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Homeostasis in the central nervous system (CNS) is maintained
by active interfaces between the bloodstream and the brain
parenchyma. The blood-brain barrier (BBB) constitutes a
selective filter for exchange of water, solutes, nutrients, and
controls toxic compounds or pathogens entry. Some parasites,
bacteria, and viruses have however developed various CNS
invasion strategies, and can bypass the brain barriers. Con-
cerning viruses, these strategies include transport along neural
pathways, transcytosis, infection of the brain endothelial cells,
breaching of the BBB, and passage of infected-leukocytes.
Moreover, neurotropic viruses can alter BBB functions, thus
compromising CNS homeostasis. Retroviruses have been asso-
ciated to human neurological diseases: HIV (human immuno-
deficiency virus 1) can induce HIV-associated dementia, and
HTLV-1 (human T lymphotropic virus 1) is the etiological factor
of tropical spastic paraparesis/HTLV-1 associated myelopathy
(TSP/HAM). The present review focuses on how the different
retroviruses interact with this structure, bypass it and alter its
functions.

Introduction

The Central Nervous System (CNS), which is composed of the
brain and the spinal cord, is mainly isolated from the rest of the
organism by blood/brain interfaces, including the Blood-Brain
Barrier (BBB) and the Blood-Cerebrospinal Fluid (CSF) barrier.
These barriers maintain the CNS homeostasis, by regulating
ions, water and solutes exchanges, and protect it from toxic com-
pounds or pathogens. However, several pathogens have developed
invasion strategies of the CNS, bypassing these barriers.

Neurotropic viruses, i.e., viruses that are able to infect
neural cells can be retrieved in several viral families, such as
Herpesviridae, Paramyxoviridae, Rhabdoviridae, Picornaviridae,
Retroviridae,1 etc. They can gain access to the CNS by different
routes: either they use the neural network and the axonal

transport (rabies virus or herpes simplex virus type I, for
example2), or they invade the CNS from the bloodstream (West
Nile virus, for example3). The hematogenous route is the one
usually used by the retroviruses.

Retroviruses are enveloped RNA viruses that have the unique
property of transcribing RNA into DNA, and integrating their
retroviral DNA into the chromosomal DNA of the host cell. Two
human retroviruses have been recognized to be responsible for
major CNS diseases: human immunodeficiency virus type 1
(HIV-1), which can be responsible of damages to the brain and
the spinal cord during acquired immune deficiency syndrome
(AIDS) and human T-cell lymphotropic virus type 1 (HTLV-1),
which is responsible for a progressive neurodegenerative disease,
the tropical spastic paraparesis/HTLV-1-associated myelopathy
(TSP/HAM) in some HTLV-1 infected persons. Other retro-
viruses, from the Lentiviral subgroup, are also able to induce
neurological syndromes in animals. The present review sum-
marizes the main characteristics of the BBB, and the different
interactions between retroviruses and this structure.

Overview of the Blood-Brain Barrier

The brain is a highly perfused organ: it represents only 2% of
body weight, but receives 15–20% of total cardiac output. The
blood/CNS interfaces are diverse: they include the BBB, as well as
the blood cerebrospinal fluid barrier, the blood retinal barrier, the
blood nerve barrier and the blood labyrinth barrier.4 The barrier
properties are usually determined by the endothelium of brain
microvessels, but both in choroid plexus and arachnoid the barrier
is determined by an epithelium. The cerebral endothelium is the
primary site of oxygen and nutrient exchanges.5 In the brain, it is
estimated that nearly every neuron, the core components of the
nervous system, has its own microvessel,6 underlining the critical
relationship between the neuronal and vascular compartments.
The combined surface area of these microvessels, depending on
the anatomical region, ranges between 150 and 200 cm2 g21

tissue, with a total area for exchange in the brain about 12 m2 for
the average human adult.7,8

The neurological activity requires a strict cerebral homeostasis.
With the exception of the circumventricular organs, which are
regions of important exchanges between specialized neurons and

*Correspondence to: Pierre-Emmanuel Ceccaldi;
Email: pierre-emmanuel.ceccaldi@pasteur.fr
Submitted: 01/30/12; Revised: 02/13/12; Accepted: 02/13/12
http://dx.doi.org/10.4161/viru.19697

Virulence 3:2, 222–229; March/April 2012; G 2012 Landes Bioscience

222 Virulence Volume 3 Issue 2

http://dx.doi.org/10.4161/viru.19697


© 2012 Landes Bioscience.

Do not distribute.

the blood stream, the homeostasis of the CNS is achieved by
exquisite regulation of nutrients, solutes and water exchanges at
blood/CNS interfaces.9

As BBB specificities and characteristics are mainly induced,
maintained and/or interfered by cerebral vicinity, it is worth to
consider the whole neurovascular unit rather than the brain
endothelium as an isolated structure.

The neurovascular unit. The cerebral endothelium is a very
dense network of intercommunicating capillaries and micro-
vessels, composed of specialized endothelial cells (Fig. 1). BBB
endothelium is characterized by the presence of tight junctions
(TJs). In addition, cerebral microvascular endothelial cells are
surrounded by pericytes, which are important for the maintenance
of vascular homeostasis and are source of adult pluripotent stem
cells.10 Finally, basal lamina surrounds the microvessels and
astrocytic end-feet sheath the vascular structure. The importance
of astrocyte was for long undermined: their role was purportedly
limited to providing trophic, metabolic, and structural support
for neural networks. Since, it has been demonstrated that astro-
cytes also play a signaling role: they communicate with neurons
via Ca2+ signaling, and can release signaling transmitters, termed
gliotransmitters.11

Functions and characteristics of the BBB. The neurovascular
unit acts, besides other roles, as a physical barrier for the CNS.
Cerebral endothelium is continuous without any fenestration and
intercellular junction complexes are formed. Junction complexes
comprise adherens and tight junctions; these are accumulated
close to the apical side of endothelial cells.12 Adherens junctions
are composed of cadherin-catenin complexes, and are important
in the initiation, maturation and maintenance of endothelial
intercellular contacts. TJs are mainly composed of three trans-
membrane proteins (claudins, occludin, and Junction Adhesion
Molecules) associated with cytoplasmic accessory proteins (Zonula
Occludens-1, -2, -3, cingulin). These latter link membrane

proteins to the actin cytskeleton, which is involved in the
structural and functional integrity of cerebral endothelium.12,13

This typical angioarchitecture, with junction complexes that
fasten together adjacent endothelial cells,14 together with minimal
vesicular transport activity in the endothelial cells,9,14 explain
mostly the restrictiveness of the BBB. As passive diffusion
between the bloodstream and the brain is abolished, BBB strictly
controls nutrient transport to the brain as well as efflux of
metabolites.15 Moreover, BBB confers a large protection against
toxicity of many xenobiotics, as it regulates efflux of drugs from
the CNS to the blood.16 Finally it is a good protection against
pathogens: it restricts the entry of circulating immune cells17 and
pathogens.18 Retroviruses, as other viruses, have developed
different ways to overcome this protective barrier, as described
as follows.

Blood-Brain Barrier, HIV and Other Lentiviral Infections

HIV-infected patients commonly develop neurological symptoms,
such as HIV-associated dementia (HAD), and its pathological
correlate, HIV-encephalitis (HIVE). These can occur even in the
absence of opportunistic infections and are characterized by motor
and cognitive disorders, such as limb muscle weakness, loss of
memory, depression and dementia.19,20 The clinical manifestations
are accompanied by histological hallmarks, such as neocortical and
subcortical damage within the white and gray matter,21-23 presence
of multinucleated giant cells, neuronal loss and astrocytosis.
Although the introduction of highly active antiretroviral therapy
(HAART) has been able to reverse some of the clinical mani-
festations, pathological alterations persist within the CNS of
infected patients as the drugs hardly penetrate the CNS turning
difficult the control of HIV replication within the brain.24

Blood-brain barrier alterations during HIV infection. Blood-
brain barrier functional perturbations have been early identified

Figure 1. Transmission electron microscopy (A) and schematic view (B) of rat brain illustrating the neurovascular unit. This complex includes microvessel
endothelial cells (EC), based on basal lamina (BL), astrocytes end-feet (AEF) and some neurons (N) in the vicinity. Scale bar: 0.5 mm.
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during HIV infection, as shown by the presence of cellular
infiltrates and diffusion of seric markers within the brain
parenchyma,24-27 as well as by dynamic magnetic resonance
imaging.28 Additional evidence of BBB alteration in the CNS
of infected patients has been brought by observation of TJ
disorganization, especially in the expression pattern of occludin
and the protein Zonula Occludens 1 (ZO-1).29 Interestingly,
whereas brain sections from HIV infected patients without HIVE
showed normal amounts of occludin- or ZO-1-reactive blood
vessels, brain sections from patients with HIVE showed marked
alterations in both the intensity and staining pattern of occludin
and ZO-1.29 Moreover, a correlation could be established between
the level of ZO-1 disorganization in brain endothelia and the
extent of dementia in HAD patients.30

Three main mechanisms were proposed to explain BBB
alteration during HIV infection: (1) BBB is altered in response
to proinflammatory cytokines secretion by HIV-infected cells or
activated endothelial cells, (2) BBB is altered in response to
secreted viral proteins (Tat or gp120) and (3) BBB is altered upon
infection of endothelial cells by HIV.

Effect of proinflammatory cytokines secretion. During the
asymptomatic phase, HIV-infected patients exhibit a chronic
activation of immune system, accompanied by dysregulation of
cytokine secretion.31,32 At this stage, HIV can be detected in the
CSF,33 as the consequence of trafficking of either activated and
infected CD4+ T cells, monocytes or dendritic cells from the
periphery. After the virus has reached the CNS, productive virus
replication occurs in the CNS, which is accompanied by massive
cytokine and chemokine secretion in the CNS.34,35 Cerebral
endothelial cell functions are deeply impaired during this chronic
activation; they overexpress cell adhesion markers such as
intercellular adhesion molecule-1 (ICAM-1) and secrete
metalloproteases, which induce basal lamina thinning.36-38 This
facilitates mononucleated cells extravasation into the CNS.

Effect of secreted viral proteins. Since clinical manifestations of
HIV infection often do not correlate directly with viral titers, it
has been thought that the effects of infection could be mediated
by viral soluble factors secreted from HIV-infected cells.

Among them, the viral Tat protein, which is secreted by
infected cells39 and is able to cross cell membranes, can be
detected in both sera and CSFs from HIV-infected patients.40

Evidence of a deleterious effect of Tat on BBB has been brought
both on cellular models in vitro and in vivo.41-45 Tax-induced
BBB alteration occurs through the disorganization of TJs in
vitro: decrease in claudin-1, claudin-5 and ZO-2 expression were
observed in cellular models treated with recombinant Tat.44

Moreover, in vivo, exposure to recombinant Tat were sufficient to
induce redistribution of claudin-5 immunoreactivity in a murine
model.44 Similarly, Tat administration into the brain hippocampi
of C57BL/6 mice resulted in decreased mRNA levels of ZO-1
and drastic reduction of ZO-1 continuity in brain microvessels.43

Such changes are mediated by the activation of extracellular
signal-regulated kinase 1/2 (ERK1/2), suggesting that Tat-
induced oxidative stress may play an important role in affecting
BBB integrity via the ERK1/2 pathway. In fact, a dose-
dependence relationship was established between the oxidative

stress degree and Tat concentration in brain endothelial cell
cultures.45 Via the increase in oxidative stress, HIV infection
could increase cytoplasmic calcium concentration, thus altering
mitochondrial functions and inducing endothelial cell apoptosis.
Endothelial cell apoptosis was indeed observed in the brains
of some AIDS patients46; however the importance of such a
mechanism has not yet been established in vivo.47

The HIV envelope glycoprotein gp120 could also alter BBB
integrity. Alterations in the BBB have been detected in trans-
genic mice expressing solely the viral gp120. Gp120 expression
induces matrix metalloproteinase-2 secretion in vivo that might
alter the basal lamina,37 oxydative stress48 and ZO-1 and occludin
degradation accompanied with claudins expression alterations.49

TJ proteins degradation might be mediated by proteasome in
cultured human brain microvascular endothelial cells.50 Eventu-
ally, BBB permeability is impaired and infected monocytes
migration increased.51

Direct infection of endothelial cells by HIV. Brain endothelial
cells can potentially be infected. Microvascular cerebral endo-
thelial cells express HIV receptor and co-receptors.52,53 Moreover,
primary endothelial cells can be productively infected by HIV in
vitro,54,55 although such an infection could only been demon-
strated for dual-tropic X4R5 HIV strains. Infection of brain
endothelial cells could have many deleterious effects on BBB
integrity: (1) HIV-infected endothelial cells could secrete cyto-
kines and the viral protein Tat, with deleterious effect on BBB;
(2) infection of brain endothelial cells enter apoptosis; (3) infec-
ted endothelial cells could secrete metalloproteases able to alter
BBB.56

Infection of brain endothelial cells in vivo is still a matter of
debate. Some reports suggested the presence of infected endo-
thelial cells through in situ hybridization experiments.57-59 How-
ever, these studies could not exclude that such positive signal
could correspond to infected perivascular macrophages, in fact
they concluded solely based on morphological criteria, in the
absence of endothelial cell typing by histochemistry. In addition,
using PCR/in situ hybridization technique, no HIV-infected
endothelial cells could be detected in the brains of adult patients
with AIDS, including patients with HAD.60

Cell trafficking through BBB during HIV infection. In
addition to altering BBB functions either by viral-induced TJ
disorganization or endothelial cell cytopathic effect, HIV can
access the CNS by an increased trafficking of HIV-infected
CD4+ T cells or circulating monocytes; this is named the “Trojan
horse” mechanism.61

Whereas in healthy individuals leukocyte trafficking toward
the CNS is very low, in inflammatory conditions lymphocytes
and monocytes/macrophages gain access to the CNS by increased
migration through the BBB.17,62 In the case of HIV infection,
inflammation in the CNS, and subsequent increased transmigra-
tion of lymphocytes and monocytes through the BBB, have been
shown (for a recent review, see ref. 63). For example, Tat induces
adhesion molecules in endothelial cells and chemokines secre-
tion by astrocytes and microglial cells, thus possibly enhancing
leukocyte trafficking toward CNS.64 In addition, the viral protein
gp120, which can be detected in the brain of HIV-1 infected
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patients,65 triggers the release of MCP-1, as a potent chemoattrac-
tant for monocytes.66 Interestingly, an increased risk of HAD has
been shown to be linked to a mutant MCP-1 allele.67 Finally,
proinflammatory cytokines levels are elevated in CSF and brain
parechyma of HAD patients. These can alter BBB integrity,
increase the expression of the adhesion molecules ICAM-1,
Vascular Cell Adhesion Molecule-1 (VCAM-1) and E-selectins on
endothelial cells, thus facilitating leukocyte adhesion, rolling and
estravasation into the brain.68

Interestingly, some hypothesized that the increased trafficking
of leukocytes toward the CNS during HAD would be a
consequence of early alteration of the gastrointestinal mucosa
observed during HIV infection.69 In fact, gastrointestinal rupture
could lead to translocation of bacterial endotoxin LPS, which
could induce a generalized systemic activation, LPS-induced BBB
damage70 and an increase in monocyte transmigration.71,72

Blood-brain barrier and other lentiviruses. Most of the
observations reported for HIV seem to stand true for other
lentivirus-associated CNS disorders.

As for its human counterpart, the simian immunodeficiency
virus can induce encephalitis in macaques.73-76 Brains of
SIV-infected macaques exhibit fragmented and reduced immuno-
reactivity for occludin and ZO-1, in association with accumula-
tion of perivascular macrophages.77

Upon Feline Immunodeficiency Virus (FIV) infection, BBB
and choroid plexus functions are impaired.78 In vitro, cat brain
microvascular endothelial cells can be infected with FIV, which
could lead to important alterations of BBB functions.79 However,
as for HIV-1, FIV-infection of brain endothelial cells in vivo
remains controversial; the current model favors a CNS invasion by
FIV through trafficking of infected lymphocytes.80

Interestingly, both Visna virus and Caprine Arthritis
Encephalitis virus can cross the BBB, but since no free virus
could be detected in the blood, it has been suggested once again
that the major entry mechanism for lentiviruses is the “Trojan
horse” mechanism.81,82

Blood-Brain Barrier and HTLV-1

Human T-cell leukemia virus type 1 (HTLV-1), a retrovirus that
infects 15 to 20 millions people worldwide, is known to cause a
variety of diseases, including a chronic neurological syndrome
called either tropical spastic paraparesis or HTLV-1-associated
myelopathy (TSP/HAM).83-85 TSP/HAM is a slowly progressive
neurological disease, which occurs in less than 3% of HTLV-1
infected people, and is characterized by BBB alterations such
as immunoglobulin and fibrinogen deposit in the brain
parenchyma,86,87 and crossing of HTLV-1 infected lymphocytes
through the BBB.88,89

Three putative mechanisms have been proposed for TSP/
HAM pathogenesis. First, the “bystander” model is based on the
observation that CSF from HAM/TSP patients is enriched in pro-
inflammatory cytokines such as tumor necrosis factor-a (TNF-a),
interleukin-1 (IL-1), IL-6 and interferon-c (IFN-c).90-92 These
pro-inflammatory cytokines, as well as HTLV-1 proteins (such
as the viral transactivator Tax protein) are secreted by infiltrating

infected lymphocytes that have crossed the BBB and could
induce glial cell stress and effect on myelin.93 In the second
model, called the “cytotoxic model,” glial cells get infected by
HTLV-1.94 Infected glial cells would then be recognized as
targets by anti-HTLV-1 cytotoxic lymphocytes (CTL) and sub-
sequently lysed. The third model puts at play an auto-immune
mechanism. The viral Tax protein dominant epitope (346–353)
cross-reacts with a neuron-specific ribonucleoprotein, hnRNP
A1.95 Therefore, the humoral immunity against HTLV-1 can
give rise to antibodies directed against neuronal antigens,96 and
such antibodies have been detected in sera from TSP/HAM
patients.

All hypotheses include an initial step of BBB breakdown
and/or BBB crossing by HTLV-1 infected lymphocytes. In this
context, in vitro and ex vivo studies have been performed to
decipher the cellular and molecular mechanisms of BBB alteration
and HTLV-1 infected lymphocytes crossing through this latter.
In an in vitro rat endothelial model, HTLV-1 infected lympho-
cytes could alter the endothelial monolayer through TNF-a
secretion, and HTLV-1 virions could be transferred through
endothelial cells, either by transcytosis or transient infection.97

More recently, in an in vitro model of human brain endothelial
cells, HTLV-1 infected lymphocytes were able to alter TJ
structures, increase paracellular permeability and transcellular
migration, via secretion of both IL-1a and TNF-a.98 These two
cytokines have also been shown in an in vitro model of epithelial
choroid cells to be able to mediate the alteration of epithelial
transport processes induced by HTLV-1 infected lymphocytes.99

In addition, cerebral endothelial cells can be infected by HTLV-1,
as shown in vitro, in human brain endothelial cells, and in
necropsy spinal cord sections from TSP/HAM patients.100 In
vitro, such an infection is productive and alters BBB functions,
thus providing additional mechanisms for BBB alteration and
viral access to the CNS during TSP/HAM (Fig. 2).

Conclusion and Perspectives

In conclusion, although the pathological consequences are rather
different, the two human retroviruses linked to neurological sym-
ptoms, i.e., HIV and HTLV-1, bypass and alter the BBB using
very similar mechanisms. Besides the “Trojan horse” strategy to
invade the CNS via infected infiltrating cells, the role of the
infection of endothelial cells remains to be further investigated.
BBB alterations that occur during retroviral infection are often
related with a combination of viral-induced proinflammatory
cytokines secretion and direct effect of viral proteins (Tat or Tax).

However, the interactions between retroviruses and BBB might
have to be revisited in the context of both anti-retroviral therapy
and social behaviors, such as drug abuse. Concerning HTLV-1,
the use of valproate, a drug often use for epilepsy treatment,
has been shown to increase the proviral load and alter motor
functions at the beginning of the treatment.101 Concerning
HIV, the introduction of highly anti-retroviral therapy (HAART)
has drastically limited BBB alterations, which were previously
frequently detected.102 Indeed, HAART has been shown to limit
or prevent lymphocytic infiltration toward the CNS. However,
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syndrome (IRIS) associated with HAART, a massive lymphocyte
extravasation through brain parenchyma has been reported.103

The mechanisms of BBB alteration in this context might be
different. In the context of drug abuse, the viral capacity to
penetrate the CNS might be modified. As an example,
methamphetamines alter BBB permeability through modulation
of TJ expression,104 facilitating the entry of the virus or infected
cells. In the same manner, use of cocaine can increase HIV-1
neuroinvasion by upregulating the expression of adhesion mole-
cules and matrix metalloproteinases in cultured brain micro-
vascular cells.105,106 The viral protein Tat effects on BBB integrity
are also directly exacerbated by cocaine, with a differential effect
between the Tat proteins from HIV-1 clades B and C.107 By

contrast, cannabinoids can inhibit HIV-1 gp120-induced altera-
tions in cultured microvascular endothelial cells.108 Finally, since
combination of HAART (and especially the HIV protease
inhibitor saquinavir) with chronic exposure to nicotine has been
recently shown to induce BBB integrity alteration109,110it makes
clear that retrovirus interaction with the BBB remains a topic of
major interest in the next years.
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Figure 2. Possible mechanisms of blood-brain barrier disruption by HTLV-1-infected lymphocytes. During TSP/HAM, HTLV-1 infected lymphocytes may
disrupt the blood-brain barrier either by proinflammatory cytokine secretion (TNF-a, IL-1a) that activate NFkB pathway in endothelial cells, which induce
tight junction disruption, or by infecting endothelial cells; the viral protein Tax could then induce tight junction disorganization.
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