ADP-ribosylates Rab5. This covalent modification renders Rab5 190	  

unresponsive for activation by GEFs, and in turn it blocks further maturation into Rab7.46  191	  

 Some effectors can even degrade Rabs by proteolytic cleavage. This is the case of 192	  

the Salmonella effector GtgE, which is expressed in the broad-host bacterium Salmonella 193	  

enterica serovar Typhimurium (S. Typhimurium) and helps to overcome the host restriction 194	  

barrier. This bacterial effector is specific for Rab32 and Rab7L1. In mouse macrophages, 195	  

GtgE avoids Rab32 recruitment to the BCV preventing delivery of antimicrobial molecules 196	  

to the BCV, and allowing bacterial survival and replication. Conversely, the human specific 197	  

serovars S. Typhi and S. Parathypi do not express GtgE. Rab32 is therefore recruited to 198	  

the BCVs, bringing antimicrobial capacity to the BCVs and killing intravacuolar bacteria.47 199	  
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The Salmonella GAP for Rab32, SopD2, contributes to Rab32 removal from the BCV in S. 200	  

Typhimurium.48 However, in S. Typhi SopD2 is a pseudogene.49 In addition, the absence 201	  

of GtgE in the human-adapted S. Typhi and S. Parathypi allows Rab7L1 recruitment to the 202	  

BCV, which is required for the export of typhoid toxin, a unique virulence factor for human-203	  

adapted serovars.50  204	  

 The different examples of manipulation of Rab GTPases by pathogens described 205	  

above have been characterized in some detail at the molecular level. However, this has 206	  

not yet been achieved for many other cases. For example, the Brucella abortus effector 207	  

RicA tethers Rab2 to its BCV by an unknown mechanism. In vitro, RicA binds preferentially 208	  

GDP-Rab2 but does not possess GEF activity.51 Chlamydia trachomatis recruits Rab6, 209	  

Rab11 and Rab14 to the BCV in order to scavenge sphingomyelin from the Golgi.52,53 It 210	  

also recruits Rab39, which is involved in multi-vesicular bodies (MVBs) trafficking, for 211	  

inclusion growth and bacterial development.54 The specific bacterial effectors responsible 212	  

of such subversions are still unknown. Finally, Yersinia pestis promotes the recruitment of 213	  

Rab1 to the BCVs.55 It is thought that this may be a mechanism to control vacuolar pH but, 214	  

again, neither bacterial effectors responsible nor precise molecular events have been 215	  

identified so far. 216	  

Subversion of Rabs by Shigella: Role in vacuolar rupture 217	  

 For the causative agent of bacillary dysentery in humans, Shigella flexneri, Rab 218	  

subversion has only been studied very recently. It has been shown that the Shigella 219	  

effector VirA functions as a GAP for Rab1, mediating the disruption of ER-Golgi trafficking 220	  

and suppressing host autophagy, which contributes to intracellular bacterial persistence.56 221	  

Even though not directly acting on Rabs, IpaJ cleaves the Arf1 and Arf2 N-myristoylated 222	  

host GTPases, which regulate Golgi trafficking, inhibiting thus the host secretory 223	  

pathway.57  224	  
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 The scarce information about the usage of host Rabs by Shigella may be due to the 225	  

intricate lifestyle of this pathogen. Shigella is a cytosolic bacterium that ruptures its BCV 226	  

very rapidly after invasion,58 replicates in the cytosol, and propagates into the neighboring 227	  

cells.59 The events occurring at the initial steps of infection are highly transient, making 228	  

them difficult to be studied in detail.60 In fact, in both reports mentioned above, the effects 229	  

of the Shigella effectors were studied at late infection times (around 3 hours post-230	  

infection). At that stage bacteria are cytosolic and spread inter-cellularly. Therefore, the 231	  

possible implication of VirA and IpaJ on Rab subversion at the early stages, such as 232	  

bacterial entry and vacuolar escape, remains unclear.  233	  

 As mentioned before, the step of vacuolar escape is a key event for Shigella 234	  

virulence, but the implication of vesicular trafficking and Rab subversion in the process 235	  

was never evaluated. Membrane damage, and thus vacuolar rupture, has been thought to 236	  

occur mainly through the insertion of the T3SS injectisome on the BCV membrane.61,62 237	  

Contrary to the established ideas, our group has demonstrated that BCV rupture requires 238	  

host factors involved in vesicular trafficking, including Rab GTPases, to take place in an 239	  

efficient manner.63,64 In particular, Shigella hijacks Rab11 to newly formed 240	  

macropinosomes leading to efficient BCV rupture. This relation was initially discovered 241	  

characterizing data from a high-content siRNA library screen of host membrane trafficking 242	  

factors involved in Shigella BCV rupture. BCV escape was monitored by automated 243	  

microscopy using the CCF4 FRET probe as a reporter of vacuolar rupture.65 This screen 244	  

provided further Rab proteins to be potentially involved in vacuolar escape, such as Rab1, 245	  

Rab3, Rab4, Rab5, Rab7L1 along with Rab11.63  246	  

 Our live imaging revealed that Rab5, Rab7 and Rab11 were recruited to the 247	  

Shigella entry sites upon bacterial invasion. While Rab5 was transiently recruited, Rab11 248	  

was massively and permanently accumulated.63 Then, in order to evaluate the specific role 249	  
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of Rab11 in vacuolar rupture, we used fluorescently tagged galectin-3 as live cell marker 250	  

for loss of endomembrane integrity.66 In Rab11 knockdown cells, Shigella vacuolar escape 251	  

is dramatically delayed, but it does not affect bacterial entry. Importantly, the GTPase 252	  

activity of Rab11 is necessary for efficient BCV rupture, since expression of GDP-locked 64 253	  

and GTP-locked Rab11 (non published results) led to a strong delay in vacuolar rupture. 254	  

We found that Rab11 recruitment to the entry foci was entirely controlled by the bacterial 255	  

effector IpgD,63 an inositol phosphate phosphatase that converts phosphatidylinositol 4,5-256	  

bisphosphate (PI(4,5)P2) to phosphatidylinositol 5-phosphate (PI5P).67 In agreement with 257	  

its implication in Rab11 recruitment, the Shigella effector IpgD exhibited a strong delay in 258	  

vacuolar rupture. In addition, we demonstrated that IpgD was also involved in the 259	  

regulation of macropinosome formation during bacterial invasion. The IpgD mutant, which 260	  

entered without any delay into epithelial cells, was dramatically impaired for 261	  

macropinosome formation during the time of invasion.63 Previously, IpgD, through the 262	  

action of PI5P production was reported to be involved in the shaping of the entry foci.68   263	  

 Canonical macropinocytosis has been described as clathrin-independent non-264	  

selective endocytosis (see figure 1 for a comparison of Shigella induced 265	  

macropinosomes). By macropinocytosis, cells are able to internalize considerable volumes 266	  

of extracellular fluid for the uptake of soluble molecules as well as particles such as 267	  

viruses, bacteria and apoptotic cell fragments. Antigen presenting cells are capable of 268	  

constitutive macropinocytosis, while in macrophages, lymphocytes, fibroblast and epithelial 269	  

cells macropinosomes appear upon applying a variety of external stimuli 69.  270	  

Macropinosomes are directed towards the lysosomal pathway though the Rab5/Rab7 271	  

cascade, Lamp1 acquisition and acidification.70 The recycling of them has only been 272	  

suggested by a few studies, furthermore the molecular mechanism of this and its 273	  

regulation remains unclear. Intriguingly, in some non-professional phagocytic cells 274	  
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macropinosomes have been reported to recycle to the plasma membrane, with little or no 275	  

interaction with endosomal vesicles.71 Our recent study on Shigella induced 276	  

macropinosomes has been the first that proposed a direct implication of Rab11.  277	  

 Classically, it has been considered that Shigella takes advantage of ruffling for its 278	  

own internalization within macropinosome-like vesicles.72 In contrast to this paradigm, our 279	  

results from multidimensional live cell confocal microscopy showed that the recruited 280	  

Rab5, Rab7 and Rab11 were located exclusively at the membranes of the surrounding 281	  

macropinosomes (figure 1), but never at the forming BCV.64 At the ultrastructural level, the 282	  

different identities of both compartments was confirmed by focused ion beam scanning 283	  

electron microscopy (FIB/SEM), an emerging technique for tomography of large volumes,73 284	  

using a correlative approach. This showed clearly that Shigella enters in a tight vacuole 285	  

distinct from the surrounding macropinosomes. In addition, FIB/SEM revealed the 286	  

presence of contact sites between the BCV and macropinosomes, with the appearance of 287	  

smaller intramacropinosomal vesicles right at their interface during vacuolar rupture.64 288	  

Although Rab5 and Rab7 are recruited to Shigella induced macropinosomes, they do not 289	  

recruit Lamp1 nor do they show acidification (non published results). Instead, they are 290	  

blocked for further maturation and hijack Rab11 for virulence purposes. These 291	  

observations suggest that BCV rupture may be mediated by direct physical contacts 292	  

between Rab11-positive macropinosomes and the BCV. Such contacts may be an 293	  

outcome of “misdirected” trafficking towards the BCV instead of their recycling to the 294	  

plasma membrane, which could be considered as an “internal recycling” pathway.  295	  

 In the scenario of “internal recycling” the exocyst (a protein complex made of eight 296	  

distinct proteins) may play a role. Rab11-positive recycling endosomes are delivered to the 297	  

apical cell surface along radial actin filaments by MyoV.17 Then, they are tethered to the 298	  

plasma membrane by binding of MyoV and Rab11 to the exocyst component Sec15 to 299	  
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form a tripartite docking complex. Afterwards, Sec15 interacts with SNARE complexes to 300	  

mediate vesicle fusion with the plasma membrane.23,24 Knocking down constituents of the 301	  

exocyst inhibited the process of Shigella internalization (our own unpublished 302	  

experiments), but the precise step of inhibition needs to be elucidated.  303	  

 Since the GDP/GTP status of Rab11 is important for BCV destabilization, another 304	  

possible role for Rab11 in BCV rupture could be as a shuttle, providing the nascent 305	  

macropinosomes with downstream molecules involved in contact formation. It has been 306	  

described in Drosophila that under fed conditions the protein Hook has a negative 307	  

regulatory role in autophagosome maturation. Hook anchors late endosomes to 308	  

microtubules and thus impairs their fusion with amphisomes, delaying their maturation. In 309	  

this context Rab11 is prominently located at recycling endosomes. In starving conditions, 310	  

Rab11 regulates the relocalization of Hook protein in a GTP-dependent manner binding 311	  

and recruiting Hook to autophagic structures. Late endosomes are then not anchored 312	  

anymore to microtubules, and their fusion with amphisomes is favored, allowing a faster 313	  

maturation and catabolic degradation.28 314	  

 Interestingly, Rab 11 has been also reported to be involved in expulsion of pore 315	  

forming toxins from the surface of challenged host cells.74 A similar function has been 316	  

described for the ESCRT machinery, which is involved in local membrane deformation and 317	  

scission, and in repairing plasma membrane wounds.75 It could be considered that Rab11 318	  

is recruited together with the ESCRT complex to the BCV via macropinosomes to repair 319	  

the damage caused by the insertion of the T3SS translocon complex, pinching off small 320	  

intraluminal vesicles at the contact interphase, and inducing in turn vacuolar rupture.  321	  

 Finally, the notion that endosomal compartments function as multifunctional 322	  

platforms on which unique sets of molecular machines are assembled have emerged 323	  

recently.76 Therefore, Shigella induced macropinosomes may represent a platform for 324	  
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localized production of specific signalling lipids and docking of certain protein complexes 325	  

promoting vacuolar scape. 326	  

Conclusion and perspective 327	  

 In summary, as a result of Rab subversion, bacterial effectors induce or avoid 328	  

multiple interactions between the BCV and other host cell compartments modifying the 329	  

BCV or its membrane composition. Therefore, bacteria establish an intracellular replicative 330	  

niche through the generation of a sort of hybrid organelle.3,4  331	  

 Most of the currently described Rab modifications by pathogens lead to an 332	  

impairment of BCV degradation for bacteria survival. This is achieved either by blocking 333	  

phagosome maturation, by avoiding fusion with lysosomes or by redirecting BCV to 334	  

alternative trafficking pathways such as the ER. In addition, intracellular bacteria also 335	  

subvert vesicular trafficking in order to gain access to nutrients or scavenge building 336	  

blocks for intracellular replication.  337	  

 From our findings about the cytosolic bacterium Shigella we propose that the 338	  

concept of Rab subversion is not an exclusive strategy for BCV-contained bacteria, but 339	  

also for cytosolic ones. We have discovered a new role for recycling endosomes, via 340	  

Rab11, during early stages of Shigella infection. This provides a different concept about 341	  

bacterial vacuolar rupture. Intriguingly, none of the different Rabs recruited to the entry foci 342	  

(Rab5, Rab7 and Rab11) were located on BCV membranes, but only on macropinosomes. 343	  

Further research on Rab manipulation by cytosolic bacteria will help to fully understand the 344	  

process of vacuolar rupture, a key event for their virulence. 345	  

 346	  

 347	  

 348	  

 349	  
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24	  Table 1: Examples of Rab subversion by different intracellular bacterial pathogen 568	  

Pathogen
Effector

M
echanism

 of subversion
A

dvantages for infection
R

eferences

SopB
  Inositol phosphate phosphatase. Converts PIP3 to PI3P

  Delays interaction of BCVs with late endosom
es

M
allo et al. (2008)

SopE
  G

EF for Rab5. Acts on non-prenylated Rab5
  Delays interaction of BCVs with late endosom

es
M

ukherjee et al. (2001)

SifA
  Form

s a com
plex with SKIP,  which binds Rab9

  Prevents the delivery of hydrolytic enzym
es to the BCV

Brum
ell et al. (2002) M

cG
ourty 

et al (2012)

G
tgE

  Rab32 protease
  Prevents the delivery of antim

icrobial m
olecules to the BCV

Spanò and G
alan (2012) 

  G
AP for Rab32

  Prevents the delivery of antim
icrobial m

olecules to the BCV
Spanò et al. (2016)

  Binds to Rab7
  Contributes to the evasion of lysosom

al degradation, prom
otes the form

ation of SIFs
D'Costa et al. (2015)

LAM
  Inacivates  3PI3PKC3 inhibiting PI3P production

  Arrests phagosom
e m

aturation and degradation
Fratti et al. (2001)

SapM
  Acid phosphatase. Dephosphorylates PI3P 

  Arrests phagosom
e m

aturation and degradation
Vergne et al. (2005)

VipD
  Binds to Rab5 and Rab22

 Decreases bacterial degradation by general im
pairm

ent of endosom
al m

aturation
Ku et al. (2012)                
G

aspar et al. (2014)

DrrA
  G

EF for Rab1. M
odifies Rab1 by AM

Pylation
M

urata et al. (2006)             
M

üller et al. (2010)

SidD
  DeAM

Pylates Rab1
Tan and Luo (2011)

LidA
  Binds G

DI-free Rab1 previously activated by DrrA
M

achner and Isberg (2007)

LepB
  G

AP for Rab1
G

azdag et al. (2013)

AnkX
  Transfers phosphocholine to Rab1

Tan et al. (2011)

  Listeria m
onocytogenes

G
ADPH

  ADP-ribosylates Rab5
  Blocks m

aturation of the phagosom
es

Alvarez-Dom
inguez et al. (2008)

  Brucella abortus
RicA

  Binds to Rab2
  Helps to establish a replicative BCV with ER characteristics 

de Barsy et al. (2011)

  C
hlam

ydia trachom
atis

?
  ?

  Scavenge sphingom
yelin for bacterial nutrition from

 G
olgi and M

VBs
Rejm

an Lipinski et al. (2009) 
Capm

any and Dam
iani (2010) 

G
am

barte Tudela et al. (2015)

  Yersinia pestis
?

  ?
  Avoids acidification of BCVs to establish a replicative niche

Connor et al. (2015)

VirA
  G

AP for Rab1
  Inhibits ER-to-G

olgi transport and im
pairs autophagy

Dong et al. (2012)

IpgD
  Inositol phosphate phospatase. Converts PI(4,5)P to PI5P

  Enhances vacuolar rupture and bacterial escape into the cytosol
M

ellouk et al. (2014)         
W

einer et al. (2016)

  Shigella flexneri

  Recruitm
ent of Rab6, Rab11, Rab14 and Rab39 to the BCV

  Recruitm
ent of Rab1 to the BCV

  Tethers Rab2 to the BCV

  Deactivates Rab1 on Rab1 positive endosom
es

  Induces the recruitm
ent of Rab11 to m

acropinosom
es 

  Induces recruitm
ent of Rab9 to BCVs and SIFS 

Establishm
ent of a replicative niche with ER characteristics. Tight m

odulation of the 
different effectors is necessary to control BCV trafficking during the different phases of 
infection

  Recruits Rab5 to BCVs and inhibits the activation of G
EFs

  AM
Pylated Rab1 is inert to G

APs and becom
es constitutively active on BCVs

Involved in accum
ulating activated Rab1 on BCVs

  Prevents interaction of Rab5 and Rab22 with their effectors

Effect on R
abs

  Prolongs and increases Rab5 recruitm
ent on the BCV. 

  Prolongs and increases Rab5 recruitm
ent on the BCV. 

  M
icobacterium

 tuberculosis

  Legionella pneum
ophila 

  Deactivates Rab1 on the BCV

  Phosphocholinated Rab1 is inert to G
EFs and G

DIs on BCV m
em

branes

  O
pposed function of DrrA

  Im
pairs recruitm

ent of Rab5 to the BCV

  Depletes PI3P on BCVs avoiding Rab5 recruitm
ent

  Salm
onella enterica sv. Typhim

urium

  Salm
onella enterica

  Contributes to Rab32 rem
oval from

 BCV m
em

branes

   Avoids Rab32 recruitm
ent to the BCV

  Stabilizes Rab7 on SCVs and inhibits G
TPase cycling.

SopD2
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Figure 1: Schematic representation of macropinosome-like vesicles induced by 569	  

Shigella infection in comparison to the canonical macropinocytic pathway. On the 570	  

right side, canonical macropinosomes traffic along the endolysosomal pathway, where they are 571	  

eventually degraded. Rab5 (red) is first recruited to nascent macropinosomes, similar to its 572	  

recruitment to early endosomes. Then, it is replaced by Rab7 (green). Acquisition of Rab7 implies 573	  

retrograde transport along microtubules and subsequent fusion with lysosomes. Upon fusion with 574	  

lysosomes, macropinosomes acquire lysosomal markers such as Lamp1 and hydrolytic enzymes 575	  

leading to their acidification.  In contrast, macropinosome-like vesicles induced by Shigella 576	  

infection block their maturation before their fusion with lysosomes (left side). Rab11 (magenta) is 577	  

instead recruited by the bacterial effector IpgD. Bacterial subversion of Rab11, and its recruitment 578	  

to Shigella-induced macropinosomes, promotes efficient vacuolar escape. ES, extracellular space; 579	  

C, cytosol; MC, macropinocytic cup; SIM, Shigella induced macropinosome; BCV, bacteria 580	  

containing vacuole; B, bacteria; EM, early macropinosome; LM, late macropinosome; LM/Ly, late 581	  

macropinosome-lysosome; Ly, lysosome; arrow, intramacropinosomal vesicle. 582	  


