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ABSTRACT 40 

Background: Animal models have demonstrated that allergen-specific IgG confers sensitivity to 41 

systemic anaphylaxis that relies on IgG receptors (FcγRs). Mouse IgG2a and IgG2b bind 42 

activating FcγRI, FcγRIII and FcγRIV, and inhibitory FcγRIIB; mouse IgG1 binds only FcγRIII 43 

and FcγRIIB. Although these interactions are of strikingly different affinities, these three IgG 44 

subclasses have been shown to enable induction of systemic anaphylaxis. 45 

Objective: Determine which pathways control the induction of IgG1-, IgG2a- and IgG2b-passive 46 

systemic anaphylaxis. 47 

Methods: Mice were sensitized with IgG1, IgG2a or IgG2b anti-TNP mAbs and challenged with 48 

TNP-BSA intravenously to induce systemic anaphylaxis that was monitored using rectal 49 

temperature. Anaphylaxis was evaluated in mice deficient for FcγRs, injected with mediator 50 

antagonists or in which basophils, monocyte/macrophages or neutrophils had been depleted. The 51 

expression of FcγRs was evaluated on these cells before and after anaphylaxis. 52 

Results: Activating FcγRIII is the receptor primarily responsible for all three models of 53 

anaphylaxis, and subsequent down regulation of this receptor was observed. These models 54 

differentially relied on histamine release and on the contribution of mast cells, basophils, 55 

macrophages and neutrophils. Strikingly, basophil contribution and histamine predominance in 56 

IgG1- and IgG2b-mediated anaphylaxis correlated with the ability of inhibitory FcγRIIB to 57 

negatively regulate these models of anaphylaxis. 58 

Conclusion: We propose that the differential expression of inhibitory FcγRIIB on myeloid cells 59 

and its differential binding of IgG subclasses controls the contributions of mast cells, basophils, 60 

neutrophils and macrophages to IgG subclass-dependent anaphylaxis. Collectively, our results 61 

unravel novel complexities in the involvement and regulation of cell populations in IgG-mediated 62 

reactions in vivo.  63 
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CLINICAL IMPLICATIONS 64 

Anaphylactic pathways induced by different IgG subclasses in mice vary in terms of 65 

contributions by different cell types, mediators and antibody receptors. These results may help in 66 

the design of efforts to understand and treat IgG-mediated anaphylaxis in humans, e.g., as seen 67 

following intravenous IgG or administration of therapeutic IgG antibodies. 68 

 69 

CAPSULE SUMMARY 70 

 71 

Antibodies of the IgG class can contribute to anaphylaxis. This report reveals pathways induced 72 

by each IgG subclass in experimental anaphylaxis, demonstrating varying contributions of cells, 73 

mediators and antibody receptors. 74 

 75 

 76 

KEY WORDS 77 

 78 

Anaphylaxis; IgG; mouse model; basophil; neutrophil; monocyte; macrophage; FcγR; Platelet-79 

activating Factor; Histamine. 80 

  81 
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ABBREVIATIONS USED 82 

 83 

FcγR: IgG Fc receptor 84 

PAF: Platelet-activating factor 85 

KA: Affinity constant 86 

WT: C57Bl/6 Wild-type 87 

PSA: Passive systemic anaphylaxis 88 

TNP: Trinitrophenyl 89 

BSA: Bovine serum albumin 90 

mAb: Monoclonal antibody 91 

PBS: Phosphate Buffered Saline 92 

Gfi1: Growth Factor Independence-1 93 

GeoMean: Geometric Mean 94 

SEM: Standard error of the mean 95 

  96 
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INTRODUCTION 97 

 98 

 Anaphylaxis is a hyperacute allergic reaction that occurs with increasing incidence in the 99 

population and can be of fatal consequence. Symptoms include skin rashes, hypotension, 100 

hypothermia, abdominal pain, bronchospasm and heart and lung failure that may lead to asphyxia 101 

and sometimes death1. The main treatment remains epinephrine (adrenaline) injection to restore 102 

heart and lung function. Since anaphylaxis represents an emergency situation, few clinical studies 103 

have been possible to address the mechanisms leading to anaphylaxis in patients. Experimental 104 

models of anaphylaxis identified mechanisms involving allergen-specific antibodies that trigger 105 

activating antibody receptors on myeloid cells, leading to the release of mediators. These 106 

mediators can, by themselves, recapitulate the symptoms of anaphylaxis as observed in humans2, 107 

3. 108 

 The “classical” mechanism of anaphylaxis states that allergen-specific IgE binds the 109 

activating IgE receptor FcεRI on mast cells, which upon allergen encounter become activated and 110 

release histamine, among other mediators. Notably, histamine injection suffices to induce the 111 

signs of anaphylaxis in animal models4. In many cases, detectable allergen-specific IgE and 112 

elevated histamine levels do not accompany anaphylaxis in humans (discussed in 5), leading to 113 

the notion that “atypical” or “alternate” mechanisms of induction could explain these cases. One 114 

of these atypical/alternate models proposes a similar cascade of events, but instead based on 115 

allergen-specific IgG binding to allergen, forming IgG-allergen immune complexes that trigger 116 

activating IgG receptors (FcγRs) expressed on myeloid cells (i.e. macrophages, basophils and/or 117 

neutrophils), which in turn release Platelet-Activating Factor (PAF)2,3. Importantly, PAF 118 

injection suffices to induce the signs of anaphylaxis in animal models 6. IgG-induced anaphylaxis 119 
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can be elicited by intravenous injection of allergen-specific IgG followed by allergen 120 

administration, and is termed IgG-induced passive systemic anaphylaxis (PSA). 121 

 IgG receptors in the mouse comprise four “classical“ IgG receptors termed FcγRs, but 122 

also the neonatal IgG receptor (FcRn) and the intracellular FcR tripartite motif-containing protein 123 

21 (TRIM21)7, 8. Whereas FcRn and TRIM21 both participate in the intracellular routing of IgG, 124 

and FcRn in protection from catabolism and distribution to tissues9, FcγRs control cell activation 125 

in the presence of immune complexes. FcγRs in mice are subdivided into i) activating FcγRs, i.e. 126 

FcγRI, FcγRIII and FcγRIV, that lead to cell activation upon immune complex binding, and ii) an 127 

inhibitory FcγR, i.e. FcγRIIB, that inhibits cell activation when co-engaged by an immune 128 

complex with an activating FcγR co-expressed on the same cell10. Inhibition of cell activation by 129 

FcγRIIB thus requires that the immune complex contains IgG that are bound both by the 130 

activating and by the inhibitory FcγR. 131 

 Four IgG subclasses exist in mice, IgG1, IgG2a, IgG2b and IgG3. Among those, only 132 

IgG2a and IgG2b bind to all FcγRs, whereas IgG1 binds only to FcγRIIB and FcγRIII. It remains 133 

under debate whether IgG3 binds to FcγRs, particularly FcγRI11, 12. The affinities of these FcγRs 134 

towards IgG subclasses are strikingly different (Table 1) leading to the notion of “high-affinity” 135 

receptors that retain monomeric IgG and “low-affinity” receptors that do not8. The avidity of 136 

IgG-immune complexes, however, enables both types of receptors to retain IgG-immune 137 

complexes, leading to receptor clustering, intracellular signaling events and, eventually, to cell 138 

activation. FcγRI is a high-affinity receptor for IgG2a13, and FcγRIV is a high-affinity receptor 139 

for IgG2a and IgG2b14. All other FcγR-IgG interactions are of low affinity (reviewed in 7). 140 

 Three out of the four IgG subclasses in the mouse, i.e. IgG1, IgG2a and IgG2b, have been 141 

reported to enable the induction of systemic anaphylaxis, inducing mild to severe hypothermia5, 142 

15, 16. This is rather surprising for IgG1, considering that inhibitory FcγRIIB binds IgG1 with a 143 
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10-fold higher affinity (KA=3.3x106 M-1) than activating FcγRIII (KA=3.1x105 M-1)17 (Table 1), 144 

implying that inhibition should dominate over activation. WT mice, indeed, develop a very mild 145 

anaphylactic reaction during IgG1-PSA compared to FcγRIIB-/- mice18, indicating that inhibition 146 

by FcγRIIB occurs in WT mice during IgG1-PSA, reducing, but not protecting from, 147 

anaphylaxis. IgG1-PSA has been reported to rely on basophils19 that co-express FcγRIIB and 148 

FcγRIII20. In this apparently simple situation, only one activating receptor and one inhibitory 149 

receptor are engaged on a single cell type that, once activated, produces an anaphylactogenic 150 

mediator, like PAF19. 151 

 IgG2a and IgG2b, however, bind three activating FcγRs and inhibitory FcγRIIB with 152 

different affinities ranging over 2 logs. In particular, the affinity of FcγRIIB for IgG2a is 153 

significantly lower than for IgG2b, whereas activating IgG receptors FcγRIII and FcγRIV bind 154 

IgG2a and IgG2b with similar affinities, respectively (Table 1). Notably, FcγRIV is not expressed 155 

on basophils, but on monocytes/macrophages and neutrophils21 that have both been reported to 156 

contribute to experimental anaphylaxis16, 22-24. In addition, mice expressing only FcγRIV can 157 

develop IgG-PSA16. Together with expression and binding data, one would therefore hypothesize 158 

that FcγRIV contributes predominantly to IgG2a- and IgG2b-PSA. In this work, we present 159 

evidence contrary to this hypothesis, and reveal which activating FcγR on which cell type(s) 160 

releasing which mediator(s) are responsible for IgG2a-PSA and IgG2b-PSA, and the differential 161 

regulation of these models of anaphylaxis by FcγRIIB. Our results unravel a complex balance 162 

determined by FcγR expression patterns, inhibition potential by FcγRIIB and respective affinities 163 

of activating and inhibitory FcγRs for IgG subclasses that, altogether, regulate the contribution of 164 

cells and anaphylactogenic mediators to a given model of IgG-induced anaphylaxis. 165 

  166 
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METHODS 167 

Mice. Female C57Bl/6J mice (herein referred to as “WT”) were purchased from Charles River, 168 

female Balb/cJRj mice from Janvier Labs, FcγRIIB-/- (MGI:1857166), FcγRIII-/- mice (MGI: 169 

3620982) and Rosa26-YFP mice from Jackson Laboratories. FcγRI-/- mice (MGI: 3664782) were 170 

provided by J. Leusen (University Medical Center, Utrecht, The Netherlands), FcγRIV-/- mice 171 

(MGI: 5428684) by J.V. Ravetch (The Rockefeller University, New York, NY, USA), Gfi1-/- 172 

mice by T. Moroy (Montreal University, Montreal, QC, Canada) and MRP8-cre mice by Clifford 173 

Lowell (University of California at San Francisco, CA, USA). MRP8-cre and Rosa26-YFP mice 174 

were intercrossed to generate MRP8-cre; Rosa26-YFP mice. Cpa3-Cre; Mcl-1fl/fl mice25 175 

(backcrossed for at least 9 generations on a C57Bl/6J background) were kept in the Stanford 176 

University animal facility. All mouse protocols were approved by the Animal Ethics committee 177 

CETEA (Institut Pasteur, Paris, France) registered under #C2EA-89, and the Institutional Animal 178 

Care and Use Committee of Stanford University. 179 

 180 

Antibodies and reagents. PBS- and clodronate-liposomes were prepared as previously 181 

described26. TNP(21-31)-BSA was obtained from Santa Cruz, ABT-491 from Sigma-Aldrich; 182 

cetirizine DiHCl from Selleck Chemicals; anti-mouse FcγRIII (275003) from R&D Systems; rat 183 

IgG2b isotype control (LTF-2) from Bio X Cell. Purified anti-CD200R3 (Ba103) was provided 184 

by H. Karasuyama (Tokyo Medical and Dental University Graduate School, Tokyo, Japan). The 185 

hybridoma producing mAbs anti-mouse FcγRIV (9E9) was provided by J.V. Ravetch 186 

(Rockefeller University, New York, New York, USA), anti-Ly6G (NIMP-R14) by C. Leclerc 187 

(Institut Pasteur, Paris, France), IgG1 anti-TNP (TIB-191) by D. Voehringer 188 

(Universitätsklinikum, Erlangen, Germany), IgG2a anti-TNP (Hy1.2) by Shozo Izui (University 189 

of Geneva, Geneva, Switzerland) and IgG2b anti-TNP (GORK) by B. Heyman (Uppsala 190 
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Universitet, Uppsala, Sweden): corresponding antibodies were purified as described16. Purified 191 

mouse IgE anti-TNP was purchased from BD Pharmingen. MAb 9E9 was coupled to FITC using 192 

the PierceTM FITC Antibody labeling kit (Life Technologies). The antibodies used for flow 193 

cytometry staining of c-Kit (clone 2B8), CD49b (clone DX5), IgE (clone R35-72), CD11b (clone 194 

M1/70), F4/80 (clone 6F12), CD115 (clone T38-320), Ly6G (clone 1A8) and Ly6C (clone AL-195 

21) were purchased from BD Pharmingen; CD45 (clone 30F11) and Gr1 (clone RB6-8C5) were 196 

purchased from Miltenyi Biotec. FcγRIIB was detected using FITC-coupled mAb AT130-2 197 

mIgG1 N297A27. 198 

 199 

Passive Systemic Anaphylaxis. IgG-induced PSA: IgG1, IgG2a or IgG2b anti-TNP antibodies 200 

were administered intravenously at a dose of 500 µg, if not otherwise indicated, in 200 µL 201 

physiological saline, followed by an intravenous challenge with 200 µg of the antigen (TNP-202 

BSA) in physiological saline 16 hours later. IgE-induced PSA: IgE anti-TNP antibodies were 203 

administered intravenously at a dose of 50 µg in 200 µL physiological saline followed by an 204 

intravenous challenge with 500 µg of TNP-BSA in physiological saline 24 hours later. The body 205 

temperature of mice was monitored using a digital thermometer with rectal probe (YSI). 206 

 207 

In vivo blocking and cellular depletion. 300 µg/mouse of PBS- or clodronate-liposomes, 300 208 

µg/mouse of rat IgG2b isotype control or anti-Ly6G, and 30 µg/mouse of anti-CD200R3 mAbs 209 

were injected i.v. 24 hours before challenge. Specificity of cell depletion was evaluated using 210 

flow cytometry on blood, bone marrow, spleen and peritoneum taken from naïve WT mice 24 211 

hours after injection of the depleting antibody or clodronate-liposomes (Examples are shown in 212 

Supplemental Figures 1 & 2). 25 µg/mouse of ABT-491 or 300 µg/mouse of cetirizine were 213 
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injected intravenously 20 minutes or intraperitoneally 30 minutes before challenge, respectively. 214 

200 µg/mouse of anti-FcγRIV mAb were injected intravenously 30 minutes before challenge. 215 

 216 

Flow cytometry analysis. Freshly isolated cells were stained with indicated fluorescently labeled 217 

mAbs for 30 minutes at 4°C. Cell populations were defined as follows: neutrophils 218 

(CD45+/CD11b+/Ly6Ghi/Ly6Cint), monocytes (CD45+/CD11b+/Ly6Glo/Ly6Clo or hi), basophils 219 

(CD45int/DX5+/IgE+); spleen macrophages (CD45+/CD11b+/Gr-1lo/CD115+/F4/80hi); peritoneal 220 

macrophages (CD45+/CD11b+/F4/80+); peritoneal mast cells (CD45+/c-Kit+/IgE+). Expression of 221 

FcγR on indicated cell population is represented as Δ Geomean between specific and isotype 222 

control staining. NB: In Figure 5: 1 or 0.5 mg IgG2b was injected to assess expression on 223 

neutrophils/monocytes or basophils, respectively. 224 

 225 

Surface plasmon resonance analysis. Experiments were performed at 25°C using a ProteOn 226 

XPR36 real-time SPR biosensor (BioRad). Anti-TNP antibodies were immobilized covalently 227 

through amine coupling on the surface of a GLC chip. TNP-BSA was then injected on the chip at 228 

a flow rate of 25 µl.min-1, with contact and dissociation time of 8 minutes each. Binding 229 

responses were recorded in real time as resonance units (RU; 1 RU ≈ 1 pg/mm2). Background 230 

signals were subtracted, and binding rates (kon and koff) and equilibrium constants (Kd) were 231 

determined using the Biaevaluation software (GE Healthcare). 232 

 233 

ELISAs. After the induction of IgG1-, IgG2a-, IgG2b- or IgE-induced PSA, plasma and serum 234 

were collected at 5 minutes and 3 hours later to determine the histamine and mMCP-1 content, 235 

respectively. Histamine and mMCP-1 concentration were determined using commercially 236 

available ELISA kits (Beckman Coulter; eBioscience) following the manufacturer’s instructions. 237 
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Relative binding affinity of IgG1, IgG2a and IgG2b anti-TNP antibodies to TNP-BSA was 238 

determined by ELISA. Briefly, TNP-BSA-coated plates were incubated with dilutions of IgG1, 239 

IgG2a or IgG2b anti-TNP antibodies. After washing, bound anti-TNP IgG were revealed using 240 

the same HRP-coupled anti-mouse IgG and SIGMAFAST OPD solution.  241 

 242 

Mast cell histology. Mouse back skin biopsies were collected 24 hours after the induction of 243 

specific cell depletion and mouse ear skin biopsies were collected 30 minutes after IgE, IgG1, 244 

IgG2a or IgG2b-induced PSA, and embedded in paraffin prior to sectioning. Mast cells in 245 

toluidine blue-stained biopsies were counted visually in at least 15 FOV/mouse and > 6 mice per 246 

treatment (Supplemental Figure 1I).  247 

 248 

Statistics. Data were analyzed using one-way or two-way ANOVA with Tukey’s post-test. A p-249 

value less than .05 was considered significant: (*p < .05; **p < .01; ***p < .001; ****p < .0001). 250 

If not stated otherwise, data are represented as mean +/- SEM. 251 

 252 

  253 



                                                                                                                                       Beutier 

 
 

13 

RESULTS 254 

 255 

FcγRIII dominates anaphylaxis induced by IgG subclasses 256 

 Passive systemic anaphylaxis was induced by an intravenous injection of one of the 257 

different anti-TNP IgG isotypes (IgG1, IgG2a, IgG2b) followed by an intravenous challenge with 258 

TNP-BSA 16 h later. This protocol induces a transient decrease in body temperature that is most 259 

pronounced between 30 and 40 minutes. As reported previously3, 16, 19, 22, 28, all three IgG isotypes 260 

were capable of inducing anaphylaxis in WT mice (Figure 1A-C). In these experimental 261 

conditions IgG1-PSA triggered a maximum temperature loss of ≈2°C, IgG2a-PSA of ≈4°C and 262 

IgG2b-PSA of ≈3°C in WT mice. Using single FcγR-knockout mice we evaluated the 263 

contribution of each of the four mouse FcγRs to these anaphylaxis models. The absence of either 264 

FcγRIV (with the exception of a single time point in IgG2b-PSA) or FcγRI had no significant 265 

impact on IgG-PSA-induced hypothermia, regardless of the subclass of IgG antibodies used to 266 

induce anaphylaxis (Figure 1A-C). The lack of FcγRIII, however, protected mice from 267 

anaphylaxis in all models. Mice lacking the inhibitory receptor FcγRIIB had a significantly more 268 

severe temperature drop than WT mice in both IgG1- and IgG2b-PSA, but showed no significant 269 

difference in the severity of IgG2a-PSA (Figure 1A-C). Even though the three anti-TNP IgG 270 

mAbs used are not switch variants of a unique anti-TNP antibody, they show comparable binding 271 

to TNP-BSA by ELISA, similar affinity (nanomolar range) and dissociation rates (koff) by surface 272 

plasmon resonance analysis, particularly the IgG2a and IgG2b anti-TNP antibodies 273 

(Supplemental Figures 3A, B & C). Of note, untreated FcγR-deficient mice presented modest 274 

variations in FcγR expression levels (Supplemental Figure 5) and leukocyte representation among 275 

blood cells compared to WT mice (Supplemental Figure 6). In particular, a mild lymphopenia in 276 

FcγRIV-/- mice and in FcγRIIB-/- mice (the latter also have a tendency to express higher levels of 277 
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FcγRIII and FcγRIV); and a mild eosinophilia in FcγRIII-/- mice, that also express significantly 278 

more FcγRIIB on neutrophils and Ly6Chi monocytes. Together, we think that these variations do 279 

not explain the drastic phenotypes observed for PSA in FcγRIIB-/- and FcγRIII-/- mice compared 280 

to WT mice. Thus, these data demonstrate that FcγRIII predominates in the induction of IgG1-, 281 

IgG2a- and IgG2b-PSA, and that FcγRIIB specifically dampens anaphylaxis severity in IgG1- 282 

and IgG2b-PSA. 283 

 284 

Basophils, mast cells, monocytes/macrophages and neutrophils contribute differentially to 285 

IgG isotype-dependent anaphylaxis models 286 

 FcγRIII is expressed by all myeloid cells7, 20 and to a lesser extent by NK cells29. One may 287 

therefore anticipate that IgG immune complexes formed in vivo as a consequence of TNP-BSA 288 

injection in anti-TNP sensitized mice would therefore engage FcγRIII on these cells, leading to 289 

cell activation and possibly contributing to anaphylaxis. Basophils, mast cells, neutrophils and 290 

monocyte/macrophages have indeed been reported to contribute to IgG-PSA16, 19, 22, 15, however 291 

the respective contribution of each of these different cell types remains debated2, 28. To 292 

investigate which cell types contribute to PSA induced by different IgG subclasses, we depleted 293 

basophils (anti-CD200R3 mAb), monocytes/macrophages (clodronate-filled liposomes) or 294 

neutrophils (anti-Ly6G) prior to anaphylaxis induction or evaluated anaphylaxis induction in 295 

transgenic mice deficient in certain cell populations.  296 

 Of note, the relatively mild temperature loss in IgG1-PSA in WT mice (Supplemental 297 

Figure 4A), did not allow us to address reliably the contribution of either basophils or neutrophils 298 

to this model of anaphylaxis. We therefore restricted our analysis of the contribution of myeloid 299 

cell populations to IgG2a-PSA and IgG2b-PSA. Antibody-induced basophil depletion or 300 

genetically-induced mast cell and basophil deficiency (Supplemental Figure 2H, Cpa3-Cre; Mcl-301 
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1fl/fl mice25), did not affect IgG2a–PSA (Figure 2A&B), but significantly inhibited IgG2b-PSA 302 

(Figure 2F&G). Monocyte/macrophage depletion (Figure 2C&H) significantly inhibited both 303 

IgG2a- and IgG2b-PSA. The absence of neutrophils, either following antibody-mediated 304 

depletion (Figure 2D&I) or using neutropenic Gfi1-/- mice30 (Figure 2E&J), significantly 305 

inhibited both IgG2a- and IgG2b-PSA. Whereas monocytes/macrophages and neutrophils appear 306 

to contribute to both models of anaphylaxis, basophils and possibly mast cells therefore 307 

contribute specifically to IgG2b-PSA, but not to IgG2a-PSA. 308 

 309 

FcγRIII is down-regulated specifically on neutrophils following IgG2a PSA 310 

Khodoun et al proposed to use the reduced expression level of FcγRIII on mouse 311 

neutrophils as a marker to distinguish IgE- from IgG1-induced PSA, both of which required 312 

priming with an antigen-specific IgG1 and challenge with that antigen31. We therefore wondered 313 

if FcγRIII expression on neutrophils might also be a marker for IgG2a- and IgG2b-PSA. In 314 

addition, reduced expression of FcγR(s) following IgG-PSA may document that a particular cell 315 

population is activated following engagement of its FcγR(s) by IgG-immune complexes during 316 

anaphylaxis. This parameter may thus be used to discriminate cell populations contributing to 317 

anaphylaxis following direct activation by IgG-immune complexes from those contributing 318 

following activation by mediators liberated by IgG-immune complex-activated cells (e.g. 319 

histamine, PAF, leukotrienes and prostaglandins). 320 

Among mouse IgG receptors, only FcγRIIB, FcγRIII and FcγRIV are significantly 321 

expressed on circulating myeloid cells, but not FcγRI7, 32, 33. Of circulating monocyte populations, 322 

“classical” Ly6Chi monocytes are FcγRIIBmed, FcγRIIImed FcγRIV-, whereas “non-classical” 323 

Ly6Clo monocytes are FcγRIIBlo, FcγRIIIlo FcγRIVhi 34. We therefore determined the expression 324 

of FcγRIIB, FcγRIII and FcγRIV before and after IgG2a-PSA induction on neutrophils and 325 
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monocyte subsets. The expression of FcγRIII was down regulated on neutrophils, but not on 326 

Ly6Chi monocytes, during IgG2a-PSA (Figure 3A&D). The expression of FcγRIV was also down 327 

regulated on neutrophils, but not on Ly6Clo monocytes, during IgG2a-PSA (Figure 3B&D). This 328 

was unexpected considering that FcγRIV does not significantly contribute to this PSA model 329 

(Figure 1B). The expression of FcγRIIB, however, remained unchanged on Ly6Chi and Ly6Clo 330 

monocytes and neutrophils (Figure 3C&D), in agreement with the lack of contribution of this 331 

receptor to IgG2a-PSA (Figure 1B). Together these data suggest that neutrophils may directly be 332 

activated through FcγRIII by immune complexes formed during IgG2a-PSA. They also suggest 333 

that neutrophils, but not Ly6Clo monocytes, may be similarly activated through FcγRIV, even if 334 

no contribution of this receptor was identified in this model using FcγRIV-/- mice (Figure 1B).  335 

 336 

Elevated IgG2 antibody doses reveal FcγRIV contribution to IgG2a-PSA and IgG2b-PSA 337 

 In mice, FcγRIV binds monomeric IgG2a and IgG2b. At physiological concentrations of 338 

IgG2a (≈ 2.5 mg/mL) and IgG2b (≈ 1.5 mg/mL) in the serum, FcγRIV may therefore be occupied 339 

in vivo, particularly on circulating neutrophils and monocytes. Nevertheless, the short binding 340 

half-lives of monomeric IgG2a (t1/2 ≈ 3 min) and monomeric IgG2b (t1/2 ≈ 10 min) by FcγRIV, 341 

and their ability to be displaced from this receptor by immune complexes,14 may enable IgG2-342 

immune complexes to interact with FcγRIV during anaphylaxis and therefore contribute to its 343 

induction and/or severity. 344 

 To explore this possibility, we primed FcγRIII-/- mice with various doses of anti-TNP 345 

IgG2a before challenge with TNP-BSA, in order to induce a range of in vivo concentrations of 346 

immune complexes. As expected, the low doses did not trigger FcγRIII-/- mice to develop 347 

anaphylaxis after challenge. Elevated doses (1 or 2 mg), however, enabled significant 348 

temperature drops in FcγRIII-/- mice, comparable to those observed in WT mice primed with 500 349 
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µg IgG2, particularly at the highest dose of IgG2a (2 mg) (Figure 4A). Already at a dose of 1mg 350 

of IgG2, FcγRIII-/- mice developed mild hypothermia in IgG2a-PSA but not in IgG2b-PSA 351 

(Figure 4B&C). Unexpectedly in the same conditions, FcγRIV contributed to IgG2b-PSA that 352 

was not anymore dampened by inhibitory FcγRIIB (Figure 4C). At a dose of 2 mg of IgG, 353 

FcγRIII-/- mice developed hypothermia in both IgG2a-PSA and IgG2b-PSA that was abolished 354 

when FcγRIII-/- mice were pre-treated with a blocking antibody against FcγRIV (Figure 4D&E). 355 

FcγRI did not contribute to either model of IgG2-PSA at an elevated dose (Figure 4B&C). 356 

Furthermore, the expression of FcγRIII was down regulated on neutrophils and basophils, but not 357 

on Ly6Chi monocytes, following IgG2b-PSA (Figure 5A&D). The expression of FcγRIV was 358 

also down regulated on neutrophils, but not on Ly6Clo monocytes (Figure 5B&D). The 359 

expression of FcγRIIB, however, did not change on either neutrophils or Ly6Chi and Ly6Clo 360 

monocytes even though this inhibitory receptor regulates IgG2b-PSA (Figures 1C and 5C&D). 361 

This observation is in agreement with the report by Khodoun et al, reporting that FcγRIIB 362 

expression did not change on neutrophils following IgG1-PSA31. Altogether high doses of 363 

antigen-specific IgG2 reveal the contribution of FcγRIV to IgG2a-PSA and to IgG2b-PSA, and 364 

suggest the direct activation of neutrophils and basophils by IgG2b-immune complexes. 365 

 366 

IgG1 PSA in the absence of inhibitory FcγRIIB  367 

The unexpected differences observed between IgG2a- and IgG2b-PSA induction 368 

pathways prompted us to find a mouse model more sensitive to IgG1-PSA than WT mice, to be 369 

able to evaluate the contribution of cell types and mediators also in this model. Indeed, as 370 

mentioned earlier, WT mice respond poorly to IgG1-PSA (Figure 1A; Supplemental Figure 371 

4A)18. FcγRIIB-/- mice, however, develop a temperature drop of ≈4°C during IgG1-PSA, 372 

comparable to temperature losses observed in WT mice during IgG2a- or IgG2b-PSA (Figure 373 
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1B&C). We therefore analyzed the contribution of cell types to IgG1-PSA in FcγRIIB-/- mice. 374 

Basophil depletion mildly - but significantly - inhibited IgG1-PSA (Figure 6A), in agreement 375 

with previous data19. The depletion of neutrophils had the same effect, although not consistently 376 

as strongly as basophil depletion (Figure 6B and data not shown). Monocyte/macrophage 377 

depletion had only a tendency to ameliorate anaphylaxis that was reproducible but not significant 378 

(Figure 6C). These results suggest that IgG1-PSA relies on basophils and neutrophils, and 379 

possibly also on monocytes. 380 

 381 

PAF and histamine contribute differentially to IgG2a- and IgG2b-PSA 382 

Because cell types contribute differently to IgG2-PSA models (i.e. IgG2a-PSA, 383 

neutrophils and monocytes; IgG2b-PSA, basophils, neutrophils and monocytes), one can expect 384 

that the mediators responsible for clinical signs also may differ between them. Platelet activating 385 

factor (PAF) has been shown to be responsible for anaphylactic reactions that required basophil19, 386 

neutrophil16, 24 and/or monocyte/macrophage22 activation, whereas histamine has been shown to 387 

be responsible for mast cell- and basophil-dependent anaphylaxis35, 36. Neutrophils are the main 388 

producers of PAF37, whereas mast cells and basophils are the main producers of histamine38, 39. 389 

We therefore analyzed the relative contribution of these two mediators to the three models of 390 

PSA using the histamine-receptor 1 antagonist cetirizine and the PAF-R antagonist ABT-491. 391 

Surprisingly, histamine-receptor 1 antagonist cetirizine significantly inhibited IgG1-PSA whereas 392 

PAF-R antagonist ABT-491 had no significant effect, in opposition with previous data19. The 393 

combination of both antagonists had an additive effect, and almost abolished IgG1-PSA (Figure 394 

7A). These results obtained in FcγRIIB-/- mice were confirmed in WT mice (Figure 7A). Whereas 395 

cetirizine mildly reduced hypothermia in IgG2a-PSA, it significantly inhibited IgG2b-PSA. ABT-396 

491 mildly reduced hypothermia in IgG2a-PSA, but had no significant effect on IgG2b-PSA 397 
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(Figure 7B&C). The combination of cetirizine and ABT-491, however, almost abolished both 398 

IgG2a- and IgG2b-PSA. Elevated plasma histamine levels were detected 5 minutes post 399 

challenge in all three IgG-PSA models, and particularly high levels were observed in mice 400 

undergoing IgE-PSA (as a positive control) or undergoing IgG2a-PSA (Figures 7D&E). This 401 

latter finding is surprising as IgG2a-PSA is unaffected by the absence of both mast cells and 402 

basophils that are considered major sources of histamine. Mast cell protease-1 (mMCP-1), which 403 

is released upon activation of mucosal mast cells, could be detected in the serum of mice 404 

undergoing IgE-PSA, but not in those undergoing any one of the three models of IgG-PSA, 3 405 

hours post-PSA induction (Figure 7F). Collectively these results suggest that histamine 406 

predominantly contributes to IgG1- and IgG2b-PSA, whereas histamine and PAF, together, are 407 

necessary for IgG2a-PSA. 408 

 409 

 410 

 411 

  412 
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DISCUSSION 413 

Our work suggests that the activating IgG receptor FcγRIII predominantly contributes to 414 

IgG-dependent passive systemic anaphylaxis, whether induced by IgG1, IgG2a or IgG2b 415 

antibodies. A contribution of the activating IgG receptor FcγRIV was only identified when using 416 

very high amounts of IgG2 antibodies, whereas the activating IgG receptor FcγRI played no 417 

detectable role. Remarkably, the inhibitory IgG receptor FcγRIIB controlled the severity of IgG1- 418 

and IgG2b-, but not IgG2a-induced anaphylaxis. The ability of FcγRIIB to inhibit a given model 419 

of IgG-induced anaphylaxis correlated with the contribution of basophils and histamine to that 420 

model. Indeed, basophils, and possibly mast cells, contributed with neutrophils to IgG1-PSA, and 421 

with neutrophils and monocytes to IgG2b-PSA, but not to IgG2a-PSA that appeared to depend 422 

entirely on neutrophils and monocytes/macrophages. Altogether our data propose that the three 423 

IgG subclasses IgG1, IgG2a and IgG2b induce three qualitatively different pathways of 424 

anaphylaxis that are nevertheless triggered primarily by a single IgG receptor, FcγRIII.  425 

 426 

 FcγRIII is a low-affinity receptor for IgG1, IgG2a and IgG2b, whereas FcγRI is a high-427 

affinity receptor for IgG2a, and FcγRIV is a high affinity receptor for IgG2a and IgG2b. One 428 

would therefore assume that FcγRIII predominates in IgG1-PSA, FcγRI and FcγRIV in IgG2a-429 

PSA, and FcγRIV in IgG2b-PSA. However, our data from FcγRIII-/- mice indicate that this 430 

receptor predominates in all three models. Notably, we found an increased expression of FcγRIIB 431 

on neutrophils and Ly6Chi monocytes in FcγRIII-/- mice, which could mask a potential 432 

contribution of FcγRIV in these conditions. In support of the notion that FcγRIII predominates 433 

IgG-PSA induction, an alternative model of PSA induced by sensitization and challenge with 434 

goat antibodies was found to be driven by FcγRIII22 and blocking antibodies against FcγRIII 435 

were protective in a model of PSA induced by IgG immune complexes16. In addition, IgG2a-PSA 436 
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in FcγRIIB-/- mice was abolished following injection of anti-FcγRIIB/III blocking mAbs5. 437 

FcγRIII is the only activating IgG receptor in the mouse that does not bind an IgG subclass with 438 

high affinity, thus it remains unoccupied by monomeric IgG and accessible for binding of 439 

immune complexes. This is theoretically not the case for FcγRI and FcγRIV, which at 440 

physiological serum concentrations of IgG2a (≈ 2.5 mg/mL) and IgG2b (≈ 1.5 mg/mL), are likely 441 

occupied in vivo, particularly on circulating cells. Of note, C57Bl/6 mice produce IgG2c, but not 442 

IgG2a antibodies, whose amino acid sequence varies by about 15%. Experiments performed in 443 

Balb/c mice that express endogenous IgG2a (but no IgG2c) gave similar results regarding the 444 

contribution of basophils, neutrophils and monocytes to IgG2a (Supplemental Figure 4B), 445 

indicating that IgG2a and IgG2c sequence variations probably do not affect the mechanisms of 446 

anaphylaxis induction that we describe herein. 447 

 Adult female mice of 20 g, as used in this study, possess a circulating blood volume of 448 

1.4-1.5 mL. Injection of 500 µg antibody thus corresponds to ≈330 µg/mL of circulating 449 

antibody, injection of 1 mg to ≈660 µg/mL, and injection of 2 mg to ≈1,3 mg/mL. In cases of 450 

anaphylaxis the circulating concentration of allergen-specific IgG has not been evaluated due to 451 

lack of testing and appropriate controls (i.e. monoclonal anti-allergen antibodies); although we 452 

have reported high circulating antigen-specific IgG levels in an autoimmune model of arthritis33. 453 

It seems rather unlikely that patients suffering from anaphylaxis possess such elevated circulating 454 

levels of IgG anti-allergen as in the mice receiving the high doses we used in this study. 455 

Nevertheless, our results in high-dose IgG2a- and IgG2b-PSA demonstrate that FcγRIV can by 456 

itself (i.e. in the absence of FcγRIII) trigger anaphylaxis. Similar results have been obtained in 457 

mice expressing only FcγRIV: “FcγRIV-only” mice developed IgG2b-PSA after injection of pre-458 

formed IgG2b immune complexes and also upon injection of polyclonal anti-sera followed by a 459 

challenge with the antigen16. We reported previously that IgG2b-PSA triggered by the injection 460 
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of preformed IgG2b-immune complexes in WT mice was abolished following injection of anti-461 

FcγRIV blocking mAb 9E9. This contrasts with the findings of the current study, in which we 462 

show that FcγRIII is the major activating receptor in all models of IgG-PSA, and FcγRIV 463 

contributes only at high antibody concentrations. Two hypotheses may explain these discrepant 464 

results: i) the injection of preformed IgG2b-immune complexes leads to an immediate circulating 465 

bolus of immune complexes, which are similarly formed only after injection of high amounts of 466 

IgG2b and antigen, thus triggering FcγRIV; 2) as recently reported40 mAb 9E9 may not only 467 

block FcγRIV through its Fab portions, but also FcγRIII via its Fc portion once 9E9 is bound to 468 

FcγRIV. In our view, it is likely that a combination of these mechanisms reconcile our previous 469 

and herein described results, and suggest that IgG2b-PSA induced following injection of 470 

preformed IgG2b-immune complexes relies rather on both FcγRIII and FcγRIV than on FcγRIV 471 

alone as we reported previously16. Together this body of evidence supports the notion that 472 

FcγRIV is capable of triggering cell activation leading to anaphylaxis, yet in restricted conditions, 473 

i.e. in the absence/blockade of FcγRIII or in presence of large amounts of IgG2a and/or IgG2b 474 

antibodies. 475 

 476 

 The differential contribution of FcγRs to IgG-PSA may rely on their respective expression 477 

patterns on myeloid cells. Indeed, FcγRI is not32, 33 or only barely34 expressed on circulating 478 

monocytes, and its expression is largely restricted to tissue-resident macrophages. The level of its 479 

expression on cells reported to contribute to anaphylaxis (i.e. monocytes in this case) may 480 

therefore not suffice to induce their activation. This notion is supported by the absence of any 481 

detectable effect of FcγRI deficiency in IgG2-PSA that we report in this study, even at high doses 482 

of IgG2 antibodies. FcγRIII, however, is expressed on all myeloid cells7 and moreover at 483 

comparably high levels on all those cell types that have been reported to contribute to 484 
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anaphylaxis; basophils, monocytes and neutrophils20. This pattern of cellular expression may 485 

explain its predominant contribution to all models of IgG-induced anaphylaxis. FcγRIV is 486 

expressed on neutrophils and Ly6Clo monocytes. It remains unclear, however, if Ly6Clo, Ly6Chi 487 

or both monocyte subsets contribute to anaphylaxis. FcγRIV could contribute to PSA induction in 488 

exceptional conditions (FcγRIII deficiency or high IgG2 antibody doses). The lack of FcγRIV 489 

contribution in classical conditions of PSA may suggest that its expression level is not sufficient 490 

in WT mice. Notably, it has been reported previously that particular FcγR deficiencies modify the 491 

expression levels of other FcγRs. In particular FcγRIII-/- mice, but not FcγRI-/- mice, presented a 492 

significant increase in FcγRIV expression levels on neutrophils16, 41, 42 and a tendency for 493 

increased expression on Ly6Clo monocytes (Supplemental Figure 5B). This could explain why 494 

the contribution of FcγRIV to IgG2-PSA becomes apparent in FcγRIII-/- mice. FcγRIV-/- mice did 495 

not, conversely, present alterations of FcγRIII expression on neutrophils or Ly6Chi monocytes 496 

compared to WT littermates (Supplemental Figure 5A). FcγRIIB-/- mice expressed significantly 497 

higher levels of FcγRIII and FcγRIV on neutrophils and increased FcγRIII on Ly6Chi monocytes 498 

that may, altogether, contribute to their higher susceptibility to anaphylaxis induction 499 

(Supplemental Figure 5A&B). 500 

 501 

 The contribution of a rather restricted subset of myeloid cells to these (and other) models 502 

of anaphylaxis2, 3 appears to be determined by at least two factors: their capacity to release 503 

anaphylactogenic mediators (e.g. histamine or PAF) and their expression of sufficient levels of 504 

activating IgG receptors. Mast cells and basophils release histamine, and neutrophils, monocytes/ 505 

macrophages and basophils release PAF, upon FcγR-triggering. Other mediators may induce 506 

anaphylaxis or contribute to its severity, among them lipid mediators like prostaglandins, 507 

thromboxanes and leukotrienes. Some of these have indeed been reported to trigger 508 
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bronchoconstriction and an increase in vascular permeability43. The release of such mediators is 509 

sufficiently rapid to coincide with the celerity of hypothermia, which is detectable within minutes 510 

after allergen challenge. It is therefore surprising that eosinophils do not contribute to IgG-PSA, 511 

as they express high levels of activating FcγRIII and FcγRIIB20 (but no FcγRI or FcγRIV), and 512 

are capable of releasing Leukotriene C4, Prostaglandin E2, thromboxane and PAF upon 513 

activation43. Though eosinophils represent relatively low numbers among blood cells 514 

(≈2x105/mL), this is an unlikely explanation because basophils are significantly less numerous 515 

(≈5x104/mL) but do contribute to anaphylaxis models. Most revealingly, it has been reported that 516 

eosinophils do not release PAF following IgG-dependent activation44. Whether eosinophils 517 

produce other potentially anaphylactogenic mediators following IgG-immune complex activation 518 

has not been investigated, but the lack of such an effect appears the most reasonable hypothesis 519 

to explain why eosinophils have not been found to contribute to IgG-induced anaphylaxis. 520 

We investigated the contribution of neutrophils and monocytes to IgG-PSA models using 521 

depletion approaches. Ly6G+ cell depletion using NIMP-R14 resulted in an efficient depletion of 522 

neutrophils in the blood and the spleen (Supplemental Figures 1B&2B). The same treatment 523 

resulted only in a partial depletion in the bone marrow, in which a proportion of Ly6G+ cells are 524 

masked from fluorescent anti-Ly6G staining, but not depleted by NIMP-R14 treatment (refer to 525 

bone marrow panels in Supplemental Figures 1C,D & 2C,D,I). Importantly, we found that NIMP-526 

R14 depletion has a significant impact on monocyte populations in the blood and to some extent 527 

in the spleen. This should be taken into consideration when interpreting the results of NIMP-R14 528 

depletion experiments. All IgG-PSA models were ameliorated following NIMP-R14 depletion, 529 

but also when monocytes/macrophages were targeted using clodronate liposomes. Intravenous 530 

injection of clodronate liposomes resulted in a significant depletion of monocytes from the blood 531 

and monocytes/macrophages from the spleen and BM, but not from the skin (data not shown) and 532 
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peritoneum (Supplemental Figures 1&2, as reported26), and to a significant increase in blood 533 

leukocyte counts and particularly of neutrophils (Supplemental Figures 1&2). Thus the anti-534 

Ly6G and the clodronate liposome treatments alter also the monocytes and neutrophil 535 

compartment, respectively, but reduced hypothermia in the three models of IgG-PSA studied. 536 

Constitutive deficiency in neutrophils, studied using Gfi1-/- mice, confirmed the role of 537 

neutrophils in IgG2a- and IgG2b-PSA models. Both neutrophils and monocytes can therefore be 538 

considered to contribute to IgG-induced anaphylaxis in mice, whether dependent on IgG1, IgG2a 539 

or IgG2b. The role of macrophages in the different IgG-PSA models remains to be investigated 540 

more deeply, as clodronate liposomes injected intravenously efficiently targeted macrophages in 541 

the spleen, but not in other tissues like peritoneum or skin, and thus do not allow conclusions on 542 

their contribution.   543 

 544 

 The contribution of basophils to models of anaphylaxis has been a recent matter of 545 

debate. Tsujimura et al reported that depletion of basophils using anti-CD200R3 (clone Ba103) 546 

monoclonal antibodies strongly inhibited IgG1-PSA and rescued mast cell-deficient mice from 547 

active anaphylaxis19. Ohnmacht et al, however, found that basophil-deficient Mcpt8cre mice 548 

demonstrated slightly decreased but significant hypothermia in response to IgG1-PSA (induced 549 

with the same antibody clone) when compared to WT mice45. More recently, Reber et al. 550 

reported that peanut-induced anaphylaxis was reduced following Diphtheria toxin injection in 551 

Mcpt8DTR mice that selectively depletes basophils, and confirmed that basophil depletion using 552 

anti-CD200R3 mAbs inhibited anaphylaxis36. Moreover, Khodoun et al found a contribution of 553 

basophils to anaphylaxis mortality, but not to hypothermia, in a model of IgG2a-PSA following 554 

anti-CD200R3 mAb injection5. It therefore appears that differences between inducible basophil 555 

depletion using specific antibodies or toxin administration and a constitutive lack of basophils, 556 
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possibly leading to compensatory mechanisms during development of these mice, may account 557 

for the divergent results observed. Intriguingly however, basophils have been reported to be 558 

resistant to IgG-immune complex triggering ex vivo due to dominant inhibition by FcγRIIB over 559 

activation by FcγRIII20. In this study, we report that both basophil depletion following anti-560 

CD200R3 mAb (Ba103) injection or constitutive deficiency of basophils and mast cells in Cpa3-561 

Cre; Mcl-1fl/fl mice inhibits IgG2b-PSA but not IgG2a-PSA, confirming a role for basophils (and 562 

potentially mast cells) to specific IgG-PSA models. Of note, Ba103 efficiently depleted basophils 563 

from the blood and partially from the spleen and the bone marrow, but had no significant effect 564 

on mast cells in the peritoneum or skin (Supplemental Figures 1A&1E and 2A&2E). The 565 

difference in the ability of basophils to respond to IgG-immune complex triggering in vitro and 566 

the various in vivo models may be explained by functional alterations during basophil purification 567 

or a requirement for co-stimulation by other cells or their products that are present in vivo, but not 568 

ex vivo, for basophils to respond to IgG-immune complexes. Our results using Cpa3-Cre; Mcl-569 

1fl/fl mice indicate that mast cells were not necessary for IgG2a-PSA. We could not formally 570 

define their role in IgG2b-PSA as basophil depletion and deficiency in basophils and mast cells 571 

lead to similar reduction in IgG2b-PSA. Notably, increased plasma histamine levels, but no 572 

increase in mMCP-1 levels could be detected, suggesting that mucosal mast cells were not 573 

activated during IgG-PSA. Intriguingly, however, dermal mast cells displayed a degranulated 574 

morphology 30 minutes after challenge in all IgG PSA models tested (Supplemental Figure 7). 575 

Whether their degranulation is a cause or a consequence of anaphylaxis remains however elusive. 576 

 577 

 The ability of cells expressing activating FcγRs to respond to IgG-immune complexes has 578 

been proposed to be regulated by co-expression of FcγRIIB46. FcγRIIB-/- mice develop increased 579 

hypersensitivity and anaphylactic reactions to IgG1-PSA (this report and16, 18). Our results further 580 
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demonstrate that FcγRIIB inhibits IgG2b-, but not IgG2a-PSA. This latter finding is supported by 581 

results from Khodoun et al5: these authors proposed that the lack of this inhibitory receptor may 582 

lead to increased spontaneous formation of immune complexes in FcγRIIB-/- mice, that could 583 

compete with IgG2a-immune complexes. In light of our results comparing IgG1-, IgG2a- and 584 

IgG2b-PSA, we rather propose that the significantly lower affinity of inhibitory FcγRIIB for 585 

IgG2a (KA = 4.2 105 M-1) than for IgG1 (KA = 3.3 106 M-1) and IgG2b (KA = 2.2 106 M-1) is the 586 

determining factor (Table 1). Another factor may be the variance in expression of FcγRIIB on 587 

circulating myeloid cells: basophils > monocytes > eosinophils >> neutrophils20. Whereas the 588 

exact numbers of expressed activating FcγRIII and inhibitory FcγRIIB per cell remain unknown, 589 

flow cytometric analysis allowed the estimation of their relative expression: indeed, the ratio 590 

FcγRIII/FcγRIIB is higher on neutrophils than on monocytes and basophils. These differential 591 

expression levels may thus explain why neutrophils contribute to anaphylaxis, as the receptor 592 

balance is in favor of the activating receptor. Strikingly, FcγRIIB is co-expressed only with 593 

FcγRIII on basophils and Ly6Chi monocytes, whereas it is co-expressed with FcγRIII and FcγRIV 594 

on neutrophils and Ly6Clo monocytes34. Contribution of a given cell type to anaphylaxis may 595 

therefore be favored when inhibitory FcγRIIB is required to dampen the stimulatory potential of 596 

two activating IgG receptors instead of one. This concept extends to IgG1-immune complexes 597 

that only engage one activating receptor, FcγRIII. 598 

 599 

  Our results on the contribution of mouse IgG receptors, cells and mediators in IgG-600 

induced anaphylaxis can potentially be translated to human IgG-mediated anaphylaxis, e.g. 601 

following intravenous IgG or therapeutic IgG antibody administration. Indeed, even though IgG 602 

receptors are different in the two species, we have already reported that human FcγRI (hFcγRI) 603 

and human FcγRIIA (hFcγRIIA) can induce anaphylaxis when expressed under the control of 604 
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their own promoter in transgenic mice23, 24. hFcγRI (CD64) is the equivalent of mouse FcγRI 605 

whereas hFcγRIIA (CD32A) can be regarded as the equivalent of mouse FcγRIII, and hFcγRIIIA 606 

(CD16A) the equivalent of mouse FcγRIV7. hFcγRIIA, like mouse FcγRIII, is expressed on all 607 

myeloid cells and could therefore act as the principal IgG receptor responsible for anaphylaxis in 608 

humans. hFcγRIIB, the equivalent of mouse FcγRIIB, is scarcely expressed on most circulating 609 

myeloid cells47 except for its high expression on basophils20, suggesting that among myeloid cells 610 

only human basophils are highly sensitive to hFcγRIIB-mediated inhibition. In contrast to mouse 611 

FcγRI, hFcγRI is constitutively expressed on circulating monocytes and inducibly on neutrophils, 612 

allowing this receptor to induce anaphylaxis24. The binding of human IgG subclasses to hFcγRs 613 

differs strikingly from the binding of mouse IgG subclasses to mouse FcγRs. Noticeably, the 614 

affinity of hFcγRIIB for any human IgG subclass is the lowest among human IgG-hFcγR 615 

interactions. For example, human IgG1, the equivalent of mouse IgG2a, is bound by all activating 616 

hFcγRs (KA > 106 M-1) with at least a ten-fold higher affinity than by inhibitory hFcγRIIB (KA ≈ 617 

105 M-1)48. If we consider the translation of our results obtained in the mouse to human IgG-618 

induced anaphylaxis, one could anticipate that hFcγRIIB-mediated inhibition of IgG-induced 619 

anaphylaxis is inefficient in human neutrophils and monocytes, and efficient only in human 620 

basophils for which the elevated hFcγRIIB expression may compensate for the low-affinity of 621 

this receptor for human IgG subclasses. Certainly, FcγR-engagement by IgG immune complexes 622 

on human basophils could not trigger any detectable basophil activation in vitro20, similar to the 623 

results we reported for mouse basophil activation. Our data altogether propose that the 624 

differential expression of inhibitory FcγRIIB on myeloid cells and its differential binding of IgG 625 

subclasses control the contribution of basophils, neutrophils and monocytes to IgG-dependent 626 

anaphylaxis, thus revealing novel complexities in the mechanism of regulation of cell 627 

populations, and therefore their contribution to IgG-mediated reactions in vivo.  628 
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TABLES 790 

 791 

Table 1: Affinities of mouse FcγR-IgG subclass interactions (KA values in M-1) 792 

 793 

 IgG1 IgG2a IgG2b IgG3 

FcγRI - 1x108 1x105 (+) 

FcγRIIB 3.3x106 4.2x105 2.2x106 - 

FcγRIII 3.1x105 6.8x105 6.4x105 - 

FcγRIV - 2.9x107 1.7x107 - 

“-”, no detectable affinity. 794 

“(+)”, under debate11, 12. 795 

Data compiled from 17, 21 796 

 797 

  798 
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FIGURE LEGENDS 799 

 800 

Figure 1. FcγRIII dominates in IgG-PSA models. Mice injected with anti-TNP mAbs were 801 

challenged with TNP-BSA and body temperatures monitored. (A) IgG1-, (B) IgG2a- or (C) 802 

IgG2b-induced PSA in indicated mice (n≥3/group). Data are representative of at least two 803 

independent experiments (A: n=2; B: n=3; C: n=2). Significant differences compared to the WT 804 

group are indicated. 805 

 806 

Figure 2. Basophils, mast cells, monocytes/macrophages and neutrophils contribute 807 

differentially to IgG-PSA models. Indicated mice (n≥8/group) were injected with IgG2a (A-E) 808 

or IgG2b (F-J) anti-TNP mAbs, challenged with TNP-BSA and body temperatures were 809 

monitored. WT mice (n=8/group) were pretreated as indicated (A, C-D, F, H-I). Lipo-PBS: PBS 810 

liposomes; Lipo-Cd: clodronate liposomes. Data are pooled from at least two independent 811 

experiments. 812 

 813 

Figure 3. Reduced expression of FcγRIII and FcγRIV, but not FcγRIIB, on neutrophils 814 

following IgG2a-PSA. (A) FcγRIII, (B) FcγRIV and (C) FcγRIIB expression on blood cells from 815 

WT mice (A&B: n=11/group; C: n≥6/group) left untreated, injected with IgG2a anti-TNP mAbs, 816 

or injected with IgG2a anti-TNP mAbs and challenged with TNP-BSA. (D) Compilation of Δ 817 

Geomean +/- SEM data from A-C. 818 

 819 

Figure 4. High doses of IgG2 antibodies reveal FcγRIV contribution to IgG2-PSA. (A) PSA 820 

in indicated mice injected with various doses of IgG2a anti-TNP mAbs (n=2/group). (B-E) PSA 821 
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in indicated mice (B&C: n=8/group; D&E: n≥3/group) injected with indicated doses of anti-TNP 822 

mAbs. Data are pooled from two independent experiments. Significant differences compared to 823 

the untreated WT group are indicated. 824 

 825 

Figure 5. Expression of FcγRs on myeloid cells following IgG2b-PSA. (A) FcγRIII (left: 826 

n=8/group, right: n=3/group), (B) FcγRIV (n=8/group) and (C) FcγRIIB expression (n≥6/group) 827 

on cells from WT mice (n=8/group) left untreated, injected with IgG2b anti-TNP mAbs, or 828 

injected with IgG2b anti-TNP mAbs and challenged with TNP-BSA. (D) Compilation of Δ 829 

Geomean +/- SEM data from A-C. 830 

 831 

Figure 6. Cell contributions to IgG1-PSA in the absence of inhibitory FcγRIIB. FcγRIIB-/- 832 

mice were pretreated as indicated, then injected with IgG1 anti-TNP mAbs, challenged with 833 

TNP-BSA and central temperatures were monitored (A: n=8/group; B: n=7/group; C: 834 

n=10/group). Data are represented as mean +/- SEM. Data are pooled from two independent 835 

experiments. 836 

 837 

Figure 7. Contributions of histamine and PAF to IgG-PSA. Body temperatures of pretreated 838 

mice during (A) IgG1-PSA in FcγRIIB-/- (n=6/group) or WT mice (n=4/group), (B) IgG2a-PSA, 839 

(C) IgG2b-PSA or (D) IgE-PSA in WT mice (n≥7/group). (E) Histamine and (F) mMCP-1 840 

concentrations post-PSA (n=3/group). Data are representative of at least two independent 841 

experiments, except for A&C (pooled from two independent experiments). 842 

  843 

  844 
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Supplemental Figure 1. Effects of depletion strategies on myeloid cell populations – Cell 1 

counts. WT mice were treated with indicated reagents. 24 hours after injection, counts of specific 2 

cell populations were determined by flow cytometry (A-G) or histology (I&J); leukocyte counts 3 

in total blood were measured with an automatic blood analyzer (H). Counts of (A) basophils, (B) 4 

neutrophils, (C) Ly6Chi monocytes and (D) Ly6Clo monocytes in blood, spleen and bone marrow, 5 

(E) peritoneal mast cells (F) peritoneal macrophages and (G) splenic macrophages. (I) 6 

Representation of a toluidine blue-stained back skin section with two mast cells (arrows). (J) 7 

Counts of mast cells/mm2 in the dermis of WT mice. (A-H) Figures show one of three 8 

independent experiments. Individual measurements and mean +/- SEM are represented. Iso = 9 

isotype rat IgG2b, Ba103 = anti-CD200R3 mAb, NIMP = anti-Ly6G mAb, PBS = PBS 10 

liposomes, CS= clodronate liposomes. 11 

 12 

Supplemental Figure 2. Effects of depletion strategies on myeloid cell populations – 13 

Frequencies. WT mice were treated with indicated reagents. 24 hours after injection, percentages 14 

of specific cell populations among CD45+ cells were determined by flow cytometry (A-H): (A) 15 

basophils, (B) neutrophils, (C) Ly6Chi monocytes and (D) Ly6Clo monocytes in blood, spleen and 16 

bone marrow, (E) peritoneal mast cells (F) peritoneal macrophages and (G) splenic macrophages. 17 

(H) Percentages of peritoneal mast cells (pMC FcεRI+/cKit+) and blood basophils (FcεRI+/DX5+) 18 

in Cpa3-Cre; Mcl-1fl/fl mice and in Cpa3-Cre; Mcl-1+/+ mice. (I) Left: Percentages of YFP-19 

positive cells in MRP8-Cre; Rosa26-YFP mice. Right: Effect of NIMP-R14 injection on 20 

neutrophils (percentages and counts CD45+/YFP+/Ly6Cneg/CD115neg cells) in blood, spleen and 21 

bone marrow of MRP8-Cre; Rosa26-YFP mice. (A-H) Figures show corresponding percentages 22 

to cell counts shown in Supplemental Figure 1 and display values for individually measured mice 23 
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2 

and the mean and SEM. Iso = isotype rat IgG2b, PBS = PBS liposomes, CS= clodronate 24 

liposomes. 25 

 26 

Supplemental Figure 3. Relative affinity of IgG1 (TIB191), IgG2a (Hy1.2) and IgG2b 27 

(GORK) anti-TNP to TNP-BSA. (A) ELISA anti-TNP. Comparison of binding capacity of 28 

TIB 191, Hy1.2 or GORK to immobilized TNP-BSA. Data are represented as mean +/- SEM and 29 

representative of results from five independent experiments. (B) Surface plasmon resonance 30 

analysis. Comparison of binding affinity TNP-BSA to immobilized TIB 191, Hy1.2 or GORK 31 

clones. (C) The table recapitulates the kon, koff and Kd for each condition. 32 

 33 

Supplemental Figure 4. IgG1-PSA induces mild hypothermia in WT mice and 34 

monocytes/macrophages and neutrophils contribute to IgG2a-PSA in Balb/c mice. (A) WT 35 

mice were injected with IgG1 anti-TNP mAbs, challenged with TNP-BSA and body temperatures 36 

were monitored. PSA in mice left untreated, injected with anti-Ly6G or anti-CD200R3 37 

(n=4/group). (B) Balb/c mice were left untreated, injected with anti-Ly6G, anti-CD200R3 38 

(n=6/group), lipo-PBS (n=6/group) or lipo-Cd (n=6/group) prior to IgG2a-PSA induction. Body 39 

temperatures were monitored. Data are represented as mean +/- SEM. Data are pooled from two 40 

independent experiments. Significant differences compared to the untreated group are indicated. 41 

 42 

Supplemental Figure 5. FcγR expression in FcγR-deficient mice. Expression of (A) FcγRIII,  43 

(B) FcγRIV and (C) FcγRIIB is represented as the ΔGeomean of FcγR-specific staining 44 

compared to isotype control staining from blood leukocytes collected from untreated WT, FcγRI-45 

/-, FcγRIIB-/-, FcγRIII-/- and FcγRIV-/- mice (n=4/group). Data are represented as mean +/- SEM.  46 

 47 
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Supplemental Figure 6. Blood leukocyte numbers in FcγR-deficient mice. Leukocyte 48 

populations were assessed using an ABC Vet automatic blood analyzer (Horiba ABX) from 49 

blood collected from untreated WT, FcγRI-/-, FcγRIIB-/-, FcγRIII-/- and FcγRIV-/- mice 50 

(n=4/group). “Granulocytes” represent mainly neutrophils (as judged by their size and 51 

granularity). Data are represented as mean +/- SEM; each point represents one mouse.  52 

 53 

Supplemental Figure 7. Mast cell degranulation after IgG1, IgG2a and IgG2b-induced PSA. 54 

WT mice were injected with IgE, IgG1, IgG2a, IgG2b anti-TNP mAbs or left untreated (n=3 for 55 

all groups) and challenged with TNP-BSA. Mouse ear skin biopsies were collected 30 minutes 56 

after TNP-BSA injection. Representation of a toluidine blue-stained ear skin sections with one 57 

mast cell (indicated by an arrow) for one mouse of each group of mice. 58 

 59 
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kon (105M-1s-1) koff (10-4 s-1) Kd (nM) 
TIB 191 (IgG1) 0.97 (± 0.29) 2.27 (± 0.32) 2.34 (± 0.33) 
Hy1.2 (IgG2a) 1.43 (± 0.43) 1.08 (± 0.30) 0.76 (± 0.31) 
GORK (IgG2b) 2.15 (± 0.65) 1.19 (± 0.24) 0.55 (± 0.20) 

Supplemental Figure 3  
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