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Metabolomic profiles delineate 
mycolactone signature in Buruli 
ulcer disease
Fatoumata Niang1,2, Fred S. Sarfo3, Michael Frimpong4, Laure Guenin-Macé1,2, 
Mark Wansbrough-Jones5, Timothy Stinear6, Richard O. Phillips3,7,* & Caroline Demangel1,2,*

Infection of human skin with Mycobacterium ulcerans, the causative agent of Buruli ulcer, is 
associated with the systemic diffusion of a bacterial macrolide named mycolactone. Patients with 
progressive disease show alterations in their serum proteome, likely reflecting the inhibition of 
secreted protein production by mycolactone at the cellular level. Here, we used semi-quantitative 
metabolomics to characterize metabolic perturbations in serum samples of infected individuals, and 
human cells exposed to mycolactone. Among the 430 metabolites profiled across 20 patients and 20 
healthy endemic controls, there were significant differences in the serum levels of hexoses, steroid 
hormones, acylcarnitines, purine, heme, bile acids, riboflavin and lysolipids. In parallel, analysis of 
292 metabolites in human T cells treated or not with mycolactone showed alterations in hexoses, 
lysolipids and purine catabolites. Together, these data demonstrate that M. ulcerans infection causes 
systemic perturbations in the serum metabolome that can be ascribed to mycolactone. Of particular 
importance to Buruli ulcer pathogenesis is that changes in blood sugar homeostasis in infected 
patients are mirrored by alterations in hexose metabolism in mycolactone-exposed cells.

Buruli ulcer (BU) is a necrotizing disease of the skin caused by infection with Mycobacterium ulcerans, 
the third most prevalent mycobacterial pathogen in humans after M. tuberculosis and M. leprae1. How 
M. ulcerans is transmitted to humans is not fully understood, however there is increasing evidence that 
breaches in the skin barrier and exposure to contaminated environments are both required2–5. Since the 
1980s, BU has spread in low-income developing countries of West Africa6. If not diagnosed or treated 
appropriately, it can result in irreversible deformity, functional disability and life-threatening secondary 
infections. The current diagnosis methods include acid-fast staining, culture or amplification of bacterial 
DNA from fine needle aspirates, swabs or skin biopsies7. Treatment consists of the daily administration of 
rifampicin and streptomycin for eight weeks8,9, and excision surgery of large lesions. Although effective, 
control programs are costly, reactive rather than pro-active, and globally unsuited to field conditions. In 
order to improve the detection and management of BU, it is essential to improve our understanding of 
the molecular and cellular mechanisms underpinning BU pathogenesis10.

M. ulcerans is unique amongst human pathogens in its capacity to produce a polyketide-derived 
macrolide called mycolactone11–14. Bacterial production of mycolactone is essential for BU formation, 
as shown by the avirulence of mycolactone-deficient strains of M. ulcerans in rodent models of infec-
tion. While bacteria grow primarily in host skin tissues, mycolactone gains access to the peripheral 
circulation15,16. Foodpad infection of mice with wild-type, but not mycolactone-deficient strains of M. 
ulcerans, induced intrinsic defects in blood T cells evidenced by their incapacity to produce cytokines 
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upon activation ex vivo15, suggesting that mycolactone modulates the functional biology of T cells at the 
systemic level. In vitro, mycolactone altered the expression of homing receptors by resting T cells, and 
the production of cytokines by activated T cells, without altering their viability17–19. Mycolactone was 
shown to operate at the post-transcriptional level, and independently of mTOR17,20. Although its precise 
mechanism of action remains to be elucidated, there is recent evidence that mycolactone blocks the 
co-translational translocation of secreted and membrane-bound proteins into the endoplasmic reticu-
lum21,22. In line with this finding, the proteomic profiling of serum samples of patients with BU showed 
significant reductions in the level of multiple soluble proteins, including T cell cytokines23.

To further explore the physiological consequences of bacterial production of mycolactone in infected 
hosts, we compared the metabolic perturbations induced by infection with M. ulcerans in human hosts 
to those induced by mycolactone treatment in human cells. Since bacterially-produced mycolactone 
diffuses from cutaneous lesions into the peripheral circulation, we focused our analysis on serum sam-
ples. Jurkat T cells were selected as a model, because leukocytes are exposed to mycolactone during M. 
ulcerans infection15,16, and Jurkat T cells display the same functional defects as primary T cells upon 
exposure to mycolactone in vitro17–19. In addition to provide novel insight into the molecular mecha-
nisms underlying BU pathogenesis, our study delineates mycolactone signature in the serum metabo-
lome of infected hosts.

Methods
Ethics statement. The ethics committee at the School of Medical Sciences, Kwame Nkrumah University 
of Science and Technology, Kumasi, Ghana approved the protocol of this study (CHRPE/11/28/06). All 
adult subjects provided written informed consent, and a parent or guardian of any child participant 
provided informed consent on their behalf. The review board also gave approval to document informed 
consent by use of thumbprints for illiterate participants. Studies using human subjects were performed 
in accordance with the approved guidelines and regulations.

Human studies. Two cohorts of patients and age- and gender-matched healthy controls were recruited 
for the purposes of this study (Table 1). The first cohort was used to compare the metabolic profiles of BU 
patients and controls from the same community. The second cohort was recruited subsequently, in order 
to confirm altered cortisol levels in BU patients, and detect an eventual association with lesion severity. 
Patients were from the middle forest belt of Ashanti Region of Ghana, from Buruli ulcer endemic villages 
near Tepa Government Hospital (Ahafo Ano North District), Agogo Presbyterian Hospital and Nkawie 
Government Hospital (Atwima Nwabiagya district). They were included in the study if they met the 
WHO clinical case definition of M. ulcerans disease; were not pregnant; were not receiving antibiotic 
treatment; had no history of tuberculosis, leprosy, or liver, kidney, or hearing impairment. On the day 
of clinical diagnosis, fine needle aspirates were taken for PCR amplification of IS2404 repeat sequence 
of M. ulcerans24. Punch biopsy specimens of 4 mm diameter were also stained for acid-fast bacilli and 
cultured on Lowenstein-Jensen slopes, as previously described25. Patients were started on streptomycin 
15 mg/kg and rifampicin 10 mg/kg treatment daily for 8 weeks, as recommended by the WHO, at village 
health posts under direct observation. Blood samples were also collected at the day of clinical diagnosis 
of BU, before the initiation of antibiotic therapy. Patients were on empty stomach, in an overnight-fasted 
state. They were asked if they had taken antibiotic or other medication. Only those who had responded 
negatively and had confirmed BU were subsequently included in the study. Healthy individuals from the 
same endemic areas also provided serum samples to serve as a comparator. Serum sampling, freezing 

Cohort 1 Healthy controls (n = 20) Patients with BU (n = 20)

Age, median (range), years 12 (6–35) 13 (7–35)

Sex, no. Male/no. Femelle 12/8 12/8

Ulcer category

I (lesion size ≤ 5 cm in widest diameter) 7

II (lesion size ≤ 15 cm in widest diameter) 13

Cohort 2 Healthy controls (n =  29) Patients with BU (n =  38)

Age, median (range), years 13 (5–63) 13 (5–75)

Sex, no. Male/no. Femelle 14/15 18/20

Ulcer category

I (lesion size ≤ 5 cm in widest diameter) 16

II (lesion size ≤ 15 cm in widest diameter) 10

III (lesion size > 15 cm in widest diameter 
or multiple lesions) 12

Table 1.  Human cohort description.
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and storage were performed in a standardized manner, as follows. Blood samples (8 ml) were collected in 
the field in BD Vacutainer Serum separator tubes, mixed and left to clot according to the manufacturer’s 
recommendations. Tubes were then transported within 2 h on ice to the laboratory, for centrifugation and 
serum separation. The recovered serum (3–4 ml) was aliquoted in Eppendorf SafelockTM tubes and stored 
at − 80oC. Samples of cohort 1 individuals were shipped to Institut Pasteur (Paris, France) on dry ice, 
thawed and re-aliquoted in 100 μ l-containing Eppendorf Safelock tubes prior to shipping to Metabolon 
Inc. on dry ice. Serum samples of cohort 2 individuals were shipped to St George’s University of London 
on dry ice, and assayed for cortisol using Siemens Advia Centaur Competitive Immunoassay and Direct 
Chemiluminescent Technology.

Mycolactone. Mycolactone A/B was purified from M. ulcerans bacterial cell pellets (strain 1615, ATCC 
35840) as previously described11. Mycolactone was quantified by measure of absorbance (λ max =  362 nm; 
log ε  =  4.29)26, and purity controlled by mass spectrometry. A stock solution (20 μ M) was prepared in 
ethanol solvent that was diluted 1000X for T cell treatments. Controls exposed to the same volume of 
vehicle were included.

Cellular studies. Jurkat E6.1 (ATCC TIB-152TM) T cells were cultured in RPMI GlutamaxTM (Life 
Technologies), supplemented with 10% heat-inactivated fetal calf serum (FCS) (Invitrogen) and peni-
cillin/streptomycin (100 U/ml, 100 μ g/ml). Cells in exponential phase of growth were exposed to 20 nM 
mycolactone (n =  6) or ethanol (n =  5) for 16 h. Cells were recovered and dried by two rounds of cen-
trifugation at 750 g for 3 min, flash-frozen, and stored at − 80 °C until analysis.

Metabolomic profiling. Semi-quantitative metabolomic analyses were performed by Metabolon 
Inc., as described (http://www.metabolon.com/). On the day of extraction, serum samples (100 μ l) or 
cell pellets (50 μ l) were thawed on ice. Proteins were precipitated with methanol, using an automated 
liquid handler (Hamilton LabStar). The methanol contained four standards, which permitted the mon-
itoring of extraction efficiency. The resulting extract was divided into three fractions that were placed 
briefly on a TurboVap®  (Zymark) to remove the organic solvent, frozen and dried under vacuum. 
Samples destined to LC/MS analysis were reconstituted in acidic or basic LC-compatible solvents, 
each of which contained 11 or more injection standards at fixed concentrations. One aliquot was ana-
lyzed using acidic positive ion optimized conditions and the other using basic negative ion optimized 
conditions in two independent injections using separate dedicated columns. Extracts reconstituted in 
acidic conditions were gradient eluted using water and methanol both containing 0.1% formic acid, 
while the basic extracts, which also used water/methanol, contained 6.5 mM ammonium bicarbonate. 
The samples destined for GC/MS analysis were re-dried under vacuum desiccation for a minimum 
of 24 h prior to being derivatized under dried nitrogen using bistrimethyl-silyl-triflouroacetamide. 
Technical replicates created from a homogenous pool containing a small amount of all study samples 
were included. The UPLC-MS/MS platform used a Waters Acquity UPLC with Waters UPLC BEH C18 
columns (2.1 ×  100 mm, 1.7 μ m) and a ThermoFisher LTQ mass spectrometer. GC-MS was performed 
on a Thermo-Finnigan Trace DSQ fast-scanning single-quadrupole MS. Metabolites were identified 
by automated comparison of the ion features in the experimental samples to a reference library of 
chemical standard entries that included retention time, molecular weight (m/z), preferred adducts, 
and in-source fragments as well as associated MS spectra. Peaks were quantified by area under the 
curve measurements. Raw area counts for each metabolite in each sample were normalized to correct 
for variation resulting from instrument inter-day, tuning differences by the median value for each 
run-day, therefore setting the medians to 1.0 for each run. Metabolites missing more than one value 
were excluded from the analysis.

Statistical analyses. Following log transformation and normalization, Principal Component Analysis 
(PCA) was used to identify the biochemicals discriminating patients from controls with a false discovery 
rate (q-value) inferior to 0.2. We then used Welch’s two-sample t-test to identify biochemicals differing 
significantly between the two groups (p ≤  0.05). The metabolomic analysis of Jurkat T cells being part 
of a larger study including multiple treatments, two-way ANOVA with contrasts was used to identify 
biochemicals differing significantly between mycolactone- and vehicle-treated groups. In both human 
and cell studies, q-values were calculated for each metabolite to take into account multiple comparisons. 
The GraphPad Prism software (v5.0d, La Jolla, CA) was used for box-and-whisker plot representation, 
with outliers identified by Tukey’s test.

Results and Discussion
Metabolomic profiling of BU. Serum samples were harvested from 20 patients with newly diag-
nosed BU lesions and 20 age- and gender-matched healthy controls from the same endemic community 
(Cohort 1, Table 1). Following solvent extraction, samples were split for analysis on liquid or gas chro-
matography platforms coupled with mass spectrometry. A total of 430 metabolites were identified, whose 
spectrometric signals were normalized and compared across patients and controls. PCA revealed a sepa-
rate clustering between the patient and control populations (Fig. 1), showing that BU disease is associated 
with significant metabolic alterations. Nineteen (4%) metabolites were discriminative (p-value <  0.01, 

http://www.metabolon.com/
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q-value <  0.2). Among them, 11 were upregulated in patients relative to controls, whereas 8 were down-
regulated. Intermediates of glycolysis, pentose-phosphate pathway (PPP) and tricarboxylic acid cycle 
(TCA) were modulated, indicating that energy-generating pathways had been perturbed. Alterations in 
the peptide, lipid and nucleotide metabolic pathways were also observed. We used a Welch’s two-sample 
t-test (p <  0.05) to gain further insight into metabolite differences between groups. Fifty-four metabolites 
(12%) were present at significantly different levels in patients with BU, compared to controls (Table 2). 
They clustered into the hexose, fatty acid, lysolipid, steroid hormones, purine and heme metabolism, 
leading us to examine these pathways in greater detail.

Hexoses. Compared to controls, patients with BU displayed elevated levels of all detected hexoses 
(glucose, fructose and mannose) (Fig.  2a). These sugars enter the cells via common membrane trans-
porters of the solute carrier (SLC)-2 family. The 15–50% increase in serum hexoses may thus indicate 
defective uptake by SLC2 transporters, or increased hepatic gluconeogenesis. The PPP requires glucose 
for the generation of pentoses (Fig. 2a). We observed a relative accumulation of xylulose in patient serum 
(Table 2). Since serum levels of the xylulose precursor xylitol were unchanged, it suggested that genera-
tion of PPP intermediate xylulose-5-phosphate might be reduced. Finally, the TCA cycle intermediates 
citrate and malate were decreased in patients with BU, while alpha-ketoglutarate, succinate and fumarate 
were unchanged (Supplementary Figure S2 and Table 2). The TCA cycle is essential for the generation 
of ATP and precursors for various biosynthetic pathways. It requires equilibrated anaplerosis and cata-
plerosis (for entry and exit of TCA anions, respectively)27. In patients with BU, the imbalance between 
anaplerosis substrates (alpha-ketoglutarate) and cataplerosis substrates (citrate and malate) suggests that 
TCA cycle function may be impaired.

Figure 1. Metabolic signature of BU. PCA scatterplot of serum metabolites in patients with BU and 
controls. The most discriminating biochemicals (q-value ≤  0.2) are shown, with their p-value and variation 
coefficient (Fold change) across groups (Blue: relatively increased; Yellow: relatively decreased in patients 
versus controls).
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Metabolism Biochemical Pathway Metabolite
Fold change 

(Patient vs Ctrl) p-value q-value

Amino acid

Histidine histidine 0,85 0,002 0,090

Lysine N6-acetyllysine 0,80 0,010 0,172

Phenylalanine and Tyrosine p-cresol sulfate 0,64 0,006 0,146

Cysteine and Methionine S-methylcysteine 0,67 0,049 0,388

Glutathione 5-oxoproline 0,84 0,002 0,090

Peptide

Dipeptide

glycylvaline 2,03 0,000 0,023

isoleucylglycine 1,21 0,038 0,334

phenylalanylleucine 1,60 0,008 0,169

Gamma-glutamyl amino acid
gamma-glutamylisoleucine 0,77 0,046 0,386

gamma-glutamylmethionine 0,81 0,025 0,295

Fibrinogen cleavage peptide
ADSGEGDFXAEGGGVR 1,47 0,029 0,316

DSGEGDFXAEGGGVR 1,63 0,002 0,090

Carbohydrate

Hexose
fructose 1,50 0,031 0,316

mannose 1,51 0,000 0,023

Glycolysis and Gluconeogenesis glucose 1,15 0,001 0,090

Nucleotide Sugar and Pentose xylulose 1,40 0,003 0,119

Energy TCA cycle
citrate 0,84 0,012 0,184

malate 0,67 0,001 0,090

Lipid

Monohydroxy fatty acid

4-hydroxybutyrate (GHB) 0,72 0,048 0,388

2-hydroxyoctanoate 0,74 0,028 0,316

3-hydroxyoctanoate 0,74 0,011 0,181

2-hydroxystearate 1,18 0,011 0,181

2-hydroxypalmitate 1,21 0,006 0,146

Beta-oxidation
palmitoylcarnitine 0,66 0,012 0,181

oleoylcarnitine 0,63 0,008 0,169

Bile acid

glycodeoxycholate 0,58 0,010 0,172

glycolithocholate sulfate 0,33 0,000 0,023

taurolithocholate 3-sulfate 0,42 0,006 0,146

Glycerolipid choline 0,91 0,035 0,334

Lysolipid

1-oleoylglycerophosphoethanolamine 0,71 0,009 0,169

2-oleoylglycerophosphoethanolamine 0,74 0,032 0,316

1-linoleoylglycerophosphoethanolamine 0,73 0,028 0,316

1-palmitoylglycerophosphocholine 0,88 0,042 0,367

2-palmitoylglycerophosphocholine 0,73 0,024 0,284

1-oleoylglycerophosphocholine 0,83 0,038 0,334

1-linoleoylglycerophosphocholine 0,74 0,005 0,146

2-linoleoylglycerophosphocholine 0,70 0,005 0,146

1-dihomo-linoleoylglycerophosphocholine 0,73 0,009 0,169

Monoacylglycerol 1-stearoylglycerol (1-monostearin) 1,25 0,038 0,334

Sphingolipid sphinganine 0,55 0,001 0,090

Sterol/Steroid

cholesterol 1,13 0,020 0,243

cortisol 1,42 0,018 0,237

cortisone 1,26 0,007 0,157

Nucleotide Purine
xanthine 1,27 0,004 0,146

inosine 2,01 0,004 0,146

Cofactor Heme

bilirubin (Z,Z) 0,44 0,037 0,334

bilirubin (E,E) 0,28 0,014 0,204

biliverdin 0,66 0,019 0,243

Continued
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To determine if some of these effects could result from the action of mycolactone, we profiled the 
metabolome of Jurkat T cells exposed for 16 h to 20 nM of the purified factor, or vehicle as control. 
In accordance with previous studies19, this treatment decreased the production of membrane recep-
tor CD62L without altering the cell viability (Supplementary Figure S1). Total cell metabolites were 
extracted and analyzed similar to serum samples, leading to the identification and relative quantifica-
tion of 292 metabolites. Among them, 59 differed significantly between experimental groups (Table 3). 
Notably, glucose, galactose and mannose were relatively less concentrated in mycolactone-exposed T 
cells (Fig.  2b), arguing for a defect in cellular uptake by membrane transporters. Intracellular levels 
of glucose-1-phosphate and mannose-6-phosphate were downregulated in mycolactone-treated T cells 
(Table  3), indicative of altered glycolysis. Mycolactone also triggered the intracellular accumulation of 
acetylcarnitine, propionylcarnitine and butyrylcarnitine (Table 3). On the contrary, serum levels of pal-
mitoylcarnitine and oleoylcarnitine were decreased in patients with BU (Table 2). Because they facilitate 
the transport of fatty acids across mitochondrial membranes, a rate-limiting step in fatty acid oxida-
tion (FAO), circulating acylcarnitines are clinically-used biomarkers of FAO disorders28. At the cellular 
level, the accumulation of acylcarnitines correlates with reduced oxidation of glucose and insulin resist-
ance29. The increased levels of serum hexoses in patients with BU may thus be due, at least partially, to 
mycolactone-induced defects in hexose uptake and FAO. With the exception of mannose, none of the 
above-described alterations were observed in patients with TB30.

Steroid hormones. Glucocorticoids assist in the regulation of glucose homeostasis through the stim-
ulation of hepatic gluconeogenesis and downregulation of glucose transport systems. There was a rela-
tive augmentation in serum cholesterol and downstream glucocorticoid hormones cortisol in patients 
with BU (Fig. 3a). Cortisone, a conversion product of cortisol with weaker glucocorticoid activity, was 
also increased whereas other steroidal hormones were not significantly impacted. To validate these 
findings with an independent and quantitative approach, an additional cohort of patients and controls 
was assayed for serum cortisol (Cohort 2, Table  1). In agreement with our metabolomics data, the 
mean cortisol level was higher in patients with BU, compared to controls (Fig. 3b). Although variable, 
cortisol levels trended higher in patients with more severe lesions (Fig.  3b). No relationship could be 
demonstrated between serum cortisol and paradoxical reaction, or the clinical form of lesions (nodule, 
plaque, oedema or ulcer). Together with the data in Fig. 2, these observations suggest that glucocorti-
coid hormones may be induced in patients with progressive ulcers, in order to raise blood sugars. Since 
corticosteroids inhibit wound healing, increased circulation in patients may delay their clinical response 
to antibiotic treatment.

Purine catabolites. Patients with BU displayed elevated serum levels of the purine catabolites ino-
sine and xanthine (Supplementary Figure S3a and Table  2). These metabolites were not augmented in 
patients with active TB30, suggesting that they do not reflect a general response to mycobacterial infec-
tion. Interestingly, opposite variations were observed in T cells exposed to mycolactone (Supplementary 
Figure S3b and Table 2), whereas adenine and guanine, and the pyrimidine catabolite uracil remained 
unchanged. Although the underlying molecular mechanism is unclear, increased serum inosine and xan-
thine may thus constitute specific traits of BU.

Gamma-glutamyl amino acids. Among the metabolites discriminating patients from controls was 
the gamma-glutamyl amino acid degradation product 5-oxoproline (Fig. 1), which serum level was rela-
tively lower in patients. Interestingly, patients also displayed reduced levels of gamma-glutamylisoleucine 
and gamma-glutamylmethionine (Table 2). Gamma-glutamyl amino acids result from the transfer of the 
gamma-glutamyl moiety of glutathione to acceptor amino acids by the liver enzyme gamma-glutamyl 
transferase (GGT). We reported previously that BU patients display normal serum GGT23. Since iso-
leucine and methionine were unchanged in patients versus controls in the present study, we can specu-
late that downregulation of their gamma-glutamyl derivatives is due to limited glutathione availability. 
Extracellular glutathione results from synthesis, consumption and extrusion by producing cells31. Binding 

Metabolism Biochemical Pathway Metabolite
Fold change 

(Patient vs Ctrl) p-value q-value

Vitamin
Riboflavin riboflavin (Vitamin B2) 1,82 0,048 0,388

Tocopherol gamma-CEHC 0,67 0,017 0,236

Xenobiotic Chemical

4-methylcatechol sulfate 0,74 0,016 0,221

hexaethylene glycol 1,20 0,030 0,316

octaethylene glycol 1,15 0,031 0,316

pentaethylene glycol 1,13 0,049 0,388

Table 2.  Metabolic signature of BU in human patients.
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of glutamate to cysteine is the first and rate-limiting step in the biosynthesis of this tripeptide. In Jurkat 
cells, mycolactone had mixed effects on the intracellular levels of gamma-glutamyl amino acids. It did 
not alter significantly the intracellular levels of cysteine, glutamate nor glutathione (reduced and oxi-
dized forms). Although extracellular glutathione measurements would be required to confirm it, these 
data suggest that BU-associated alterations in serum gamma-glutamyl amino acids, and potentially glu-
tathione and redox homeostasis, are independent of mycolactone.

Bile acids. Bile acids are synthesized from cholesterol by 7-alpha-hydroxylase (CYP7A1) in the liver 
(Fig.  4). Bile acids facilitate cholesterol elimination, intestinal absorption and excretion of lipids and 
lipid-soluble molecules. They are also important signaling molecules regulating energy homeostasis, 
inflammation and liver regeneration32. Compared to controls, patients with BU displayed significantly 
higher levels of cholesterol (Fig. 2a) and normal levels of 7-alpha-hydroxycholesterol and cholate, sug-
gesting that precursors of bile acid synthesis are not limiting. Yet glycodeoxycholate, glycolithocholate 

Figure 2. Increased serum hexoses in BU patients mirror decreased hexose concentrations in 
mycolactone-exposed cells. (a) Differential serum levels of the detected hexoses in BU patients versus 
controls, shown as box and whiskers and in the context of energy-generating metabolic pathways. 
Biochemicals in bold red were relatively increased in patients versus controls. Those in bold black were 
detected at comparable levels. Those in grey were not detected. (b) Differential concentrations of detected 
hexoses in mycolactone- and vehicle-treated Jurkat T cells, shown as box and whiskers. *p <  0.05, 
***p <  0.001.
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Metabolism Biochemical Pathway Metabolite
Fold change 

(Myco vs Ctrl) p-value q-value

Amino acid

Glycine, Serine and Threonine
betaine 1,38 0,003 0,028

beta-alanine 1,41 0,038 0,109

Glutamate

glutamate 0,77 0,011 0,065

pyroglutamine 1,31 0,023 0,089

gamma-aminobutyrate (GABA) 1,43 0,014 0,066

Histidine histidine 0,78 0,017 0,072

Lysine
lysine 0,46 0,008 0,053

2-aminoadipate 0,53 0,000 0,005

Phenylalanine and Tyrosine
phenylalanine 0,79 0,026 0,089

tyrosine 0,71 0,002 0,024

Tryptophan tryptophan 0,77 0,025 0,089

Valine, Leucine and Isoleucine
leucine 0,80 0,031 0,100

valine 0,81 0,049 0,128

Cysteine and Methionine

taurine 1,34 0,027 0,089

methionine 0,76 0,023 0,089

2-hydroxybutyrate (AHB) 1,25 0,047 0,124

Urea cycle, Arginine and Proline

dimethylarginine (SDMA +  ADMA) 0,65 0,010 0,063

N-acetylornithine 0,79 0,024 0,089

argininosuccinate 0,43 0,009 0,056

Creatine creatine 1,44 0,001 0,018

Polyamine putrescine 1,84 0,001 0,015

Peptide

Dipeptide

glycylproline 0,68 0,036 0,106

glycylleucine 0,69 0,039 0,109

glycylthreonine 0,70 0,003 0,031

prolylglycine 0,58 0,004 0,034

prolylalanine 0,56 0,004 0,034

prolylglutamine 0,58 0,005 0,039

cysteinylglycine 0,58 0,031 0,100

prolylglutamate 0,62 0,013 0,065

phenylalanylaspartate 0,61 0,008 0,053

Gamma-glutamyl amino acid

gamma-glutamylvaline 1,77 0,000 0,004

gamma-glutamylleucine 1,58 0,001 0,018

gamma-glutamylisoleucine 1,40 0,012 0,065

gamma-glutamylmethionine 0,57 0,006 0,047

gamma-glutamylglutamine 0,62 0,000 0,007

gamma-glutamylthreonine 2,10 0,000 0,000

Carbohydrate

Aminosugar Isobar: UDP-acetylglucosamine, UDP-acetylgalactosamine 1,45 0,017 0,072

Hexose

galactose 0,54 0,012 0,065

6′ -sialyllactose 2,30 0,000 0,005

mannose 0,39 0,014 0,066

mannose-6-phosphate 0,53 0,012 0,065

sorbitol 1,30 0,042 0,114

Glycolysis
glucose 1-phosphate 0,58 0,033 0,100

glucose 0,46 0,023 0,089

Lipid

Beta-oxidation
propionylcarnitine 1,80 0,001 0,018

butyrylcarnitine 2,84 0,002 0,021

Carnitine acetylcarnitine 1,34 0,013 0,065

Glycerolipid choline phosphate 1,27 0,026 0,089

Continued
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Metabolism Biochemical Pathway Metabolite
Fold change 

(Myco vs Ctrl) p-value q-value

Lysolipid
1-myristoylglycerophosphocholine 0,60 0,033 0,100

1-pentadecanoylglycerophosphocholine 0,64 0,038 0,109

Neurotransmitter acetylcholine 9,40 0,000 0,000

Sterol/Steroid lathosterol 1,66 0,025 0,089

Nucleotide Purine

xanthine 0,72 0,002 0,024

hypoxanthine 0,66 0,020 0,084

inosine 0,60 0,015 0,070

inosine 5’-monophosphate (IMP) 0,68 0,042 0,114

N1-methyladenosine 0,70 0,033 0,100

Cofactor and Vitamin
Biotin biotin 1,94 0,000 0,000

Pantothenate and CoA pantothenate 1,51 0,000 0,004

Table 3.  Metabolic signature of mycolactone in human T cells.

Figure 3. Increased serum glucocorticoids in BU patients. (a) Differential serum levels of glucocorticoid 
hormones and cholesterol in BU patients and controls. (b) Absolute concentrations of serum cortisol in BU 
patients versus controls (left), and patients with different ulcer category (right). Data are presented as box 
and whiskers. *p <  0.05, **p <  0.01.

sulfate and taurolithocholate 3-sulfate were significantly downregulated in patients with BU (Fig. 4). No 
variation in bile acids was reported in patients with TB30. The reduced levels of bile acids in BU patients 
may be indicative of decreased synthesis, increased intestinal absorption or urinary excretion. Since bile 
acid synthesis requires contribution from the microbial community, they may also reflect changes in the 
intestinal flora.

Heme products. Heme, the most common porphyrin found in the human body, complexes with 
cellular proteins to form hemoglobin, myoglobin and cytochromes. Heme is synthesized from glycine 
and succinyl-CoA and can be oxidized into bilirubin and vasodilator carbon dioxide. In patients with 
BU, heme levels trended higher compared to controls. Conversely, the heme catabolic products biliver-
din, bilirubin ZZ and EE were diminished in these subjects (Fig. 5 and Table 2). No such variation was 
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detected in patients with TB, possibly because M. tuberculosis possesses its own heme-degrading enzyme 
MhuD, producing an unusual tetrapyrole called mycobilin33. The M. ulcerans MhuD gene orthologue 
(MUL_4167) is a predicted pseudogene due to the introduction of premature stop codon34. Consistent 
with this prediction, no metabolite with a mass corresponding to mycobilin was detected in the serum 
of patients with BU.

Riboflavin. Riboflavin (vitamin B2) was recently reported to be upregulated in mosquitoes exposed 
to live M. ulcerans, compared to untreated mosquitoes or mosquitoes exposed to dead bacteria35. 
Interestingly in the present work, patients with BU also displayed increased levels of riboflavin (Table 2). 
Inspection of the M. ulcerans genome predicts an intact riboflavin anabolic pathway. M. ulcerans is pre-
dicted to possess intact inosine-5′ -monophosphate dehydrogenases (e.g. MUL_0901) and GMP synthase 
(MUL_0913) and the subsequent enzymes to convert these molecules to GTP and enter the riboflavin 
biosynthesis pathway. Increases in riboflavin are also consistent with the increased levels of the purine 
metabolism intermediates, inosine and xanthine (see above). The enhanced detection of riboflavin in 
infected hosts may thus reflect either bacterial growth, or the host response to infection. In any case, the 

Figure 4. Decreased bile acids levels in the serum of BU patients. Differential serum levels of detected bile 
acids in patients and controls, shown as box and whiskers and in the context of their metabolic pathways. 
Biochemicals in bold red were relatively increased in patients versus controls. Those in bold green were 
relatively decreased. Those in grey were not detected. **p <  0.01, ***p <  0.001.



www.nature.com/scientificreports/

1 1Scientific RepoRts | 5:17693 | DOI: 10.1038/srep17693

observation that riboflavin levels are associated with M. ulcerans infection in both humans and mosqui-
toes suggest that it could potentially serve as a pathogen-specific correlate of infection.

Fibrinogen cleavage peptides. Upon vascular injury, soluble fibrinogen is cleaved into insoluble  
fibrin, which is the main component of blood clots. Fibrinogen A-α  cleavage peptides ADSGEGD 
FXAEGGGVR and DSGEGDFXAEGGGVR were elevated in patients with BU (Supplementary Figure 
S4 and Table 2), likely reflecting vascular remodeling in lesions. Comparable augmentations were seen in 
patients with active TB and diabetes30,36, indicating that this process is not specific to BU.

Lysolipids. Phospholipids (also called glycerophospholipids) are the main lipid constituents of cell 
membranes. They are a highly diverse family of compounds containing diacylglycerol, a phosphate 
head group and organic molecules like ethanolamine or choline. Lysolipids and fatty acids are the 
natural products of their hydrolysis by phospholipases. Compared to controls, patients with BU dis-
played lower serum levels of choline and all detected lysophosphatidylcholine (LysoPC) compounds 
(Fig. 6a and Table 2). Lysophosphatidylethanolamines (LysoPE) were comparably impacted. No such 
variations were reported in patients infected with M. tuberculosis30, suggesting that they are spe-
cific to infection with M. ulcerans. In line with this hypothesis, several LysoPC compounds were 
decreased in mosquitoes exposed to live but not killed preparations of the bacteria35. Together with 

Figure 5. Decreased levels of heme catabolic products in the serum of BU patients. Differential serum 
levels of biliverdin and bilirubin in patients and controls, shown as box and whiskers and in the context 
of the heme metabolic pathway. Biochemicals in bold green were relatively decreased in patients versus 
controls. Those in bold black were detected at comparable levels. Those in grey were not detected. *p <  0.05.
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our observations in human patients, these data indicate that M. ulcerans interaction with its host 
may alter phospholipid turnover in biomembranes. In T cells exposed to mycolactone, two LysoPC 
species were decreased compared to controls (Fig. 6b and Table 3), suggesting that mycolactone may 
contribute to these changes.

Conclusion
Here, we report the metabolomic profiles of serum samples of patients infected with M. ulcerans, 
and mycolactone-exposed cells. Figure  7 summarizes our principal findings, and highlights which 
metabolites/pathways were modulated in both BU patients and mycolactone-exposed cells. Among 
them were hexoses, purine products and lysolipids, suggesting that mycolactone released by bacteria 
interferes with blood cell production of biochemical energy, membrane lipid turnover and degradation 

Figure 6. Decreased serum lysolipids in BU patients. (a) Differential levels of choline and representative 
lysolipids in patients and controls, shown as box and whiskers and in the context of their metabolic pathway. 
Biochemicals in bold green were relatively decreased in patients versus controls. Those in bold black 
were detected at comparable levels. Those in grey were not detected. (b) Differential levels of the detected 
lysolipids in mycolactone- and vehicle-treated Jurkat T cells, presented as box and whiskers *p <  0.05, 
**p <  0.01.
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of nucleic acids. Interestingly, patients with BU also displayed distinctive downregulation of bile acids 
and heme products, and upregulation of riboflavin in serum. Intermediates of these metabolic path-
ways may have potential as biomarkers of BU progression, and inspire new avenues for therapeutic 
interventions.
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