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Abstract  15	
  

Biofilms formed by pathogenic bacteria and fungi are associated with a wide range of 16	
  

diseases, from device-related infections (such as catheters or prosthetic joints) to chronic 17	
  

infections occurring on native tissues (such as lung infections in cystic fibrosis patients). 18	
  

Biofilms are therefore responsible for an important medical and economic burden. 19	
  

Currently-used antibiotics have mostly been developed to target exponentially growing 20	
  

microorganisms and are poorly effective against biofilms. In particular, even high 21	
  

concentrations of bactericidal antibiotics are inactive against a subset of persistent biofilm 22	
  

bacteria, which can cause infection recurrence despite prolonged treatments. While the 23	
  

search for a magic bullet antibiotic effective against both planktonic and biofilm bacteria is 24	
  

still active, alternative preventive and curative approaches are currently being developed 25	
  

either limiting adhesion or biofilm formation or targeting biofilm tolerance by killing persister 26	
  

bacteria. Most of these approaches are adjunctive using new molecules in combination 27	
  

with antibiotics. This review presents promising approaches or strategies that could 28	
  

improve our ability to prevent or eradicate bacterial biofilms in medical settings. 29	
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 32	
  

Highlights 33	
  

• Currently-used antibiotics were developed to target planktonic bacteria 34	
  

• Recent discoveries on biofilm properties led to promising anti-biofilm strategies  35	
  

• Biofilm inhibition should integrate biocidal and non-biocidal approaches 36	
  

• Jamming bacterial communication and regulation can prevent biofilm formation  37	
  

• Major anti-biofilm approaches rely on matrix dissolution and potentiation of existing 38	
  

antibiotics against persisters 39	
  

40	
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Introduction 41	
  

Since the first observation of a direct link between development of biofilm and persistent 42	
  

infections [1-3], modern medicine is facing a double challenge: getting around the 43	
  

increasing concern of multidrug antibiotic resistance and tackling sources of biofilm-related 44	
  

infections. There is probably little hope to witness the rapid development of novel antibiotic 45	
  

molecules that would not only overcome multidrug resistance but also be more efficient 46	
  

than current antibiotics against medical biofilms. Indeed, most of the currently-used drugs 47	
  

have been developed and optimized to kill planktonic microorganisms. 48	
  

The identification of novel molecules designed to specifically target mechanisms involved 49	
  

in biofilm formation or biofilm tolerance towards antibiotics could lead to novel therapies 50	
  

specifically designed to be combined with antibiotics against bacterial biofilm-associated 51	
  

infections. This review presents recent therapeutic approaches developed to specifically 52	
  

target biofilm-associated bacterial infections. 53	
  

 54	
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Strategies targeting specific mechanisms involved in biofilm 56	
  

formation 57	
  

 58	
  

Anti-adhesion strategies 59	
  

One of the crucial steps in biofilm development is the initial interaction of bacteria to abiotic 60	
  

or biotic surfaces that can ultimately lead to colonization and infection by pathogenic 61	
  

bacteria. Reducing adhesion is therefore a strategy of choice to prevent biofilm formation 62	
  

and related infections. Among the different strategies recently developed to reduce 63	
  

bacterial adhesion, one can distinguish strategies that non-specifically inhibit adhesion 64	
  

versus strategies that are rather targeting specific adhesins (Figure). 65	
  

 66	
  

Non-specific inhibition of adhesion  67	
  

Non-specific inhibition of adhesion is generally obtained by surface modification using 68	
  

polymers. The type of polymers can be chosen on the basis of its anti-adhesive properties. 69	
  

For example, Hook et al. assessed hundreds of polymeric materials using an high 70	
  

throughput microarray assay for their anti-adhesive properties and identified materials 71	
  

comprising ester and cyclic hydrocarbon moieties displaying anti-adhesive activity in vitro 72	
  

against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus, and in 73	
  

vivo, against S. aureus, when grafted to silicone in a mice model of subcutaneously 74	
  

implanted device [4]. An efficient anti-adhesive molecule should not only limit bacterial 75	
  

proteins but also host proteins interaction to surfaces, therefore avoiding the formation of a 76	
  

conditioning film subsequently favoring bacterial colonization. Such molecules, for instance 77	
  

non-leaching polymeric sulfobetaine (polySB) that works as a wetting agent, have been 78	
  

demonstrated to reduce protein, host cells and microbial adhesion, but also thrombus 79	
  

formation in vitro and in vivo [5••]. More recently, a biomimetic strategy using a glycocalyx-80	
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like molecule, methyl-cellulose, displaying anti-adhesive property for both cells and 81	
  

bacteria, has been used to coat totally implanted venous access ports (TIVAP). Coated 82	
  

TIVAP implanted in rats for several days displayed important resistance toward adhesion, 83	
  

strongly reduced biofilm formation by P. aeruginosa and S. aureus as well as infective 84	
  

thrombus [6••].  85	
  

Beyond sole anti-adhesive strategies, surfaces combining different activities such as tissue 86	
  

integration, biocide property and anti-adhesive activity are currently developed [7•-9•]. A 87	
  

recent example of such a strategy displaying promising in vitro activity are anti-adhesive 88	
  

polymer brushes composed of block copolymer Pluronic F-127 (PF127) functionalized with 89	
  

antimicrobial peptides (AMP), able to kill bacteria on contact, and arginine− 90	
  

glycine−aspartate (RGD) peptides promoting the adhesion and spread of host tissue cells 91	
  

[10•]. 92	
  

 93	
  

Specific targeting of adhesins  94	
  

Anti-biofilm approaches targeting specific adhesins have been shown to display strong 95	
  

anti-adhesive and anti-infective potential. Some molecules can impede the biogenesis of 96	
  

adhesins such as the one developed to block different fimbrial adhesins including the well-97	
  

known type 1 fimbriae involved in bladder colonization by uropathogenic E. coli [11-14]. 98	
  

Type 1 fimbriae have also been the target of sugar analogues competing with eukaryotic 99	
  

receptors interacting with the tip-lectin, FimH. Among several molecules, some FimH 100	
  

inhibitors have been shown in mice to successfully prevent catheter-associated urinary 101	
  

tract infections by drug sensitive uropathogenic E. coli (UPEC) or to treat chronic cystitis in 102	
  

mice infected by the multidrug-resistant UPEC clone ST131 [15••,16•]. Carbohydrate 103	
  

inhibitors have also been developed against P. aeruginosa lectins, some of which 104	
  

prevented lung colonization in mouse models [17,18]. Interestingly, anti-biofilm action was 105	
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also achieved by using molecules combining several activities such as maltose derivatives 106	
  

with bulky hydro-carbon groups that presented both a surfactant/biofilm dispersion activity 107	
  

and an inhibition of adhesins/receptors mediated binding of P. aeruginosa [19•]. 108	
  

 109	
  

Targeting biofilm maturation 110	
  

Biofilm-related infection can also be reduced by blocking the biofilm maturation process 111	
  

(Figure). In most cases, strategies targeting biofilm maturation should also include 112	
  

treatment with an antimicrobial for an in vivo use to avoid the release of a massive quantity 113	
  

of biofilm bacteria into the bloodstream. 114	
  

 115	
  

Major signaling pathways as antibiofilm targets 116	
  

Among the major mechanisms that are governing biofilm maturation are quorum-sensing 117	
  

(QS) signals. We will not develop these aspects of anti-biofilm arsenal since several 118	
  

excellent reviews were recently written on the various strategies used to interfer with 119	
  

quorum-sensing including the use of analogues of homoserine lactones or AI-2 and 120	
  

enzymes degrading QS molecules for Gram-negative bacteria, and auto-inducing peptides 121	
  

or RNA-III inhibiting peptides for Gram-positive bacteria [20-22]. 122	
  

Discovery of the importance of small messenger molecule c-di-GMP in the physiological 123	
  

switch between planktonic to biofilm lifestyle is more recent and c-di-GMP is now 124	
  

considered as a valuable target to fight biofilm-related infections. Screening of chemical 125	
  

libraries led to the identification of direct or indirect inhibitors of diguanylate cyclases (the 126	
  

enzymes producing c-di-GMP), reducing biofilm formation such as sulfathiazole or 127	
  

azathioprine, an immunosuppressive drug [23-26]. Alternatively, a molecule impacting 128	
  

biofilm formation produced by P. aeruginosa, nitric oxide (NO), has been demonstrated to 129	
  

induce dispersal via the reduction of c-di-GMP concentrations through increased activity of 130	
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phospho-diesterases (PDE) [27], demonstrating the potential of compounds naturally 131	
  

produced by micro-organisms (see Table). In P. aeruginosa, NO-induced dispersal has 132	
  

been recently linked to a specific PDE, NdbA, whose mRNA transcription is induced by NO 133	
  

[28]. Interestingly, NO seems to be involved also in the dispersal of biofilms formed by 134	
  

other micro-organisms, however through a different mechanism involving H-NOX proteins. 135	
  

Therefore, development of surfaces releasing NO might be promising to control biofilm 136	
  

formation as demonstrated by the use of NO donor-coated urinary catheters and 137	
  

nanoparticles [29,30]. 138	
  

 139	
  

Direct action on matrix components to weaken biofilms 140	
  

Two factors regulated by quorum-sensing and c-di-GMP play a major role in the 141	
  

architecture of biofilms: polysaccharides and extracellular DNA [31-34]. Thus, direct 142	
  

targeting of these factors instead of their signaling pathways can also be envisaged to 143	
  

reduce biofilm formation. Strategies using enzymatic degradation of these matrix 144	
  

components such as the use of DNaseI or Dispersin B, an hexosaminidase naturally 145	
  

produced by Aggregatibacter actinomycetemcomitans and hydrolyzing poly-N-146	
  

acetylglucosamine (a frequent component of E. coli, S. aureus or Staphylococcus 147	
  

epidermidis exopolysaccharides), have been identified as efficient ways to disperse 148	
  

biofilms in vitro and in vivo (see for example, [35-37]). However, enzyme-based 149	
  

approaches are associated with two limitations: i) their restricted spectrum of action; and ii) 150	
  

the risk of immunization against these molecules. The association of chelators of divalent 151	
  

cations such as citrate or EDTA and biocides has also been proposed, based on their 152	
  

ability to destabilize biofilm matrix [38,39]. These chelators could find their interest in the 153	
  

case of local infection or restricted colonization such as device-related infection and have 154	
  

been used as preventive agents in clinical trials [40]. Additionally, EDTA was proven an 155	
  

efficient adjuvant to gentamicin to eradicate E. coli, P. aeruginosa S. aureus and S. 156	
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epidermidis biofilms including persister cells (see below) in a rat model of catheter-related 157	
  

infection [41•]. 158	
  

 159	
  

Strategies targeting mechanisms governing biofilm tolerance 160	
  

towards antibiotics: fighting persisters 161	
  

 162	
  

One major problem caused by biofilms is their increased tolerance towards antimicrobial 163	
  

agents that impairs the treatment of biofilm-related infections in clinical settings [42]. While 164	
  

increased tolerance of biofilms is multifactorial, the main mechanism currently proposed to 165	
  

explain such tolerance is the presence of persisters, bacteria that enter in a specific 166	
  

phenotype state allowing them to survive in the presence of 1000 fold the minimum 167	
  

inhibitory concentration of bactericidal antibiotics [43,44]. Persister cells have recently 168	
  

been subjected to an intense hunt in order to limit biofilm-associated antibiotic tolerance. 169	
  

 170	
  

Reducing persisters formation 171	
  

There are now growing evidences that one of the main factors leading to persisters 172	
  

formation is nutritional stress, with a major effector molecule, ppGpp, the mediator of 173	
  

stringent response ([45], for a comprehensive review see [46••]). Regarding the central role 174	
  

for ppGpp in persistence, it is tempting to hypothesize that strategies leading to reduced 175	
  

level of ppGpp could help fighting persisters. Relacin, a synthetic ppGpp analog inhibiting 176	
  

the Bacillus subtilis RelA synthetase activity and biofilm formation [47], and relacin 177	
  

derivatives displayed an inhibitory activity against different Rel proteins [48]. These 178	
  

different compounds still need to be assessed for their capacity to reduce persisters 179	
  

formation. Another stringent response inhibitor has been identified, the peptide 1018 180	
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(VRLIVAV- RIWRR-NH2). While a direct evidence of its activity on persister cells is 181	
  

missing, this peptide displayed a specific antibiofilm activity against in vitro biofilms formed 182	
  

by several species including P. aeruginosa or S. aureus by inducing ppGpp degradation 183	
  

[49••] and a synergistic action together with ciprofloxacin on in vitro biofilms of various 184	
  

pathogens [50•]. Interestingly, this latter study demonstrates how adjuvant therapies can 185	
  

allow reducing the concentration of antibiotic required to inhibit biofilm formation. 186	
  

 187	
  

Killing persisters 188	
  

Once a biofilm is mature, the last resort option for biofilm eradication is to identify 189	
  

compound that would increase antibiotic activity against persisters (Figure). Silver has 190	
  

been shown to potentiate the activity of several antibiotics against biofilm and persisters of 191	
  

Gram-negative and Gram-positive bacteria in a mouse biofilm model with subcutaneous 192	
  

catheter by increasing ROS production and bacterial permeability to antibiotics [51••]. 193	
  

Sugar metabolism was also used to obtain antibiotic potentiation against persisters 194	
  

through an increased aminoglycosides penetration powered by the proton motive force 195	
  

[52,53]. Alcalinisation by basic amino-acids such as L-arginine was also recently 196	
  

demonstrated to enhance aminoglycoside action in vitro and in vivo against biofilms and 197	
  

persisters [54•]. Anti-QS molecules such as brominated furanones have the potential to 198	
  

revert antibiotic tolerance of P. aeruginosa or E. coli persister cells [55,56]. Persisters 199	
  

tolerance could also be reduced by exploiting their weaknesses related to their slow 200	
  

metabolism, such as a high sensitivity to proteolysis induced by the acyldepsipeptide 201	
  

ADEP4 that activates the ClpP protease in Gram-positive pathogens. ADEP4 is active in 202	
  

combination with rifampicin in a neutropenic mouse biofilm model [57••]. Whereas the 203	
  

efficacy of these anti-persister approaches remains to be further validated, on-going 204	
  



	
   11	
  

persister studies are likely to reveal other potential therapeutic strategies, such as the 205	
  

modulation of bacterial cell death [58•]. 206	
  

 207	
  

 208	
  

Future perspectives 209	
  

 210	
  

Much ado for almost nothing in clinic… Why? 211	
  

The intense fundamental research on biofilms led to the emergence of numerous 212	
  

promising antibiofilm approaches. However, despite these long-lasting efforts, one should 213	
  

acknowledge that the translation of in vitro and in vivo data into clinical settings is slow and 214	
  

somewhat disappointing. Beyond the simple explanation of the massive costs necessary 215	
  

for drug development toward medical usage, one can identify potential reasons explaining 216	
  

this delay. Not only preventive strategies are difficult to translate into the clinic, but non-217	
  

biocidal preventive anti-adhesive or anti-virulence strategies face the diversity of bacterial 218	
  

phenotypes and may only be active against a subpopulation of bacteria encountered in 219	
  

clinical settings, therefore limiting their overall efficacy. Then, even if in vitro biofilm 220	
  

susceptibility testing is a mandatory first step and much efforts have been made to develop 221	
  

such in vitro testing [59], molecules identified in vitro should be validated using relevant in 222	
  

vivo models for their antibiofilm activity but also absence of toxicity and pharmacokinetics. 223	
  

 224	
  

The limitation of biofilm models 225	
  

Despite the diversity of both the in vitro and the in vivo models currently available to 226	
  

identify or test antibiofilm molecules, in vitro models only partially reflect in vivo situations, 227	
  

because in vitro biofilms are probably structurally different and respond differently as 228	
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compared with in vivo biofilms [60••]. In particular, antibiotic tolerance in biofilms has been 229	
  

obtained in vitro with starvation models [61•] but other stress factors could also play a role 230	
  

in physiopathological conditions (flow, local pH, anoxia, inflammation…). At the present 231	
  

time, the diversity of persister phenotypes is not known, possibly due to the diversity of the 232	
  

in vitro conditions leading to persistence and the complexity of biofilm clinical situations. 233	
  

Efforts should therefore be made to enrich in vitro models with flow conditions, type of 234	
  

medium used, presence or absence of blood components or even specific eukaryotic cells 235	
  

within the device. These issues should also apply for in vivo models. Beyond the question 236	
  

of the relevance of using rodent models, some in vivo models may not properly reproduce 237	
  

real clinical situations. One can, for example, wonder about the relevance of the rat agar 238	
  

beads model to faithfully reproduce chronic infection in the lungs or subcutaneous model 239	
  

of catheters that are not connected to the bloodstream. Furthermore, as for clinical trials, 240	
  

rigorous statistical analysis and experimental set-up are mandatory in order to avoid any 241	
  

false positive interpretation. One can however foresee that increasing use of new 242	
  

guidelines for reporting animal research will also improve quality of experimental in vivo 243	
  

models [62,63]. 244	
  

 245	
  

What could be the near future?	
  246	
  

Biofilm research will certainly benefit from the development of high throughput screenings 247	
  

evaluating compounds in combination with antibiotics using models better mimicking in 248	
  

vivo physiological conditions and new readouts benefiting from the increased knowledge 249	
  

on biofilm related signaling, such as reporter genes for pathways related to persistence 250	
  

(ppGpp, cyclic-di-GMP for Gram-negative bacteria, persisters metabolism). It is also 251	
  

expected that new formulations based on polymer microparticles could also emerge and 252	
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improve the use of otherwise topic compounds for local delivery at the site of biofilm 253	
  

infection [64,65•]. To become more translational, biofilm research needs biomarkers and 254	
  

more global analyses performed directly on biofilms in clinical settings, which are currently 255	
  

essentially applied to in vitro or animal models. These omics analyses could provide new 256	
  

and unexpected targets. Lastly, the increasing awareness of the polymicrobial nature of 257	
  

biofilms should lead to the development of dedicated approaches to study bacteria-258	
  

bacteria or bacteria-fungi interactions and their consequences on biofilm pathogenesis or 259	
  

tolerance towards antibiotics [66]. 260	
  

261	
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Table 1. Recent studies illustrating some promising non-pharmaceutical anti-biofilm strategies. This list is not comprehensive 

and is only meant to illustrate each approach. 

Mode of action In vitro In vivo References 
Early detection       

 
Detection of biofilm formation in 
a central venous catheter (CVC) 
using impedimetric biosensor 

Detection of S. epidermidis biofilm 
formation within the chamber of a CVC - [67] 

      
Vaccination       

 
Immunization against Biofilm 
Matrix Exoproteins from S. 
aureus 

- 
Reduction of S. aureus biofilm 
formation in a mesh biofilm model in 
mice 

[68] 

 

Passive protection with a 
monoclonal antibody against 
Enterococcus faecalis major pili 
protein EbpC 

Prevention of E. faecalis biofilm 
formation 

Significant passive protection against 
E. faecalis endocarditis in a rat model [69] 

     
Inhibition of microbial adhesion       

 
Modification of physical 
architecture of the surface 
(Sharklet micropattern) 

Reduction of E. coli, P. aeruginosa, A. 
baumannii and K. pneumonia adhesion - [70] 

     
Bio-inspired strategies       
 Quorum-sensing quencher    

 
New quorum-sensing quencher 
(F5, LasR inhibitor) from 
Pseudomonas sp 

Reduction of P. aeruginosa biofilm - [71] 
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 T7 engineered lytic phage 
producing a lactonase 

Inhibition of mixed P. aeruginosa and 
E. coli biofilm - [72] 

 Lytic enzymes from predators    

 Chimeric phage endolysin 
degrading peptidoglycan 

Disruption of S. aureus preformed 
biofilm 

Attenuation of S. aureus mediated 
endophtalmitis in mice [73] 

 Bdellovibrio bacteriovorus 
proteases and DNAse 

Prevention of S. aureus biofilm 
formation and disruption of S. aureus 
preformed biofilm 

- [74] 
 

 Other activity    

 Chitosan coupling with antibiotic 
or nitric oxide 

Disruption of and inhibition of Listeria, 
E. faecalis and S. aureus biofilm by 
chitosan-streptomycine conjugate ; 
disruption of P. aeruginosa biofilms by 
chitosan-NO conjugate 

- [75,76] 
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Figure 1. Biofilms: bacterial phenotypes and therapeutic targets 
Schematic drawing of the successive steps of biofilm formation and maturation highlighting the different bacterial phenotypes encountered 
and their susceptibility to antibiotics. The five major approaches to combat biofilms are represented with their impact on biofilm formation 
or integrity and their possible combination with antibiotics. 
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