
HAL Id: pasteur-01387237
https://pasteur.hal.science/pasteur-01387237v1

Submitted on 25 Oct 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Pathogenesis of skin ulcers: lessons from the
Mycobacterium ulcerans and Leishmania spp. pathogens

Laure Guenin-Macé, Reid Oldenburg, Fabrice Chrétien, Caroline Demangel

To cite this version:
Laure Guenin-Macé, Reid Oldenburg, Fabrice Chrétien, Caroline Demangel. Pathogenesis of skin ul-
cers: lessons from the Mycobacterium ulcerans and Leishmania spp. pathogens. Cellular and Molec-
ular Life Sciences, 2014, 71 (13), pp.2443 - 2450. �10.1007/s00018-014-1561-z�. �pasteur-01387237�

https://pasteur.hal.science/pasteur-01387237v1
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


	 1	

Invited	review	for	Cellular	and	Molecular	Life	Sciences	(CMLS)	

	

	

	

	

Pathogenesis	 of	 skin	 ulcers:	 lessons	 from	 the	Mycobacterium	 ulcerans	 and	

Leishmania	spp	pathogens	

	

	

Laure	Guenin-Macé1,2,	Reid	Oldenburg1,2,	Fabrice	Chrétien3	and	Caroline	Demangel1,2*	

	

Institut	Pasteur,	25	Rue	du	Dr	Roux,	75724	Paris	Cedex	15,	France	

1	Unité	d’Immunobiologie	de	l’Infection	

2	CNRS	URA1961	

3	Unité	d'Histopathologie	Humaine	et	Modèles	Animaux	

	

*	Correspondence:	demangel@pasteur.fr;	Tel	(33)	1	45	68	84	49;	Fax	(33)	1	40	61	35	83.		

	

	

Running	title:	Molecular	bases	of	skin	ulceration	

	

	



	 2	

Abstract	

	

Skin	ulcers	 are	most	 commonly	due	 to	 circulatory	or	metabolic	disorders	 and	are	a	major	

public	health	concern.	 In	developed	countries,	chronic	wounds	affect	more	than	1%	of	the	

population	 and	 their	 incidence	 is	 expected	 to	 follow	 those	 observed	 for	 diabetes	 and	

obesity.	In	tropical	and	subtropical	countries,	an	additional	issue	is	the	occurrence	of	ulcers	

of	infectious	origins	with	diverse	aetiologies.	While	the	severity	of	cutaneous	Leishmaniasis	

correlates	 with	 protective	 immune	 responses,	 Buruli	 ulcers	 caused	 by	 Mycobacterium	

ulcerans	develop	in	the	absence	of	inflammation.	Based	on	these	two	examples,	this	review	

aims	 to	demonstrate	how	studies	on	microorganism-provoked	wounds	can	provide	 insight	

into	the	molecular	mechanisms	controlling	skin	integrity.	We	highlight	the	potential	interest	

of	 a	mouse	model	 of	 non-inflammatory	 skin	ulceration	 caused	by	 intradermal	 injection	of	

mycolactone,	 an	 unusual	 lipid	 toxin	 with	 ulcerative	 and	 immunosuppressive	 properties	

produced	by	M.	ulcerans.		

	

	

Keywords:	 Skin,	 infection,	 cutaneous	 Leishmaniasis,	 Leishmania	 spp,	 Buruli	 ulcer,	

Mycobacterium	ulcerans,	mycolactone.	
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Introduction	

	

Chronic	 wounds	 can	 result	 from	 a	 variety	 of	 causes,	 such	 as	 venous	 stasis,	 arterial	

insufficiency,	diabetes,	inflammation	and	cancer.	A	common	complication	of	their	treatment	

is	bacterial	colonization,	which	causes	significant	morbidity	and	elevates	considerably	health	

care	costs.	The	expenditures	for	wound	care	are	estimated	$15	billion	per	year	today,	and	

they	are	expected	 to	 rise	with	 the	globalization	of	diabetes	 1.	Diabetes	affects	285	million	

patients	 worldwide,	 two-thirds	 of	 which	 occur	 in	 low-	 to	 middle-income	 countries.	 It	 is	

estimated	that	15%	of	diabetic	patients	will	develop	a	diabetic	foot	ulcer,	of	which	50%	(21	

million	 patients)	 will	 become	 infected.	 In	 addition	 to	 this	 modern	 crisis,	 subtropical	 and	

tropical	countries	have	to	face	the	burden	imposed	by	ulcerative	pathogens.	Both	primarily	

and	 secondarily	 infected	 wounds	 often	 result	 in	 failure	 to	 heal,	 by	 mechanisms	 that	 are	

diverse	 and	 highly	 dependent	 on	 the	 infectious	 agent	 2.	 Based	 on	 the	 description	 of	 the	

pathogenic	 processes	 employed	 by	M.	 ulcerans	 and	 Leishmania	 spp,	 this	 paper	 aims	 to	

describe	 the	 contribution	 of	 infective	 ulcers	 to	 our	 general	 understanding	 of	 wound	

formation	and	repair.		

	

	

Structure	and	functions	of	the	skin	

	

Before	we	review	the	various	conditions	leading	to	skin	ulceration,	it	is	important	to	describe	

the	 architecture	 and	 functions	 of	 this	 organ.	 As	 illustrated	 (Figure	 1),	 human	 skin	 is	

composed	 of	 two	 superposed	 layers,	 the	 epidermis	 and	 the	 dermis.	 The	 epidermis	 is	 a	

stratified	squamous	epithelium	composed	of	a	first	layer	of	proliferating	basal	keratinocytes	
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attached	to	a	basement	membrane	(referred	to	as	stratum	basale)	covered	with	suprabasal	

keratinocyte	layers	at	various	stages	of	differentiation	(spinosum,	granulosum,	lucidum	and	

corneum	 from	 deep	 to	 superficial).	 This	 external	 layer	 of	 the	 skin	 is	 not	 vascularised	 and	

keratinocytes	 receive	oxygen	and	nutriments	by	diffusion	 from	the	underlying	 tissues.	The	

dermis	 is	a	connective	 tissue	 that	 is	essentially	composed	of	an	extracellular	matrix	 (ECM)	

produced	 by	 dermal	 fibroblasts.	 The	 ECM	 is	made	 of	 fibrous	 structural	 proteins	 including	

collagen,	elastin	and	laminin,	which	are	embedded	in	highly	hydrated	proteoglycans	(such	as	

dermatan	sulfate	and	hyaluronan).	In	contrast	to	the	epidermis,	the	dermis	harbours	nerves	

and	sensory	organs,	hair	 follicles	and	various	glands	 (sweat,	 sebaceous	and	apocrine).	 It	 is	

perfused	 by	 a	 dense	 anastomotic	 network	 of	 blood	 vessels	 and	 by	 draining	 lymphatics	

coming	from	the	hypodermis.	The	hypodermis	(also	called	subcutis)	is	primarily	composed	of	

connective	 and	adipose	 tissues	 (accounting	 for	 50%	of	 the	body	 fat)	 linking	 the	dermis	 to	

bone	 and	 muscles.	 The	 different	 structure,	 physico-chemical	 properties	 and	 cellular	

composition	 of	 the	 tissues	 composing	 the	 skin	 allow	 this	 largest	 organ	 of	 the	 body	 to	

perform	 numerous	 functions	 such	 as	 protection	 against	 mechanical	 injuries,	

thermoregulation,	immune	surveillance	and	sensation.	

	

	

Non-infectious	causes	of	skin	ulceration		

	

Acute	wounds,	 due	 to	 surgical	 incision	or	 traumatic	 injury,	 typically	 proceed	 into	 a	 timely	

reparative	 process	 that	 results	 in	 the	 restoration	 of	 anatomic	 and	 functional	 integrity.	

However	 in	 a	 number	 of	 conditions	 this	 process	 is	 abnormally	 slow,	 or	 interrupted,	 and	

wounds	 become	 chronic.	 Venous	 ulcers	 are	 the	 most	 common	 type	 of	 chronic	 wounds,	
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accounting	for	up	to	80%	of	all	leg	ulcers	3.	Diabetic	ulcers	represent	a	growing	challenge,	as	

the	burden	of	diabetes	mellitus	increases	and	patients	continue	to	age	4.	Less	common	than	

venous	and	diabetic	ulcers,	ulcers	of	arterial	aetiology	are	found	in	older	patients	who	have	

risk	factors	of	peripheral	arterial	disease.	Pressure	ulcers,	also	known	as	decubitus	ulcers	or	

bedsores,	 occur	when	mobility	 is	 limited	 in	 patients	who	 are	 post-operative,	 paralysed	 or	

taking	 sedative	 medication.	 They	 can	 lead	 to	 severe	 pain,	 are	 prone	 to	 infection,	 and	

associated	 with	 high	 mortality	 in	 elderly	 individuals.	 Skin	 ulceration	 can	 also	 result	 from	

immune	 dysfunction.	 For	 example	 Pyoderma	 gangrenosum	 is	 thought	 to	 result	 from	 a	

neutrophil-instigated	 destruction	 of	 the	 skin	 that	 is	 frequently	 associated	 with	 other	

immune-mediated	diseases,	 such	as	 inflammatory	bowel	disease	or	 rheumatoid	arthritis	 5.	

Finally,	malignancies	 can	ulcerate	with	 squamous	 cell	 carcinoma	 commonly	having	 central	

ulceration	at	presentation	6.	

	

Chronic	 wounds	 are	 commonly	 associated	 with	 defective	 blood	 flow	 (ischemia)	 7.	

Venous	 insufficiency	 causes	 a	 local	 rise	 in	 blood	 pressure	 within	 superficial	 venous	

structures,	 leading	 to	 blood	 leakage	 into	 the	 interstitial	 space.	 Arterial	 ulcers	 occur	 after	

occlusion	of	an	artery	or	arteriole,	which	 in	the	vast	majority	of	cases	 is	a	consequence	of	

atherosclerosis	 or	 material	 deposition	 in	 small	 or	 medium	 sized	 arteries.	 Diabetic	 ulcers	

occur	 in	 patients	 with	 peripheral	 neuropathy	 and	 often-concurrent	 peripheral	 vascular	

diseases.	Pressure	ulcers	usually	occur	at	the	muscle-bone	interface	in	patients	remaining	in	

the	same	position	for	a	prolonged	period	of	time.	 In	that	case,	pathogenesis	 is	believed	to	

result	from	cycles	of	ischemia	and	reperfusion,	generating	inflammation	and	necrosis.	How	

defective	blood	flow	leads	to	skin	ulceration	nevertheless	remains	largely	unknown,	due	to	

the	 difficulty	 in	 establishing	 satisfactory	 in	 vitro	 systems	 and	 animal	 models	 to	 study	
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cutaneous	ischemia	8.	In	contrast,	the	comparison	of	acute	versus	chronic	wounds	in	human	

patients,	and	 the	development	of	 surgical	mouse	models	of	wound	healing	 9,	have	helped	

improve	 our	 understanding	 of	 the	 cellular	 and	 molecular	 mechanisms	 underpinning	 skin	

repair.		

	

	

Mechanisms	governing	wound	healing		

	

Acute	 skin	wounds	 typically	 heal	 by	 progressing	 through	 four	 consecutive	 yet	 overlapping	

phases:	 (i)	haemostasis,	 (ii)	 inflammation	(with	an	 initial	wave	of	neutrophils	that	are	 later	

replaced	by	macrophages),	(iii)	a	proliferative	phase	during	which	the	synthesis	of	new	ECM	

results	 in	 scar	 formation	 then	 epithelialisation,	 and	 finally	 (iv)	 a	 remodelling	 of	 the	 ECM	

(Figure	 1).	 Although	 haemostasis	 and	 inflammation	 proceed	 normally	 in	 chronic	 wounds,	

they	 do	 not	 translate	 into	 the	 proliferative	 and	 remodelling	 phases	 of	 healing.	 The	

comparison	 of	 acute	 versus	 chronic	 wounds	 has	 shown	 that	 production	 of	 new,	

fibrin/fibrinogen-rich	 ECM	 following	 clotting	 is	 essential	 in	 providing	 a	 scaffold	 for	 cell	

migration	 into	 the	 wound.	 Venous	 hypertension	 and	 blood	 stasis	 reduces	 vascular	 shear	

stress,	 resulting	 in	 a	 pro-inflammatory	 state	 that	 promotes	 leukocyte	 adhesion	 and	

migration	 10.	 The	 production	 of	 pro-inflammatory	 cytokines	 such	 as	 TNF	 and	 IL-1b	 by	

macrophages	 signal	 fibroblasts	 to	 secrete	matrix	metalloproteinases	 (MMPs)	 that	degrade	

the	ECM	11.	By	producing	reactive	oxygen	species	(ROS),	 infiltrating	inflammatory	cells	also	

generate	 a	 pro-oxidant	 microenvironment	 in	 the	 ulcers	 12,13.	 ROS	 contribute	 to	 ECM	

proteolysis	directly	by	degrading	components	of	the	matrix,	and	by	stimulating	the	synthesis	

and	activity	of	MMPs.	In	addition,	the	attack	of	ROS	on	extravasated	erythrocytes	results	in	
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iron	 deposition,	 which	 in	 combination	 with	 hydrogen	 peroxide	 released	 by	 activated	

neutrophils	 generate	 highly	 toxic	 radicals,	 further	 damaging	 skin	 tissues	 and	 fuelling	

inflammation	14.	

	

While	 uncontrolled	 inflammation	 impairs	 wound	 healing,	 it	 may	 not	 be	 an	 absolute	

requirement	 for	 the	 initial	 steps	 of	 skin	 ulceration.	 By	 studying	 chronically	 ischemic	 but	

uninjured	 skin,	 Dalton	 et	 al.	 demonstrated	 that	 ECM	 homeostasis,	 which	 relies	 on	 the	

balance	between	collagen	synthesis	and	degradation	by	MMPs,	 is	profoundly	 impacted	by	

defective	 blood	 circulation	 in	 the	 absence	 of	 inflammation	 15,16.	 Compared	 to	 controls,	

ischemic	 skin	 tissue	 samples	 showed	a	decreased	mechanical	 resistance.	At	 the	molecular	

level,	 they	were	marked	by	 increased	expression	of	 the	vascular	endothelial	growth	 factor	

VEGF	 and	 lactate,	 indicative	 of	 hypoxia.	 Hypoxic	 conditions	 are	 known	 to	 stimulate	 the	

production	 of	 TGF-b	 by	 fibroblasts	 that	 in	 turn	 promotes	 fibroblastic	 collagen	 synthesis	 17	

and	 the	 concurrent	 expression	 of	MMP-2	 by	 keratinocytes	 18.	 The	 increased	 synthesis	 of	

both	collagen	and	MMP-2	collagenase	results	 in	an	elevated	matrix	turnover.	The	hypoxia-

inducible	factor	(HIF)-1a and	TGF-b	also	stimulate	angiogenesis	via	the	production	of	VEGF	

19,20.	Together,	these	observations	suggested	that	hypoxia	might	be	sufficient	to	explain	the	

remodelling	of	ECM	and	vessels,	weakening	the	skin	and	facilitating	ulceration.		

	

	

Infective	ulcers	

	

Chronic	 wounds	 are	 always	 contaminated	 by	 microorganisms	 originating	 from	 the	

surrounding	skin	 (such	as	Corynebacteria	and	Propionibacteria	 spp)	and	other	endogenous	
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sources	or	the	external	environment	(including	multi-resistant	organisms	such	as	methicillin-

resistant	 Staphylococcus	 aureus).	 However,	 wound	 healing	 is	 not	 compromised	 unless	

bacterial	proliferation	occurs,	with	generation	of	host	immune	responses	and	tissue	injury	2.	

The	 initial	 bacterial	 burden,	 virulence	 and	 capacity	 of	 invading	 pathogens	 to	 grow	within	

biofilms,	combined	with	the	ability	of	the	host	to	mount	protective	immune	responses	both	

determine	 the	 transition	 to	 this	 infectious	 state.	Other	 risk	 factors	 include	malnutrition	or	

obesity,	diabetes	and	advanced	age.		

	

Chronic	wounds	can	also	occur	as	a	result	of	a	primary	 infection	with	microorganisms.	

Amongst	 the	most	 common	 ulcerative	 pathogens	 are	 mycobacterium	 species	 such	 as	M.	

marinum,	M.	tuberculosis	and	the	causative	agent	of	Buruli	ulcer	(BU)	M.	ulcerans	21-24.	BU	

has	 been	 reported	 in	 more	 than	 33	 countries	 with	 tropical,	 subtropical	 and	 temperate	

climates	and	has	become	a	major	public	health	problem	in	sub-Saharan	Africa.	In	Ghana,	the	

point	prevalence	of	BU	can	reach	150.8	per	100,000	 individuals	 25.	The	protozoan	parasite	

Leishmania	 is	 another	major	 cause	 of	 infectious	 skin	 ulcers,	with	 an	 estimated	worldwide	

occurrence	of	 cutaneous	 leishmaniasis	of	1.5	million	cases	per	year	 26.	 So-called	“tropical”	

ulcers	are	common	infectious	lesions	caused	by	associations	of	Fusobacterium	ulcerans	and	

Borrelia	 vincenti,	 although	 the	 role	 of	 these	 bacteria	 in	 skin	 destruction	 remains	 poorly	

understood.	Other	ulcers	of	 infectious	origin	 include	yaws	caused	by	Treponema	pertenue,	

cutaneous	 diphteria	 caused	 by	 toxigenic	 strains	 of	 Corynebacterium	 diphtheriae	 and	

occasionally	 by	 C.	 ulcerans,	 and	 mycoses	 such	 as	 sporotrichosis,	 chromoblastomycosis	 or	

eumycetoma.	 The	 following	 paragraphs	 further	 describe	 our	 current	 knowledge	 of	 the	

pathogenic	processes	employed	by	M.	ulcerans	and	Leishmania	spp.		
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Mycobacterium	ulcerans	and	Buruli	ulcer	disease	

	

M.	 ulcerans	 is	 a	 mycobacterium	 causing	 BU	 in	 communities	 associated	 with	 an	 aquatic	

environment.	 Outbreaks	 are	 commonly	 associated	 with	 changes	 involving	 river	 areas	 27.	

Human	to	human	transmission	is	rare	28.	Infection	may	occur	by	exposure	of	injured	skin	to	

contaminated	water,	although	there	is	evidence	for	a	role	of	biting	insects	as	vectors	of	M.	

ulcerans,	 and	 aquatic	 snails	 and	 fish	 as	 intermediate	 hosts	 (reviewed	 in	 29).	 BU	 lesions	

typically	 start	 as	 a	 non-characteristic,	 pre-ulcerative	 stage	 (nodule,	 papule,	 plaque	 or	

oedema).	 After	 weeks	 to	 months,	 the	 skin	 covering	 the	 pre-ulcerative	 lesion	 eventually	

opens	to	form	a	characteristic	ulcer	with	undermined	edges.	Histopathological	hallmarks	of	

BU	are	defective	 inflammatory	responses	 in	the	presence	of	acid-fast	bacilli,	and	extensive	

necrosis	of	dermal	and	adipose	tissues.	Common	features	also	include	epidermal	hyperplasia	

in	the	regions	flanking	the	ulcer,	collagen	destruction	and	vascular	damage	in	the	underlying	

dermis	and	subcutis	30-32.	In	addition,	patients	with	BU	display	a	distinctive	profile	of	immune	

suppression,	 marked	 by	 the	 defective	 capacity	 of	 T	 cells	 to	 produce	 cytokines	 upon	

stimulation	ex	vivo	33,34.	

	

Mycolactone,	a	diffusible	cytotoxin	uniquely	produced	by	this	pathogen,	is	believed	to	

cause	this	intriguing	combination	of	necrosis	and	immune	suppression.	In	vitro	experiments	

have	shown	that	mycolactone	is	cytotoxic	to	epithelial	cells	and	fibroblasts	35,36,	and	blocks	

the	 expression	 of	 homing	 receptors	 and	 production	 of	 cytokines	 by	monocytes,	 dendritic	

and	T	cells	at	non-cytotoxic	concentrations	37-42.	Notably,	bacterial	killing	 in	BU	patients	or	

experimentally	 infected	 animals	 undergoing	 antibiotic	 therapy	 is	 followed	 by	 a	 massive	

infiltration	 of	 necrotic	 material	 with	 leukocytes	 and	 the	 phagocytosis	 of	 dead	
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mycobacterium	 43-47,	 showing	 that	 local	 and	 systemic	 cellular	 immune	 responses	 are	

suppressed	by	M.	ulcerans	during	ulcer	formation.	

	

We	 reported	 recently	 that	 mycolactone	 targets	 and	 hyper-activates	 the	 Neural	

Wiskott-Aldrich	 syndrome	 protein	 (N-WASP)	 in	 epithelial	 cells	 48.	 N-WASP	 is	 particularly	

abundant	 in	neurons,	but	 is	ubiquitously	expressed	by	mammalian	 cells	 49.	 Its	best-known	

function	is	to	regulate	actin	dynamics	by	transducing	multiple	endogenous	signals	into	actin	

nucleation,	via	the	Arp2/3	complex	50-52.	By	supporting	the	assembly	and	homeostasis	of	E-

cadherin	 junctions	 53,	 N-WASP	 is	 critical	 for	 the	maintenance	 of	 epithelial	 cell	 contacts	 in	

vitro.	In	vivo,	conditional	knockdown	of	N-WASP	expression	in	mouse	skin	epithelium	results	

in	 profound	 defects	 in	 hair	 follicle	 cycling	 54,55.	 It	 has	 a	 more	 variable	 impact	 on	 skin	

ulceration	 and	 no	 effect	 on	wound	healing.	We	demonstrated	 that	 hyper-activation	 of	N-

WASP	by	mycolactone	 is	also	dramatic	 for	 the	maintenance	of	skin	 integrity	and	 functions	

(Figure	2).	In	vitro,	mycolactone-induced	activation	of	N-WASP	inhibited	the	maintenance	of	

cell-cell	 and	 cell-matrix	 adhesive	 contacts,	 leading	 to	 detachment	 and	 death	 of	 epithelial	

cells.	 In	 addition,	 mycolactone	 triggered	 N-WASP-dependent	 defects	 in	 cell	 migration	

reflected	 by	 increased	 velocity	 and	 impaired	 directionality.	 Epidermal	 homeostasis	 is	

controlled	by	 the	maintenance	of	 such	 cell-cell	 contacts	 and	 the	 coordinated	migration	of	

keratinocytes	 (reviewed	 in	 56).	 Injection	 of	 mycolactone	 into	 mouse	 ears	 altered	 the	

junctional	organization	and	stratification	of	keratinocytes,	 leading	to	a	progressive	thinning	

of	 the	 external	 layers	 with	 concurrent	 loss	 of	 E-cadherin	 contacts.	 This	 process	 was	

efficiently	counteracted	by	co-administration	of	wiskostatin,	a	specific	 inhibitor	of	N-WASP	

stabilizing	 its	 auto-inhibited	 conformation	 57.	 Our	 study	 thus	 suggested	 that	mycolactone-

induced	 activation	 of	 N-WASP	 in	 epithelial	 cells	 and	 the	 consequent	 dynamic	
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rearrangements	of	the	actin	cytoskeleton	are	the	primary	cause	of	epidermal	rupture	in	BU	

formation.		

	

	

Leishmania	spp	and	cutaneous	Leishmaniasis	

	

A	 total	 of	 about	 21	 Leishmania	 spp	 have	 been	 identified	 that	 are	 pathogenic	 to	 humans.	

Leishmania	 parasites	 exist	 as	 promastigotes	 in	 the	 sand	 fly	 vector	 and	 as	 amastigotes	 in	

human	 hosts.	 They	 have	 developed	 multiple	 strategies	 to	 survive	 and	 multiply	 within	

phagolysosomal	 vacuoles	 in	 human	 phagocytes	 (macrophages,	 dendritic	 cells	 and	

neutrophils).	The	clinical	presentation	of	Leishmaniasis	varies	significantly	according	to	the	

species	of	infection	and	location	58.	It	manifests	predominantly	as	visceral	(VL)	or	cutaneous	

(CL),	with	VL	being	 the	most	 severe	 form	and	 lethal	 if	untreated.	CL	 typically	 starts	as	 red	

patches	progressing	into	crusted	ulcers	with	hypertrophied	borders	that	are	painless	unless	

there	 is	 secondary	 bacterial	 infection.	 Cutaneous	 lesions	 are	 usually	 solitary	 and	 heal	

spontaneously	 within	 a	 year.	 However,	 depending	 on	 the	 infecting	 species	 and	 host-

associated	 risk	 factors,	 they	 may	 evolve	 into	 more	 generalized	 forms,	 like	 diffuse	 CL	 or	

muco-CL	59.		

	

Protective	 immunity	 against	 Leishmaniasis	 is	 mediated	 by	 Th1-oriented	 cellular	

immune	responses,	while	in	contrast	Th2	cytokines	promote	disease	progression	60.	Mouse	

studies	 using	 L.	 major	 have	 shown	 that	 production	 of	 IFN-g	 by	 Th1	 cells	 is	 key	 to	 the	

resolution	 of	 CL.	 Activation	 of	 infected	 macrophages	 by	 IFN-g	 triggers	 the	 production	 of	

nitric	oxide	(NO),	resulting	in	the	efficient	killing	of	intracellular	parasites.	While	the	targeted	
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disruption	 of	 cytokines	 promoting	 the	 development	 of	 Th1/IFN-g	 responses	 (IL-12,	 TNF)	

augment	mouse	susceptibility	to	leishmanial	infection,	deficiency	for	the	Th2	cytokines	IL-4	

and	 IL-10	 leads	on	the	contrary	to	a	better	control	of	the	disease.	Humans	with	CL	display	

mixed	Th1/Th2	types	of	immune	responses,	however	the	production	of	IFN-g	is	consistently	

associated	 with	 resolution	 of	 the	 disease	 and	 treatments	 based	 on	 IFN-g	 have	 a	 positive	

impact	on	wound	healing	61.	The	variability	in	the	intensity	of	humoral	and	cellular	immune	

responses	 in	 patients	 with	 CL	 is	 reflected	 by	 the	 diverse	 pathological	 presentations.	

Histological	analysis	of	skin	biopsies	 reveals	a	wide	range	of	 immune	profiles,	 from	almost	

normal	 to	 highly	 inflammatory,	 with	 infiltration	 of	macrophages,	 presence	 of	 granulomas	

and	 extensive	 necrosis	 of	 dermal	 tissues	 62.	 Fas	 ligand	 (FasL)	 and	 Tumour	 necrosis	 factor-

related	apoptosis-inducing	ligand	(TRAIL)	have	been	reported	to	contribute	to	CL	pathology	

by	inducing	keratinocyte	killing	and	promoting	neutrophilic	infiltration	63,64.	Accordingly,	the	

size	of	CL	lesions	and	healing	time	correlate	with	TNF	levels	in	patients	with	CL	65.	Together,	

these	 data	 thus	 suggest	 that	 skin	 ulceration	 in	 CL	 results	 primarily	 from	 the	 Th1	 immune	

responses	mounted	by	the	host	in	response	to	infection.		

	

	

Mycolactone	injection	in	mice:	a	useful	model	to	study	skin	ulcer	pathogenesis?	

	

The	 examples	 of	 CL	 and	 BU	 illustrate	 the	 complexity	 and	 the	 diversity	 of	 infective	 ulcer	

pathogenesis.	 Exacerbated	 inflammation	 is	 critical	 in	 the	 pathogenesis	 of	 CL	 and	 in	 the	

defective	healing	of	secondarily	colonised	wounds.	In	contrast,	M.	ulcerans	uses	an	original	

mechanism	 to	 destroy	 the	 skin	 in	 the	 absence	 of	 local	 and	 systemic	 inflammation.	

Mycolactone	is	a	diffusible	lipid	of	740	Da	gaining	access	to	its	molecular	targets	in	remote	
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tissues	by	passive	diffusion	 66.	 This	 property,	 combined	with	 a	 potent	 immunosuppressive	

activity,	 makes	 mycolactone	 a	 potentially	 useful	 tool	 to	 study	 the	 non-inflammatory	

components	of	skin	ulceration.	Guinea	pig	and	mouse	models	of	infection	with	M.	ulcerans	

have	 been	 developed	 that	 are	 based	 on	 intradermal,	 or	 subcutaneous	 injection	 of	 bacilli	

22,35,67-69.	 The	 resulting	 ulcers	 resemble	 human	 lesions	 in	 many	 aspects,	 with	 comparable	

epidermal	 hyperplasia,	 coagulative	 necrosis,	 oedema	 and	 vasculopathy.	 Interestingly,	

intradermal	 injection	of	5	µg	purified	mycolactone	 into	mouse	ears	generates	 in	 less	 than	

two	weeks	 lesions	that	are	comparable	to	those	observed	by	 infection	with	M.	ulcerans	 in	

the	footpad	model	44	(Figure	3).	Furthermore,	the	histopathological	changes	occurring	upon	

mycolactone	 injection	 mimic	 the	 different	 stages	 of	 BU	 formation.	 In	 particular,	 the	

epidermal	 rupture,	 dermal	 elastolysis	 and	 subcutaneous	 necrosis	 that	 characterizes	 the	

transition	from	pre-ulcerative	to	ulcerative	stage	in	BU,	are	adequately	reproduced	within	a	

ten	day	period.		

	

We	have	shown	previously	that	mycolactone	mediates	epidermal	rupture	by	hyper-

activating	 N-WASP,	 however	 the	 molecular	 mechanisms	 leading	 to	 the	 necrosis	 of	 the	

underlying	dermis	and	hypodermis	remain	to	be	elucidated.	Based	on	the	vascular	damages	

observed	 in	 mycolactone-injected	 or	M.	 ulcerans-infected	 tissues,	 we	 can	 propose	 that	

mycolactone	 also	 impairs	 endothelial	 integrity	 via	 the	 activation	 of	 N-WASP,	 leading	 to	

vascular	 leakage	and	oedema	 that	pre-dispose	 skin	 to	ulceration.	Recent	 findings	 showing	

that	 N-WASP	 regulates	 endothelial	 permeability	 by	 maintaining	 adherens	 junctions	 70	

strongly	support	our	hypothesis.		
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Conclusions	

	

To	 prevent	 ulcer	 formation	 and	 improve	 current	 wound	 management	 practices,	 it	 is	

important	 to	 progress	 in	 the	 identification	 of	 the	 different	 pathways	 controlling	 skin	

integrity.	 The	 study	of	 infective	ulcers	provides	 important	 insights	 into	 these	mechanisms,	

and	 in	 particular	 into	 the	 double-edged	 contribution	 of	 inflammation.	 The	 generation	 of	

inflammatory	responses	at	the	site	of	infection	promotes	skin	ulceration	in	CL	and	delays	the	

healing	of	secondarily	contaminated	wounds.	Paradoxical	reactions	with	aggravation	of	the	

ulcers	have	been	reported	 in	2-10%	of	BU	patients	 initiating	antibiotic	 therapy	71.	 In	 these	

patients,	 clinical	 deterioration	 is	 efficiently	 stopped	 by	 adjunctive	 steroid	 therapies	 72,73,	

suggesting	 that	 in	 case	 of	 severe	 inflammation,	 immune	 suppression	 may	 improve	 the	

treatment	of	infected	ulcers.	In	spite	of	the	potent	immunostimulatory	activity	and	adjuvant	

potential	of	mycobacterial	 cell	wall	 components,	M.	ulcerans	 induces	 the	 formation	of	BU	

without	 triggering	 inflammation.	 This	 original	 pathogenic	 process,	 based	 on	 the	 unique	

ulcerative	and	immunosuppressive	properties	of	mycolactone,	highlights	the	importance	of	

epidermal	and	vascular	 cell-cell	 contacts	 in	ulcer	pathogenesis.	 It	may	provide	 researchers	

with	a	good	model	to	investigate	the	non-inflammatory	processes	mediating	skin	ulceration.	
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