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Abstract

High levels of antibiotic tolerance are a hallmark of bacterial biofilms. In contrast to well-characterized inherited antibiotic
resistance, molecular mechanisms leading to reversible and transient antibiotic tolerance displayed by biofilm bacteria are
still poorly understood. The physiological heterogeneity of biofilms influences the formation of transient specialized
subpopulations that may be more tolerant to antibiotics. In this study, we used random transposon mutagenesis to identify
biofilm-specific tolerant mutants normally exhibited by subpopulations located in specialized niches of heterogeneous
biofilms. Using Escherichia coli as a model organism, we demonstrated, through identification of amino acid auxotroph
mutants, that starved biofilms exhibited significantly greater tolerance towards fluoroquinolone ofloxacin than their
planktonic counterparts. We demonstrated that the biofilm-associated tolerance to ofloxacin was fully dependent on a
functional SOS response upon starvation to both amino acids and carbon source and partially dependent on the stringent
response upon leucine starvation. However, the biofilm-specific ofloxacin increased tolerance did not involve any of the
SOS-induced toxin–antitoxin systems previously associated with formation of highly tolerant persisters. We further
demonstrated that ofloxacin tolerance was induced as a function of biofilm age, which was dependent on the SOS
response. Our results therefore show that the SOS stress response induced in heterogeneous and nutrient-deprived biofilm
microenvironments is a molecular mechanism leading to biofilm-specific high tolerance to the fluoroquinolone ofloxacin.
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Introduction

Formation of bacterial biofilms on medical implants is a major

health threat due to their high levels of tolerance to multiple

antibiotics [1]. Biofilm-associated antibiotic tolerance is mainly

attributed to two distinct processes: persistence and drug

indifference, which both characteristically disappear once multi-

cellular conditions subside [2,3]. Persistence occurs in subpopu-

lations of slow or non-growing bacteria, whereas drug indifference

is exhibited by the entire population [4,5]. Although the molecular

bases of persistence are under active investigation [5,6], drug

indifference is far less well understood and is hypothesized to be

multifactorial and to result from reduced antibiotic diffusion to

slow growth rate of many cells within biofilms [7]. Alternatively,

local gradients of nutrients, oxygen, pH, signalling molecules and

waste products, as well as genetic heterogeneity, which can arise

through mutations, recombination, and stochastic gene expression,

could lead to physiological adaptation and drug indifference in

heterogeneous biofilms [7–12]. Biofilm heterogeneity creates

specialized niches in which bacteria respond to local cues, leading

to genetically and metabolically distinct subpopulations exhibiting

high tolerance to extracellular stresses such as antibiotics.

Since physical isolation of biofilm subpopulations is technically

challenging [13,14], analyses of antibiotic tolerance have thus far

relied mainly on isolation of mutants with decreased ability to form

tolerant biofilms. However, biofilm heterogeneity and physiologi-

cally specialized subpopulations limit the power of these strategies.

As an alternative approach to investigating the mechanisms of

biofilm-associated tolerance to antibiotics, we mutagenized a

biofilm-forming Escherichia coli strain to identify mutants forming

biofilms with increased tolerance towards two bactericidal antibi-

otics, ticarcillin, a ß-lactam-targeting peptidoglycan and ofloxacin, a

fluoroquinolone targeting DNA gyrase. We reasoned that mutants

forming highly antibiotic tolerant biofilms could correspond to

mutations causing all biofilm bacteria to adopt physiological states

usually only transiently expressed by biofilm subpopulations.
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In this study, we found that biofilms formed by amino acid

auxotroph mutants display high antibiotic tolerance and we

demonstrated that amino acid starvation strongly increases the

antibiotic tolerance of biofilm bacteria. As expected, tolerance to

the ß-lactam ticarcillin correlated with slow growth displayed by

all tested amino acid auxotrophs. However, we demonstrated that

starvation for most amino acids induced tolerance towards

ofloxacin only under biofilm conditions. While this biofilm-specific

tolerance was shown to depend partially on a functional stringent

response in leucine-starved biofilms, we demonstrated that carbon

source starvation also mediates ofloxacin tolerance in biofilm and

that the SOS response appears to be necessary for the ofloxacin

tolerance exhibited upon both amino acid and carbon source

starvation. However, we showed that SOS-dependent biofilm-

specific ofloxacin tolerance is independent of toxin-antitoxin

systems induced by the SOS response and previously associated

with bacterial persistence. Consistently, we observed that SOS-

dependent ofloxacin tolerance increases with biofilm age. Since

local nutrient deprivation is a characteristic of aging and

heterogeneous biofilms, our study therefore reveals a general

mechanism linking nutritional stress and reversible biofilm-specific

tolerance to the fluoroquinolone ofloxacin.

Results

An in vitro model for studying antibiotic tolerance in E.
coli biofilms

In order to study antibiotic tolerance in biofilms, we grew static

biofilms in M63B1Gluc minimal medium in 96-well PVC

microtiter plates using TG1, a previously described highly

adherent E. coli K-12 strain expressing the F-conjugative pilus,

involved in both conjugation and biofilm formation [15]. Twenty-

four-hour E. coli TG1 biofilms (Figure S1) were treated with either

ticarcillin, a b-lactam carboxypenicillin with bactericidal activity

only against rapidly growing cells [16], or ofloxacin, a fluoroquin-

olone active against both growing and non-growing cells [17,18].

We determined the viability of antibiotic-treated TG1 biofilm

bacteria using both viable cells counts (CFUs) and bacterial

metabolic activity (XTT-reduction assay) as survival read-outs.

Although the antibiotic-tolerant population appeared greater

when quantified using the XTT-reduction assay compared to

the CFU count, both methods gave similar survival profiles in 24 h

E. coli TG1 biofilms exposed to up to 80- and 100-times the MIC

values for ofloxacin and ticarcillin, respectively (Figure 1A–1D).

These surviving bacteria, which tolerated either ticarcillin (1006
MIC) or ofloxacin (806 MIC), did not correspond to antibiotic-

resistant mutants, since they displayed wild-type resistance profiles

once re-inoculated and grown under classical planktonic condi-

tions (data not shown). Similar results were obtained using a

different biofilm-forming E. coli K-12 strain constitutively express-

ing type 1 fimbriae (data not shown), therefore demonstrating that

biofilm formation per se, rather than the nature of the surface

adhesin promoting biofilm formation, is involved in antibiotic

tolerance of E. coli K-12 biofilms in our model.

Amino acid auxotroph mutants exhibit increased
antibiotic tolerance in biofilms

To identify mutations leading to high antibiotic tolerance

transiently displayed by E. coli biofilm bacteria, we performed

random mariner transposon mutagenesis on E. coli TG1 derivative

strain TG1gfp. In our in vitro biofilm model, we screened

approximately 10,000 mutants for homogeneous increased toler-

ance to ticarcillin (1006MIC) or ofloxacin (506MIC) using the

XTT-reduction assay as a high throughput survival read-out. We

identified a total of 18 transposon mutants with increased biofilm

tolerance to these two antibiotics when compared to their parental

strain, and 16 of these mutants displayed auxotrophy to various

amino acids (Table 1). Transposon mapping performed on 10 of

these auxotrophic mutants indeed showed mutations in genes

involved in amino acid biosynthesis, including four insertions in

leuC and two in proA, indicative of saturated mutagenesis (Table 1).

These 10 mapped mutants displayed amino acid auxotrophies to

leucine (leuB; leuC), proline (proA), arginine (argE), isoleucine/valine

(ilvC) and aromatic amino acids (aroE) when grown on minimal

medium containing glucose as sole carbon source (data not

shown). In addition, we determined that six of the remaining

unmapped mutants also displayed auxotrophies to five different

amino acids (proline, threonine, histidine, cysteine, and tyrosine).

Our screen also identified two prototrophic transposon mutants

(rseC and pnp) displaying slight increased tolerance in biofilms,

which were not further investigated in this study.

Formation of antibiotic-tolerant biofilms in M63B1Gluc minimal

medium by amino acid auxotrophs was intriguing, and suggested

that use of overnight LB culture inoculum provided enough amino

acids to support initial growth and biofilm development (data not

shown). Indeed, we determined that supplementation of

M63B1Gluc with as little as 25 mg ml21 of the required amino

acid was sufficient to promote growth and formation of antibiotic-

tolerant biofilm by all tested E. coli TG1 auxotrophs when treated

in amino-acid-free medium (M63B1Gluc) (see Materials and

Methods and data not shown).

Starvation leads to increased antibiotic tolerance in
biofilms

The identification, via our mutagenesis screen, of mutants

auxotrophic for at least 12 amino acids suggested a link between

biofilm antibiotic tolerance and amino acid starvation (Table 1).

To confirm this relationship, we created E. coli TG1 amino acid

auxotrophs that resulted from deletion of a single amino acid

biosynthesis gene, including leucine, isoleucine, histidine, arginine,

cysteine, methionine, lysine, proline, phenylalanine, tyrosine,

tryptophan, glutamic acid, glycine, glutamine, serine and threo-

nine (Table S1). However, auxotrophies for aspartic acid,

asparagine, and alanine were not constructed due to the existence

of multiple corresponding metabolic pathways. Similarly, we did

not investigate auxotrophy for valine, since such mutants cannot

be obtained without affecting isoleucine biosynthesis.

Author Summary

Biofilm surface-attached communities have the capacity to
tolerate high concentrations of antibiotics, and bacterial
biofilms formed on indwelling medical devices are difficult
to eradicate and often lead to the onset of chronic or
systemic infections. The physiological heterogeneity of
multicellular biofilms has been associated with develop-
ment of subpopulations highly tolerant to multiple
antibiotics. Here we demonstrate that, upon starvation
for specific essential growth nutrients, biofilm bacteria
become highly tolerant to fluoroquinolone ofloxacin. The
SOS response plays a critical role in this phenomenon,
while the stringent response plays only a minor role. Taken
together, these results support the hypothesis that
bacteria localized within nutrient-limited niches of the
biofilm structure may temporarily enter a physiological
state enabling them to tolerate bactericidal concentrations
of antibiotics.

SOS Response–Dependent Biofilm Ofloxacin Tolerance
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Among the 16 newly constructed amino acid auxotrophs,

auxotrophy for glutamic acid, glycine, glutamine, serine and

threonine showed reduced biofilm formation compared to the

parent prototroph even when supplemented with 25 mg ml21 of

the required amino acid, and thus they could not be meaningfully

tested for biofilm antibiotic tolerance (data not shown). Eleven of

them, however, formed wild-type biofilms when supplemented

with 25 mg ml21 of the required amino acid (data not shown).

To evaluate the impact of starvation of a single amino acid upon

the antibiotic tolerance of biofilm bacteria, we compared survival

of starved auxotrophic biofilms formed by these 11 auxotrophs to

that of the wild-type prototroph parental strain TG1. During the

starvation process, bacterial growth was blocked due to the use of

auxotrophic mutant strains in the absence of the required amino

acid. In these experimental conditions, we observed that biofilm

formed by histidine, methionine, phenylalanine, proline, tyrosine,

isoleucine, arginine, cysteine, lysine and leucine auxotrophs

survived significantly better than prototrophic TG1 biofilms

exposed to either ticarcillin (1006MIC) or ofloxacin (806MIC)

(Figure 2A and B; P,0.05). In the case of the tryptophan

auxotroph, increased survival was observed upon exposition to

ticarcillin only (Figure 2A) indicating that growth arrest was not

the only mechanism involved in ofloxacin tolerance upon

starvation to the other amino acids (Figure 2B). The tolerance

levels exhibited by starved biofilms (individual amino acid) were

greater towards ticarcillin than ofloxacin confirming that fluoro-

quinolone antibiotics like ofloxacin kill bacterial cells indepen-

dently of growth.

To further investigate the contribution of starvation to antibiotic

tolerance in biofilms, we chose auxotrophy for leucine as a model

of auxotrophy-induced tolerance. We observed that blocking

starvation in leucine auxotroph biofilms by exogenous addition of

leucine (5–10 mg ml21) reverted both ofloxacin and ticarcillin

tolerance to levels observed in non-starved wild-type TG1 biofilms

(Figure 2C and Figure S2). To determine whether exposure to

other nutritional stresses could lead to a similar antibiotic tolerance

profile in starved prototroph biofilms, we exposed biofilms formed

by wild-type TG1 to antibiotics in glucose-free medium (M63B1-

no carbon source). Under these conditions, we observed that

deprivation of all carbon sources (glucose), and therefore absence

of growth, increased the antibiotic tolerance of TG1 biofilms

towards both ofloxacin and ticarcillin (Figure 2C and data not

shown). Consistently, leucine auxotroph biofilms grown and

treated in rich LB medium displayed wild-type sensitivity to both

ticarcillin and ofloxacin, thereby demonstrating that amino acid

shortage per se is involved in biofilm-associated antibiotic tolerance

(Figure 2D). Biofilms grown in LB rich medium were more

tolerant than those grown in minimal medium (M63B1Gluc) for

Figure 1. Antibiotic-tolerant populations of E. coli K-12 TG1 biofilms. Twenty-four-hour biofilms of E. coli TG1 were preformed in M63B1Gluc

and treated for a period of 24 h with concentrations up to 100- and 80-times the MIC values for ticarcillin and ofloxacin, respectively. Untreated
controls represent 48 h biofilms in which fresh M63B1Gluc without antibiotic was added after 24 h, explaining their values above 100%, represented
by a dotted line in each panel. Viable cells of the treated biofilm population were quantified by viable cell counts (A and B) and the XTT-reduction
assay (C and D) and were compared to numbers obtained prior to antibiotic treatment. % survival (CFU) values are indicated on top of each bar and
are means 6 standard error of the means (SEM) of at least six replicates.
doi:10.1371/journal.pgen.1003144.g001

SOS Response–Dependent Biofilm Ofloxacin Tolerance
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both ofloxacin and ticarcillin (Figure 2A, 2C and 2D) suggesting

the existence, in this rich medium, of other antibiotic tolerance

mechanisms such as those mediated by indole production [19].

Altogether, these results demonstrated that starvation for essential

growth nutrients such as amino acids and carbon sources increased

the tolerance of E. coli K-12 biofilms to ticarcillin and ofloxacin.

Further, we demonstrate that the use of auxotrophic mutant strains

is an effective genetic strategy to adequately control and measure

the impact of a specific starvation type such as a single amino acid.

Ofloxacin hypertolerance upon starvation is biofilm-
specific

To determine whether increased antibiotic tolerance of starved

amino acid auxotrophs was specific to the biofilm lifestyle, we

compared the tolerance profiles of planktonic and biofilm bacteria

upon starvation to glucose, leucine, lysine, and cysteine (Figure 3).

To compare planktonic and biofilm lifestyles, planktonic cells were

harvested from the same wells in which tolerant biofilms were

formed, thereby growing both cell types under identical condi-

tions. Interestingly, planktonic bacteria were more tolerant than

biofilm bacteria to both ticarcillin and ofloxacin in non-starving

conditions. In starvation conditions, with the exception of glucose,

free-swimming planktonic bacteria harvested from the three

chosen auxotrophs continued to display increased tolerance to

ticarcillin like their biofilm counterparts (Figure 3A and 3B). In

contrast with observations made under biofilm conditions

(Figure 2B and Figure 3D), planktonic cells starving for glucose,

leucine, lysine or cysteine did not exhibit increased tolerance to

ofloxacin (Figure 3C). These results therefore indicated that,

although ticarcillin tolerance displayed by starved bacteria in

planktonic and biofilm conditions is likely a consequence of

reduced growth or its absence, the increased tolerance to ofloxacin

displayed by starved bacteria is biofilm-specific.

The biofilm-specific ofloxacin hypertolerance partially
relies on the stringent response upon leucine starvation

The biofilm specificity of ofloxacin hypertolerance led us to

speculate that a mechanism other than growth arrest could be

involved in generating highly tolerant populations when starved of

specific nutrients. Bacteria have evolved various general response

mechanisms towards extracellular stresses with the potential of

promoting antibiotic tolerance [20]. Starvation induces the so-

called stringent response that is characterized by the synthesis of

(p)ppGpp by both RelA and SpoT [21], which was recently linked

to antibiotic tolerance in nutrient-limited biofilms [12]. The

potential involvement of the stringent response in the biofilm-

specific ofloxacin hypertolerance was first assayed by measuring

the tolerance of DrelA in both wild-type TG1 and its derivative

leucine auxotroph upon starvation for glucose (Figure S3A) or

leucine (Figure S3B), respectively. The impairment of the stringent

response by DrelA reduced the ofloxacin tolerance normally

exhibited by biofilms starved for leucine without totally abolishing

it (Figure S3B). As expected, since starvation to carbon sources like

glucose is under the control of SpoT [22], the high ofloxacin

tolerance exhibited upon glucose starvation was still displayed by

DrelA biofilms supporting the absence of role for RelA upon

glucose starvation (Figure S3A). Unfortunately, it was impossible

to meaningfully determine the role of SpoT on the biofilms

ofloxacin tolerance upon glucose starvation with our experimental

conditions. Indeed, in E. coli K-12, a DspoT mutation is lethal in a

wild-type background of E. coli K-12 and a (p)ppGpp0 strain

(DrelADspoT) is itself auxotrophic to multiple amino acids [23].

These partial results, mainly due to genetic incompatibilities, at

least suggest that stringent response through RelA partially

contributes to ofloxacin hypertolerance exhibited by E. coli K-12

biofilms upon leucine starvation.

The SOS stress response is fully required for the
starvation-induced biofilm ofloxacin tolerance

Although a DrelA mutation partially restored wild-type sensitiv-

ity to ofloxacin upon leucine starvation, their biofilms were still

more tolerant than non-starved wild-type biofilms (Figure S3B).

To determine whether a parallel mechanism was also involved in

the biofilm-specific ofloxacin tolerance, we decided to focus our

attention on the SOS response. The SOS response is known for its

role in DNA repair and mutagenesis, however it was also shown to

influence the formation of planktonic E. coli cells persistent to

fluoroquinolone antibiotics [24–26]. Once induced, the SOS

response is triggered upon RecA-dependent cleavage of LexA, the

repressor of SOS response-regulated genes [27].

To test the potential contribution of the SOS response to

hypertolerance of biofilms starved for ofloxacin, we introduced a

DrecA into selected auxotrophs (leucine, lysine, and tryptophan)

and a lexAind3 mutation encoding an uncleavable LexA protein

[28] into a leucine auxotroph. These mutations were also

introduced into their prototrophic parental strain TG1 (Table

S1). We first determined that these two loss-of-function mutations

had no significant effect on ofloxacin tolerance displayed by non-

starved wild-type E. coli TG1 biofilms (Figure 4A). We then

observed that biofilm-associated ofloxacin tolerance of DrecA

biofilm bacteria starved for glucose, leucine and lysine was

reduced to levels comparable to those of non-starved biofilms

(Figure 4A, 4B, and 4C). Moreover, ofloxacin hypertolerance was

also reduced for lexAind3 biofilms starved for glucose or leucine

(Figure 4A and 4B). In contrast, the ofloxacin tolerance of biofilms

starved for tryptophan was not affected by a DrecA mutation,

consistent with our previous observations showing that tryptophan

Table 1. Auxotrophic transposon mutants with increased
antibiotic tolerance in biofilms.

Gene-transposon
insertion * Auxotrophy type Mutant ID

leuC Leucine 36B6

leuC Leucine 39D8

leuC Leucine 91G7

leuC Leucine 104H7

leuB Leucine 50D6

ilvC Isoleucine and valine 47E6

aroE Aromatic amino acids** 44F5

argE Arginine 70C4

proA Proline 79E4

proA Proline 94H3

N.D. Cysteine 84A12

N.D. Histidine 57A6

N.D. Proline 3H4

N.D. Threonine 17E11

N.D. Threonine 84C10

N.D. Tyrosine 102A7

*Transposon inserted at different locations within leuC and proA.
**Phenylalanine, tryptophan and tyrosine.
N.D. Not determined.
doi:10.1371/journal.pgen.1003144.t001

SOS Response–Dependent Biofilm Ofloxacin Tolerance
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starvation did not affect ofloxacin tolerance in biofilms (see

Figure 2B). Consistently, biofilm-associated ofloxacin tolerance was

fully restored to levels observed upon leucine starvation after

introduction of a wild-type copy of recA in a leucine auxotroph

background (Figure 4B). We also showed that overexpression of

RecA in a DleuClexAind3 background failed to restore ofloxacin

hypertolerance in biofilms formed by the leucine auxotroph,

therefore demonstrating that this phenotype is SOS-response-

dependent and not solely RecA-dependent (Figure 4B). Furthermore,

a DrecA mutation had no effect on ticarcillin tolerance of biofilms

starved for leucine, lysine or tryptophan (Figure 4D) suggesting that

growth arrest is the likely mechanism involved in ticarcillin resistance

upon starvation.

We showed that the induced ofloxacin tolerance upon

starvation was unique to the biofilm stage (Figure 3C and 3D).

This was also confirmed by demonstrating that the SOS response,

critical for biofilm bacteria (Figure 4), had no significant role in the

ofloxacin tolerance of starved planktonic cells (Figure S4). Our

Figure 2. Starvation leads to high antibiotic tolerance in biofilms of E. coli TG1. The tolerance of non-starved biofilms (white bars; wild-type
prototroph TG1 (WT)) to (A) ticarcillin (100 mg ml21, 1006MIC) or (B) ofloxacin (5 mg ml21, 806MIC) was compared to biofilms starved for individual
amino acids (black bars; auxotrophic mutants). (C) Addition of exogenous leucine (10 mg ml21) or glucose (0.4%) restored ofloxacin sensitivity to
biofilms. (D) Antibiotic tolerance profiles of biofilms grown and treated in LB-rich medium were indistinguishable from a leucine auxotroph and its
WT prototroph. For panels A to C, biofilms of all tested amino acid auxotrophs were grown in M63B1Gluc for 24 h with the addition of 25 mg ml21 of
the required amino acid, while WT was grown in M63B1Gluc only. Antibiotic treatments were performed for a period of 24 h on 24-h biofilms.
Conditions of starvation during treatment were achieved by removing the required amino acids (M63B1Gluc) for the respective auxotrophic strains or
glucose for the WT prototroph (M63B1). In panel D, biofilms were grown for 24 h and treated for 24 h in LB-rich medium. Surviving cells were
quantified by viable cell counts. Percent survival represents viable cells after 24 h of treatment compared to untreated biofilm prior to addition of
antibiotics. All compared biofilms had similar numbers of CFU prior to antibiotic treatment (data not shown). Data represented are means 6 SEM of
at least three replicates. Asterisks indicate values significantly different from conditions of no starvation by the two-tailed unpaired t test: * P#0.05, **
P#0.01, *** P#0.001, **** P#0.001 and n.s. (not significant). The genotypes of all amino acid auxotrophic mutants constructed in the WT prototroph
TG1 genetic background are described in Table S1 or as follows: tryptophan (Trp; DtrpA::KmFRT), histidine (His; DhisG::KmFRT), methionine (Met;
DmetA::KmFRT), phenylalanine (Phe: DpheA::KmFRT), proline (Pro: DproC::KmFRT), tyrosine (Tyr; DtyrA::KmFRT), isoleucine (Ile; DilvA::KmFRT), arginine
(Arg; DargH::KmFRT), cysteine (Cys; DcysD::KmFRT), lysine (Lys; DlysA::KmFRT), and leucine (Leu: DleuC::GB).
doi:10.1371/journal.pgen.1003144.g002

SOS Response–Dependent Biofilm Ofloxacin Tolerance
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genetic-based results confirmed that a functional SOS response

system was fully required to tolerate high levels of ofloxacin for

biofilm bacteria starving for glucose, leucine, or lysine.

The SOS-dependence of starved biofilms ofloxacin tolerance

could potentially be due to an induction of the SOS response

either during biofilm formation and/or by the ofloxacin treatment.

In fact, fluoroquinolone antibiotics such as ofloxacin are known to

induce the SOS response at subinhibitory and bactericidal

concentrations, however, in conditions where bacteria exhibit

growth [24,29]. The ofloxacin treatment used in our experiments

was performed in starvation condition, i.e. in absence of growth

for the auxotrophic mutants or the prototrophic WT treated

without glucose. Therefore, our current results would favour the

idea that the SOS response cannot be induced during the

ofloxacin treatment mainly because of a complete shutdown of

both transcription and protein translation and thus pointing

towards a role of the SOS response in ofloxacin tolerance during

the process of biofilm formation itself. To provide evidence of this

shut down of protein translation during starvation, here we used

an E. coli strain containing a lacZ gene under the control of the

PLtetO-1 promoter inducible by anhydrotetracycline (aTc). We

showed that a 24-h biofilm of this strain subjected to glucose

starvation was unable to translate lacZ in presence of aTc unlike

unstarved 24-h biofilm (Figure S5).

Taken together, this strongly suggests that ofloxacin tolerance of

biofilm is linked to the presence of a functional SOS response

during biofilm formation and is only visible in condition where

biofilms are subjected to a strong nutritional stress.

Figure 3. Antibiotic tolerance profile of starved planktonic and biofilm bacteria. Static cultures were grown for 24 h in M63B1Gluc for wild-
type prototroph TG1 (WT) and with the addition of 25 mg ml21 of leucine, lysine, or cysteine for the corresponding auxotrophs. Planktonic bacteria
from the 24-h static culture were removed from each well and therefore separated from the attached-biofilm cells. (A, C) Planktonic bacteria were
then collected, spun, washed and treated in parallel with the biofilm bacteria (B, D) with ticarcillin (100 mg ml21, 1006MIC) or ofloxacin (5 mg ml21,
806MIC) in the absence of glucose for WT prototroph TG1 (M63B1 medium) or amino acids for the different auxotrophic mutant strains (M63B1Gluc

medium) for 24 h. Survivor cells were quantified by viable cell counts. Percent survival represents the tolerant population after 24 h of treatment
compared to the total number of CFU prior to addition of antibiotics. Equivalent CFU were present in all compared planktonic populations before
antibiotic treatment. Data represented are means 6 SEM of at least three replicates. Asterisks indicate values significantly different from no starvation
condition by the two-tailed unpaired t test: * P#0.01, ** P#0.001, *** P#0.0001 and n.s. (not significant). The genotypes of the three amino acid
auxotrophic mutants constructed in the WT prototroph TG1 genetic background are described in Table S1 or as follows: leucine (Leu: DleuC::GB),
lysine (Lys; DlysA::KmFRT), and cysteine (Cys; DcysD::KmFRT).
doi:10.1371/journal.pgen.1003144.g003

SOS Response–Dependent Biofilm Ofloxacin Tolerance

PLOS Genetics | www.plosgenetics.org 6 January 2013 | Volume 9 | Issue 1 | e1003144



SOS-dependent toxin-antitoxin modules do not influence
the ofloxacin hypertolerance of starved biofilms

The SOS system of E. coli involves the induction of at least 40

genes, for which the expression of specific toxin-antitoxin (TA)

modules was previously associated with the SOS response,

antibiotic tolerance and amino acid starvation [5,25,30]. To

investigate whether TA modules that are part of the SOS regulon

were directly responsible for the described biofilm-associated

ofloxacin tolerance upon starvation, we first deleted the genes

encoding the four currently known functional SOS-dependent TA

modules TisAB, SymER, DinJ/YafQ and YafNO (the HokE toxin

is inactive in E. coli K-12 [31]) in the biofilm-forming background

Figure 4. The high ofloxacin tolerance exhibited by starved biofilms is SOS-response-dependent. The impact of SOS response loss-of-
function mutations DrecA and lexAind3 on the ofloxacin tolerance of starved biofilms for glucose (A), leucine (B), lysine and tryptophan (C). Briefly, all
biofilms were grown for 24 h in M63B1Gluc for all prototrophic strains and with the addition of 25 mg ml21 of leucine, lysine or tryptophan for
corresponding auxotrophic strains. All biofilms were treated for 24 h in M63B1Gluc containing ofloxacin (5 mg ml21). For the glucose starvation
environment, M63B1 without glucose was used instead of M63B1Gluc (Panel A - black bars). Ofloxacin hypertolerance of DleuCDrecA was not restored
when adding the vector control plasmid pAM34 (vector), but complete restoration of high ofloxacin tolerance upon leucine starvation was observed
by in trans complementation using pAM34recA (precA). Complementation of DleuClexAind3 with pAM34recA (precA) failed to fully restore ofloxacin
hypertolerance back to leucine auxotroph levels. Both pAM34 and pAM34recA were maintained by the presence of 0.5 mM IPTG. (D) The SOS
response mutation DrecA (SOS-) did not affect ticarcillin hypertolerance of starved biofilms for leucine (Leu - DleuCDrecA), lysine (Lys – DlysADrecA) or
tryptophan (Trp - DtrpADrecA). Viable cells of the treated biofilm population were quantified by viable cell counts. Percent survival represents the
tolerant population after 24 h of treatment compared to untreated biofilm prior to addition of antibiotics. All compared biofilms had similar numbers
of CFUs prior to antibiotic treatment (data not shown). Data represented are means 6 SEM of at least three replicates. Asterisks indicate values
significantly different by the two-tailed unpaired t test: * P#0.05, ** P#0.01, *** P#0.001, and n.s. (not significant). All strains used here were
originally constructed in the WT TG1 genetic background and are detailed in Table S1. The different SOS response mutant strains made in amino acid
auxotrophic background are derivatives of DleuC::DFRT (Leu - leucine), DlysA::DFRT (Lys - lysine), and DtrpA::DFRT (Trp – tryptophan).
doi:10.1371/journal.pgen.1003144.g004
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of MG1655DleuC carrying the F episome (F’Tet; Table S1).

Simultaneous deletion of these four SOS-dependent TA modules

did not affect the ofloxacin tolerance profile of leucine-starved

biofilms (Figure S6A). Although not regulated by the SOS

response, we also evaluated the role of other well-characterized

TA modules [32] some of which have been shown to be involved

in antibiotic bacterial persistence as well as the Lon protease

known to regulate TA protein stability [33]. However, individual

deletion of the gene coding for the toxin of non-SOS TA modules

(RelE, HipA, MazF, ChpB, YoeB, HicA as well as CcdB, located

on the F plasmid) and for the Lon protease in a leucine auxotroph

background of strain TG1 did not reduce ofloxacin tolerance of

leucine-starved biofilms (Figure S6B).

These results showed that, although a functional SOS stress

response is critical for the increased tolerance to ofloxacin

displayed by starved biofilms, this tolerance is exerted indepen-

dently of known SOS induced TA modules and is maintained in

strains carrying single deletion of the best-characterized SOS-

independent TA modules.

SOS-dependent biofilm tolerance to ofloxacin increases
with biofilm age

Biofilm specificity and SOS-dependence of this increased

ofloxacin tolerance led us to speculate about the possible links

between these two phenomena. Unlike planktonic bacteria,

biofilms are heterogeneous environments in which bacteria can

experience various stresses such as local transient nutritional

deprivation, oxidative stress, local pH, and oxygen tension

modification [7,9], some of which may induce the SOS response

[20,34–37] and then influence biofilm antibiotic tolerance.

Nutrient gradients or waste accumulation together with bacterial

physiological heterogeneity are supposed to increase during

biofilm maturation [7] and therefore potentially impact ofloxacin

tolerance over time upon induction of the SOS response. To assess

this hypothesis, we used aging biofilms to determine whether the

SOS response was indeed induced over time. We monitored the

expression of the SOS-regulated gene sulA using a lacZ transcrip-

tional reporter fusion in an E. coli K-12 strain harbouring the

biofilm-promoting factor F’tet. Transcription of sulA increased

progressively over time in aging biofilms (Figure 5A) similarly to

the increased ofloxacin tolerance exhibited in both the psulA::lacZ

reporter strain and TG1 (Figure 5B). Although a little difference

was observed in ofloxacin tolerance of 48-h biofilms between the

two strains, the overall progressive tolerance was similar in both

genetic backgrounds (Figure 5B). Therefore, the induction of the

SOS response occurring in aging biofilms (Figure 5A) can

confidently be extrapolated to strain TG1. Consistently, the

overall increase ofloxacin tolerance demonstrated in aging biofilm

of wild-type TG1 (Figure 5B) was abolished in both SOS response

mutants DrecA and lexAind3 (Figure 6A). A significant increase of

ofloxacin tolerance was, however, observed between 24- and 48-h

biofilms of strain lexAind3 but not in a recA mutant suggesting that

unknown SOS-independent tolerance mechanisms could act

during certain biofilm development steps.

Additionally, planktonic bacteria displayed a significant reduc-

tion of sulA expression compared to their 24-h biofilm counterparts

(Figure 5A). This is in agreement with our previous observations

demonstrating that, in planktonic bacteria, ofloxacin tolerance was

not increased upon starvation (Figure 3C) and that the SOS

response was not involved in the ofloxacin tolerance of planktonic

bacteria independently of their starvation state (Figure S4), unlike

biofilm bacteria (Figure 4). Taken together, these results demon-

strated that the SOS response was induced in aging biofilms which

increasing tolerance to fluoroquinolone ofloxacin is SOS-response-

dependent.

Discussion

Identification of antibiotic tolerance determinants that are

unique to biofilms has proven to be an arduous task, due in part to

the physiological heterogeneity of these bacterial communities

[1,5,7]. Here we screened for E. coli mutants forming biofilms with

increased antibiotic tolerance in order to reveal transient

physiological states and genetic modifications as tolerance

mechanisms potentially occurring within biofilm subpopulations.

This approach showed that most identified mutants were amino

acid auxotrophs displaying strong tolerance to either ticarcillin or

ofloxacin upon starvation. Biofilm heterogeneity through gener-

ation of amino acid auxotrophs had been previously observed.

Pseudomonas aeruginosa amino acid auxotrophs are commonly

isolated from sputa of cystic fibrosis patients and are generally

more resistant to antibiotics than their prototrophic parental

strains [9,10,38,39]. In contrast to the planktonic cells and biofilm

ticarcillin tolerance displayed by all tested starved amino acid

auxotrophs, leucine, lysine, and cysteine auxotrophs exhibited

increased tolerance to ofloxacin, which occurred only in starved

biofilms. Since ofloxacin is active even against non-growing

bacteria [17,18], general growth arrest did not explain the

observed increase in ofloxacin tolerance. Moreover, while bacteria

starved for glucose, leucine, cysteine, and lysine were highly

tolerant to ofloxacin in biofilms, tryptophan starvation had no

significant effect and starvation for other amino acids led to

intermediate levels of tolerance. While these results confirm that

the observed tolerance was not due to growth arrest, but rather to

an active mechanism, it also suggests that distinct starvation types

may have different physiological consequences in biofilms,

consistent with a recent study demonstrating that starvation for

different amino acids resulted in variations in growth rates and ß-

galactosidase activity [40].

We demonstrated that both a functional RecA and a cleavable

LexA were essential for the ofloxacin tolerance phenotype

exhibited by biofilms starved either for glucose, leucine or lysine

using prototrophic and auxotrophic mutant strains. A RecA-

mediated SOS response was not necessary for increased ticarcillin

tolerance in biofilms suggesting growth arrest as tolerance

determinant unlike ofloxacin. We previously showed that recA

and other SOS response genes were significantly induced in

mature biofilms compared to exponentially grown planktonic cells

[41]. Consistently, our findings demonstrated that induction of the

SOS response was significantly greater in biofilm bacteria than in

their planktonic counterparts. This could account for the biofilm

specificity of ofloxacin tolerance, in which RecA or SOS-regulated

proteins reached a critical level that is not achieved in planktonic

cells, which may explain the lack of ofloxacin tolerance induction

in starved planktonic populations.

Interestingly, despite a lower level of SOS-response, non-starved

planktonic bacteria were more tolerant than their biofilm

counterparts to both ticarcillin and ofloxacin, which is in

agreement with previous observations [3,17]. The ticarcillin

tolerance could be explained by the fact that planktonic stationary

cells are under growth arrest and therefore highly tolerant to

ticarcillin while biofilms are heterogeneous populations containing

a mix of growing and non-growing bacterial cells. For ofloxacin,

the hypothesis of slow or absence of growth cannot satisfactorily

explain the higher planktonic cells tolerance since it kills

independently of growth. Stationary phase cultures are known to

generate more persister cells than exponentially growing cultures,
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even more than biofilm cells, therefore suggesting some level of

planktonic and biofilm specificity involved in generation of

persisters [17]. In absence of starvation, it is therefore possible to

imagine that a higher level of persisters occurring in planktonic

cells would explain their higher tolerance. Moreover, the ofloxacin

tolerance of planktonic bacteria is likely due to a mechanism other

than the SOS response since a DrecA did not significantly impair

the overall tolerance of both non-starving and starving popula-

tions. The latter results strengthen the notion that the induction of

ofloxacin tolerance in starving biofilms is likely to involve

mechanisms different than those currently described in planktonic

cells [5,42,43].

Although our study evaluates ofloxacin only, fluoroquinolones

are known to induce the SOS response in E. coli [24,29]. Here we

showed that induction of the SOS response upon exposure to

bactericidal concentrations of ofloxacin (806MIC) was unlikely to

occur in absence of carbon source, i.e. in full deprivation state, due

to the absence of protein synthesis. Hence, both induction of the

SOS response during biofilm formation and nutrient depletion

(carbon source or amino acids) are necessary but not sufficient to

lead to the observed biofilm-specific high tolerance to ofloxacin.

The SOS response is involved in bacterial adaptive responses

and horizontal gene transfer potentially leading to the onset of

antibiotic resistance in a broad range of bacterial species [44–49].

The SOS response was also previously shown to induce persistent

cells in planktonic populations during treatment with the

fluoroquinolone ciprofloxacin [24,25]. ‘‘Persisters’’ are phenotypic

variants that can revert to wild-type antibiotic sensitivity [4,5].

They are believed to be the end result of stochastic endogenous

stress leading to growth arrest, resulting in the shutdown of

bactericidal antibiotic targets and therefore the creation of

multidrug-tolerant cells [5,6]. Among possible targets, the SOS

response was shown to induce expression of the TA module TisAB

[25]. However, TisAB-dependent ciprofloxacin persisters were

only observed in exponentially growing bacteria [25], consistent

with the fact that none of the TA modules tested in our study was

required for the biofilm-associated increased tolerance to ofloxa-

cin, including known SOS-induced TA modules TisAB, SymER,

DinJ-YafQ and YafNO. Our results therefore indicate that

starvation in biofilm bacteria induces a SOS-dependent ofloxacin

tolerance, but independently of TA loci induced by the SOS

response. As raised above, the ability in generating persisters

differs greatly between planktonic and biofilms cells [17], therefore

it can be speculated that ofloxacin-tolerant persisters in biofilms

could be physiologically distinct from their planktonic persister

counterparts. Future work should concentrate precisely on

identifying which SOS-gene(s), among the over 40 known SOS-

regulated genes [50,51], is required to support this biofilm

increased tolerance towards ofloxacin.

Since we showed that starvation, but not auxotrophy per se,

promotes the high ofloxacin tolerance observed within biofilms,

our results demonstrate a general link between nutrient limitation

and formation of highly antibiotic-tolerant populations. Starva-

tion to amino acids or carbon sources induces the stringent

response through the synthesis of (p)ppGpp via both RelA and

SpoT [21]. Indeed, while we could not assess the role of SpoT

since a relA spoT double mutant, i.e. a ppGpp0 strain, is

auxotroph to multiple amino acids [23], we demonstrated that

relA plays a role in observed ofloxacin biofilm-specific hypertoler-

ance. However, the role of this response seemed less important

than that of the SOS response, since the stringent response was

only partially involved following leucine starvation. Nguyen et al.

recently demonstrated that antibiotic tolerance exhibited in

nutrient-limited biofilms of P. aeruginosa depended on the stringent

response [12]. It can therefore be imagined that multiple

pathways might play a significant role in the biofilm-associated

Figure 5. Induction of the SOS response and ofloxacin tolerance in aging biofilms. (A) Induction of the SOS response was monitored by b-
galactosidase assay in aging biofilms and planktonic cells using an E. coli K-12 derivative carrying a psulA::lacZ transcriptional fusion and the biofilm
promoting factor F’tet. (B) The influence of biofilm age on ofloxacin tolerance was evaluated in biofilms of the reporter strain psulA::lacZ F’tet (black
bars) and wild-type TG1 (white bars). Briefly, all biofilms were grown for 24, 48, 72 and 96 h in M63B1Gluc with medium renewal every 24 h. In (B)
biofilms were treated for 24 h with ofloxacin (5 mg ml21, 806MIC) in M63B1Gluc, therefore in absence of starvation. Survivors were quantified by
viable cell counts. Percent survival represents the tolerant population after 24 h of treatment compared to untreated biofilm prior to addition of
antibiotics. Data represented are mean 6 SEM of at least three replicates. Asterisks indicate values significantly different than 24-h biofilms. Statistics
were performed by the two-tailed unpaired t-test: * P#0.001 and ** P#0.0001.
doi:10.1371/journal.pgen.1003144.g005
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ofloxacin tolerance of starved biofilms, with their role depending

on conditions prevailing within biofilms. The manner in which

these two distinct responses become integrated at the molecular

level to promote high biofilm-specific ofloxacin tolerance remains

unclear at the moment.

Nutrient deprivation might occur in biofilm populations

located in micro-niches of heterogeneous biofilms, leading to

higher tolerance to antibiotics [7]. Alternatively, adverse physi-

cochemical parameters such as oxygen rarefaction prevailing

within deep biofilm layers could slow down bacterial metabolism,

thereby causing bacteria to enter a quasi-auxotrophic state even

in the presence of sufficient available carbon sources. In support

of this hypothesis, we showed that ofloxacin tolerance increased

with biofilm age, suggesting that nutrient-depleted pockets or

starved layers of cells may increase in number or size with biofilm

maturation, or else be accompanied by a reduction in nutrient

flow. Interestingly, Allison et al. recently showed that reactivation

of the metabolism of E. coli persister cells restored antibiotic

sensitivity both in planktonic and biofilms cells [52]. In parallel

with our study, the addition of exogenous leucine during

antibiotic treatment of leucine auxotroph biofilms restored

sensitivity to levels greater than those of the parent wild-type

prototroph treated without leucine, suggesting that the addition

of amino acids may also impact overall antibiotic tolerance.

While the study by Allison et al. did not specifically involve

ofloxacin, it clearly suggests that nutrient depletion might play a

central role in the ability of biofilm-associated bacteria to tolerate

otherwise lethal concentrations of antibiotics. Although lethal

concentrations of ofloxacin induce the SOS response, we show

here that increased tolerance of aging biofilms is SOS-dependent

and is correlated with increased SOS induction in biofilm

bacteria. While this result is consistent with SOS induction in

aging biofilm-like E. coli colonies on agar plates [37], it also

suggests that biofilm areas in which local nutrient depletion and/

or various stresses (pH drop, reduction of oxygen, etc) occur may

cause SOS induction and favour high antibiotic tolerance and

thus persistence.

In conclusion, we show that starvation potentially occurring

locally in heterogeneous and diffusion-limited biofilm microenvi-

ronments leads to biofilm-specific SOS-dependent tolerance to the

fluoroquinolone ofloxacin. Identification of the SOS response as a

key molecular determinant in antibiotic tolerance in nutrient-

limited biofilms reveals a possible general mechanism leading to

high, but transient tolerance to a medically relevant class of

antibiotics. It underlines the importance of the SOS response in

the different bacterial mechanisms counteracting the effects of

antibiotics, and it raises the possibility of using the SOS response

as a target for reducing the emergence of biofilm tolerance to

antibiotics in clinical settings [53–55].

Materials and Methods

Bacterial strains, plasmids, and growth conditions
Bacterial strains and plasmids used in this study are described in

Table S1. All experiments were performed in 0.4% glucose

M63B1 minimal medium (M63B1Gluc) or in lysogeny broth (LB)

medium [56] at 37uC unless specified otherwise. Antibiotics were

added when required at the following concentrations: kanamycin

(Km), 50 mg ml21; tetracycline (Tet), 15 mg ml21; chloramphen-

icol (Cm), 25 mg ml21; spectinomycin (Spec), 25 mg ml21. Amino

acids were added to M63B1Gluc when required to a final

concentration varying from 1 to 100 mg ml21. All chemicals were

purchased from Sigma-Aldrich (St. Louis, MO).

Figure 6. Ofloxacin tolerance in aging biofilms is SOS-response-dependent. (A) The influence of the SOS response on the ofloxacin
tolerance of aging biofilms was evaluated and compared between biofilms of wild-type TG1 (WT), DrecA, and lexAind3. (B) A close-up of the data
obtained in panel A for the 24- and 48-h biofilms. Briefly, all biofilms were grown for 24, 48, 72 and 96 h in M63B1Gluc with medium renewal every
24 h and treated for 24 h with ofloxacin (5 mg ml21, 806MIC) in M63B1Gluc (no starvation). Survivors were quantified by viable cell counts. Percent
survival represents the tolerant population after 24 h of treatment compared to untreated biofilm prior to addition of antibiotics. All compared
biofilms had similar numbers of CFUs prior to antibiotic treatment (data not shown). Data represented are mean 6 SEM of at least three replicates.
Asterisks indicate values significantly different than WT (panel A). Statistics were performed by the two-tailed unpaired t-test: * P#0.05, ** P#0.01,
*** P#0.0001, and n.s. (not significant). The genotypes of the different strains used are detailed in Table S1 or as follows: WT (TG1), DrecA
(TG1DrecA::KmFRT ), and lexAind3 (TG1lexAind3).
doi:10.1371/journal.pgen.1003144.g006
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Biofilm formation assay
A static biofilm formation assay was performed as previously

described using 96-well polyvinyl chloride (PVC) microtiter plates

(Falcon; Becton Dickinson Labware, Oxnard, CA) [57,58].

Prototrophic bacteria: Overnight cultures grown in LB medium with

required antibiotic(s) were diluted into M63B1Gluc to an OD600 of

0.05 and used as inoculum. Auxotrophic bacteria: One ml of an

overnight culture grown in LB medium was washed twice in

M63B1 (to remove excess amino acids), normalized to an OD600

of 0.05 in M63B1Gluc and supplemented with 25 mg ml21 of the

lacking amino acid corresponding to each evaluated auxotroph.

Each microtiter well was then inoculated with 100 ml of the OD600

0.05 inoculum, with a minimum of three wells per bacterial strain

for each assay, and incubated at 37uC for 24, 48, 72 or 96 hours

with renewal of growth medium every 24 h.

Biofilm bacteria/biomass detection methods
Crystal violet staining. Biofilms attached to the sides of

microtiter wells were thoroughly rinsed in water to remove

unattached bacterial cells and stained with 125 ml of crystal violet

(1% v/v) as previously described [57,58]. Quantification of the stained

biomass was achieved by adding 150 ml per well of a dissolving

solution (ethanol (80%)/acetone (20%) (v/v)). Subsequently,

dissolution of the bound crystal violet in each well was

quantified by spectrometry at an absorbance of 595 nm.
Metabolic activity of biofilms in microtiter

wells. Metabolic activity associated with biofilm cells was

determined by the XTT (2,3-bis 2-methoxy-4-nitro-5-sulfo-phe-

nyl-2H-tetra-zolium-5-carboxanilide) reduction assay as previously

described [59]. Briefly, each well containing biofilms was washed

once with 125 ml of phosphate-buffered saline (PBS: 10 mM

sodium phosphate, pH 7.4, 0.9% NaCl) to remove unattached

cells, and filled with 125 ml of a PBS solution containing

50 mg ml21 XTT and 1 mM menadione. Plates were incubated

at 37uC for 3.5 h in the dark, allowing metabolically active

bacterial cells to reduce the XTT, which was then quantified

colorimetrically by measuring absorbance at 492 nm.
Colony-forming units (CFU) of biofilms in microtiter

wells. CFU of biofilms attached to the sides of microtiter wells

were determined. Each well containing a biofilm was washed once

with M63B1 to remove unattached cells and filled with 100 ml of

the same medium enabling bacterial survival without growth.

CFU determination was performed by serial dilutions on washed

biofilms that were mechanically disrupted by pipetting.

Minimal inhibitory concentration (MIC) determination
MIC values of ticarcillin (Ticarpen; GlaxoSmithKline, Marly-

le-Roi, France) and ofloxacin (Sigma-Aldrich) were determined by

macrodilutions in M63B1Gluc as previously described [60]. MICs

of ticarcillin and ofloxacin for TG1gfp were determined to be 1 and

0.0625 mg ml21, respectively.

Antibiotic susceptibility assays
Biofilm bacteria. Biofilms were formed for 24 h as described

above. Unattached and planktonic bacteria were first removed

from 24 h pre-formed biofilms and wells were then filled with

100 ml of M63B1 containing a specific antibiotic concentration,

unless noted otherwise. After 24 h of incubation at 37uC, the

antibiotic susceptibility of the treated biofilm population versus a

24 h biofilm was determined by CFU counts and/or colorimetric

differences using the XTT-reduction assay as mentioned above.
Planktonic bacteria. Bacterial cultures were grown statically

using 96-well microtiter plates for 24 h at 37uC from a starting

OD600 of 0.05 in 100 ml of M63B1Gluc containing 25 mg ml21 of a

specific amino acid if required. These bacterial cultures were

moved by pipetting to new microtiter plates in order to have only

the planktonic population and were then harvested from 12 wells

in triplicate by centrifugation and resuspended in 100 ml of

M63B1Gluc containing either ticarcillin (100 mg ml21) or ofloxacin

(5 mg ml21). Antibiotic treatment was performed for 24 h at 37uC,

following which the bacteria were centrifuged and washed once

with M63B1 medium to remove any traces of antibiotics prior to

performing dilutions to determine CFU.

Transposon mutagenesis
Mariner transposon mutagenesis was performed as previously

described [61]. Briefly, plasmid pSC189 was conjugated from S17-

1 lPir (pSC189) into recipient strain TG1gfp. The resulting

transconjugants were selected on LB agar plates containing the

required antibiotics (Km and Cm) and approximately 10,000

transposon mutants were transferred to 96-well microtiter plates.

Screening of the transposon library for antibiotic
tolerance in biofilms

Our transposon library was used to identify mutants with in-

creased biofilm tolerance to the antibiotics ticarcillin (100 mg ml21

- 100 times the MIC) and ofloxacin (3.125 mg ml21 - 50 times

the MIC). Microtiter plates containing 100 ml/well of fresh LB

with the required antibiotics (Km and Cm) were inoculated

directly from each plate of the frozen library (in 15% glycerol)

using a 96-pin replicator and incubated statically at 37uC
overnight. Overnight cultures were then transferred with a 96-

pin replicator to PVC microtiter plates containing 100 ml of

M63B1Gluc to initiate growth of static biofilms for 24 h as

described above. Biofilm inoculation via a 96-pin replicator

reproduced biofilms and antibiotic susceptibility profiles similar

to those normalized by optical density (data not shown). Each

overnight plate was duplicated for biofilm assays in order to

produce a set of plates for separately assessing the antibiotic

susceptibilities to ticarcillin and ofloxacin. Following the 24-h

biofilm formation period, each set of transposon mutant plates

containing preformed biofilms was treated with either ticarcillin

or ofloxacin in fresh M63B1Gluc medium for 24 h as mentioned

earlier. Antibiotic susceptibility of each mutant towards the

two antibiotics was determined by colorimetric differences

from the wild-type parent using the XTT-reduction assay

described below. Transposon mutants displaying a 2-fold

increase in tolerance were first chosen for further characteriza-

tion, but due to the relatively low number of such mutants, we

subsequently decreased our selection criteria to 1.5- and 1.25-

fold tolerance increase to ticarcillin and ofloxacin, respectively.

Using these arbitrary cut-off values likely led to the selection of

false positive, however the antibiotic hypertolerance of all

selected mutants based on these values were carefully validated

by first transducing the mutations back into WT strain TG1 by

P1vir prior to mapping their localization within the genome by

arbitrary PCR.

Arbitrary PCR
Transposon insertion sites were determined as previously

described [62]. Briefly, this method involves a first round of

PCR using a primer specific for the right end of the transposon

(IR2) and an arbitrary primer (ARB1 or ARB6). A second PCR

was then performed on the product from the first PCR using a

primer specific to the rightmost end of the transposon (IR2-60-5)

and a primer identical to the 59 end of the arbitrary primer

(ARB2). Arbitrary PCR primer sequences are listed in Table S2.

SOS Response–Dependent Biofilm Ofloxacin Tolerance

PLOS Genetics | www.plosgenetics.org 11 January 2013 | Volume 9 | Issue 1 | e1003144



Test of amino acid auxotrophy
One ml of an overnight LB culture of each putative auxotroph

was washed twice in M63B1Gluc to remove all excess of amino

acids and the resuspended pellets were used to inoculate either a

minimal medium liquid culture (M63B1Gluc) or an agar plate of

M63B1Gluc. Growth was monitored from an overnight incubation

at 37uC. Absence of growth suggested amino acid auxotrophy,

which was confirmed by the addition of the corresponding amino

acid at 25 mg ml21 for growth restoration in minimal medium

(M63B1Gluc) using both liquid and agar plate cultures.

Construction of deletion mutant strains
The different E. coli mutant strains used in this study originated

either from the Keio Collection [63], transferred to the

appropriate genetic background by P1vir phage transduction, or

were directly constructed using the l-red linear DNA gene

inactivation method [64,65]. When required, kanamycin resis-

tance markers flanked by two FRT sites were removed using Flp

recombinase [66]. Primers used in this study are listed in Table

S2. All mutations were confirmed by PCR and/or sequence

analysis.

Transcriptional and translational analysis of the SOS
response

Transcriptional analysis in biofilms. ß-galactosidase en-

zymatic activity was assessed to determine the induction of the

SOS response under various conditions using the reporter strain

psulA::lacZ F’tet. Biofilms were formed on the sides of microtiter

wells as described above. Briefly, the reporter strain psulA::lacZ

F’tet was initially grown in LB medium with required antibiotic(s),

diluted into M63B1Gluc to an OD600 of 0.05 and used as inoculum.

Each microtiter well was then inoculated with 100 ml of the OD600

0.05 inoculum, with a minimum of three wells and incubated at

37uC for 24, 48, 72 or 96 hours with renewal of growth medium

every 24 h. To determine the expression of sulA in aging biofilms,

planktonic bacteria were removed from each well and the ß-

galactosidase activity was directly measured on the biofilm

bacteria as previously described [67].

Transcriptional analysis of planktonic bacteria. As

described above, planktonic bacteria sharing the same environ-

ment (microtiter well) as biofilm cells were used to determine the

expression of the SOS response. Growth conditions were the same

as those described above for biofilm growth, but instead of using

the attached bacterial cells (biofilm), the free floating cells

(planktonic – 24 h) from three independent pools of 12 wells

were collected for the analysis. Bacteria from the planktonic

population were then harvested by centrifugation, washed, and

resuspended into 100 ml of M63B1 in which the ß-galactosidase

activity was directly measured as previously described [67].

Translational analysis. Biofilms of a reporter strain

MG1655KmRExTetlacZ_F’tet were grown M63B1Gluc for 24 h

as described above. This reporter strain contains a lacZ gene under

the control of an inducible promoter (PLtetO-1) by the addition of

anhydrotetracycline (aTc) [68]. To determine whether lacZ was

translated in conditions of starvation, 24-h biofilms were washed

and exposed to 100 ml per well of M63B1Gluc (control) or M63B1

(glucose starvation) with increasing concentration of aTc (0, 5,

50 ng ml21) during a period of 1 h after which biofilms were

washed and resuspended in M63B1. Crude protein extracts were

prepared and equivalent amounts of proteins were first loaded on

a SDS-PAGE gel, proteins were transferred to a polyvinylidene

difluoride membrane, and ß-galactosidase immunodetection was

performed using a 1:10,000 dilution of mouse antiserum raised

against ß-galactosidase. A planktonic culture of the same reporter

strain was used as a control to verify the efficiency of the induction

system in non-starving conditions.

Statistical analysis
Analyses were performed using Prism 5.0 for Mac OS X

(GraphPad Software, Inc.). Each experiment was performed at

least three times.

Supporting Information

Figure S1 Strong biofilm formation displayed by E. coli K-12

strain TG1. Bacterial cells of strain TG1 previously grown in LB

were diluted to an OD600 of 0.05 in minimal medium M63B1Gluc,

inoculated into PVC microtiter plates (100 ml/well) and incubated

at 37uC for 24 h. (A) Images of PVC wells representing 24 h TG1

biofilms revealed by dissolution of the attached biomass previously

stained by crystal violet (CV) as described in Materials and

Methods. (B) Quantification of 24 h biofilms measuring the

quantity of dissolved CV previously bound by biofilms. The high

propensity of strain TG1 to form biofilm in this in vitro setting was

demonstrated by spectrophotometric analysis at 570 nm.

(TIF)

Figure S2 Leucine starvation leads to high antibiotic tolerance

in biofilms of E. coli TG1. The impact of leucine deprivation on

biofilm-associated antibiotic tolerance was evaluated using a

leucine auxotroph (DleuC – white bars) and its wild-type (WT –

dark bars) prototroph TG1. Biofilms were grown for 24 h in

M63B1Gluc for the WT and with the addition of 25 mg ml21 of

leucine for the auxotroph. Biofilms were treated for 24 h with (A)

ticarcillin (100 mg ml21; 1006MIC) or (B) ofloxacin (5 mg ml21,

806 MIC) in M63B1Gluc containing different leucine concentra-

tions. Survivors were quantified by viable cell counts. Percent

survival represents the tolerant population after 24 h of treatment

compared to untreated biofilm prior to addition of antibiotics. All

compared biofilms had similar numbers of CFUs prior to

antibiotic treatment (data not shown). Data represented are means

6 SEM of at least three replicates. Asterisks indicate values

significantly different from biofilms in the absence of either leucine

or glucose by the two-tailed unpaired t-test: * P#0.05, ** P#0.01,

*** P#0.0001, and n.s. (not significant). The genotype of the

leucine auxotroph mutant strain used is TG1DleuC::GB.

(TIF)

Figure S3 The stringent response is partially implicated in

ofloxacin biofilm-specific hypertolerance. The impact of stringent

response loss-of-function mutation DrelA on the ofloxacin tolerance

of biofilms starved for glucose (A) and leucine (B) was evaluated.

Briefly, biofilms were grown for 24 h in M63B1Gluc for all

prototrophic strains and with the addition of 25 mg ml21 of

leucine for the corresponding auxotrophic strains. All biofilms

were treated for 24 h in M63B1Gluc containing ofloxacin

(5 mg ml21). For the glucose starvation environment, M63B1

without glucose was used instead of M63B1Gluc (Panel A - dark

bars). Partial ofloxacin sensitivity was restored by DrelA in biofilms

starved for leucine but not glucose when compared to non-starved

biofilms. Viable cells of the treated biofilm population were

quantified by viable cell counts. Percent survival represents the

tolerant population after 24 h of treatment compared to untreated

biofilm prior to addition of antibiotics. All compared biofilms had

similar numbers of CFUs prior to antibiotic treatment (data not

shown). Data represented are means 6 SEM of at least three

replicates. The genotypes of all the strains used here are described

in Table S1 or as follows: WT (TG1), DrelA (TG1DrelA::KmFRT),
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DleuC (TG1DleuC::DFRT), DleuCDrelA (TG1DleuC::DFRTDre-

lA::KmFRT).

(TIF)

Figure S4 The impact of the SOS response on the ofloxacin

tolerance of planktonic bacteria as compared to biofilm. Static

cultures were grown for 24 h in M63B1Gluc in microtiter wells.

Planktonic bacteria from the 24-h static culture were removed from

each well and therefore separated from the attached-biofilm cells.

Planktonic bacteria were then collected, spun and washed. Both

biofilms and planktonic bacteria were treated in medium containing

ofloxacin (5 mg ml21, 806 MIC) with glucose (white bars;

M63B1Gluc) or not (black bars; M63B1) for 24 h. Survivor cells

were quantified by viable cell counts. Percent survival represents the

tolerant population after 24 h of treatment compared to the total

number of CFU prior to addition of antibiotics. Equivalent CFU

were present in all compared planktonic populations and in all

biofilm population before antibiotic treatment. Data represented

are means 6 SEM of at least three replicates. Asterisk indicates

values significantly different by the two-tailed unpaired t test:

* P#0.05 and n.s. (not significant). The genotypes the strains used

are are described in Table S1 or as follows: WT (TG1) and DrecA

(TG1DrecA::KmFRT).

(TIF)

Figure S5 The impact of starvation on translation efficiency.

The influence of starvation on the production of b-galactosidase in

24-h biofilms of an E. coli strain containing a promoter PLtetO-1

inducible by aTc. Twenty-four-h biofilms were exposed to various

concentration of aTc (0, 5, 50 ng ml21) for one hour in

M63B1Gluc (control) or M63B1 (glucose starvation). Following

the one-hour exposure, crude protein extracts were prepared and

analysed by immunodetection for b-galactosidase protein detec-

tion. An exponential planktonic culture was used as a positive

control of the system.

(TIF)

Figure S6 Toxin-antitoxin modules do not contribute to biofilm-

associated increased ofloxacin tolerance upon leucine starvation.

(A) The impact of the four SOS-TA modules on ofloxacin

tolerance in biofilms upon starvation to leucine (DleuC) compared

to no starvation (WT). SOS-Dep TA (+) strains in WT

prototrophic (WT; MG1655DlacF’tet) and leucine auxotroph

(DleuC; MG1655F’tetDlacDleuC::KmFRT) backgrounds were used.

MG1655DlacF’tet (WT; SOS-Dep TA (+)) and its leucine

auxotroph MG1655F’tetDlacDleuC::KmFRT (DleuC; TA (+)) were

compared to their respective negative SOS-Dep TA strains (TA

(2)). (B) The impact of non-SOS-TA modules as well as Lon

protease on biofilm-associated ofloxacin tolerance upon starvation

to leucine (5 mg ml21, 806MIC) for 24 h and survivor cells were

quantified by viable cell counts. Non-starved biofilms of WT TG1

were compared to biofilms starved for leucine using auxotrophic

strains to leucine (DleuC::DFRT) deficient in various TA loci or

Lon. Percent survival represents viable cells after 24 h of treatment

compared to untreated biofilm prior to addition of antibiotics.

Data represented are means 6 SEM of at least three replicates. All

strains used for panel B were made in a TG1 genetic background

and are described in Table S1 or as follows: DleuC (DleuC::DFRT),

DrelE (DleuC:: DFRTDrelE::KmFRT), DmazF (DleuC::DFRTD-
mazF::KmFRT), DhipA (DleuC::DFRTDhipA::KmFRT), DchpB

(DleuC::DFRTDchpB::KmFRT), DhicA (DleuC::DFRTDhi-

cA::KmFRT), DyoeB (DleuC::DFRTDyoeB::KmFRT), and DccdB

(DleuC::GBDccdB::Spec).

(TIF)

Table S1 Bacterial strains and plasmids used in this study.

(DOCX)

Table S2 Oligonucleotide primers used in this study.

(DOCX)
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