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Abstract  24 Simian foamy virus (SFV) is a ubiquitous retrovirus in non-human primates (NHPs) that can 25 be transmitted to humans, mostly through severe bites. In the past few years, our 26 laboratory has identified more than 50 hunters from Central Africa infected with zoonotic 27 SFVs. Analysis of the complete sequences of five SFVs obtained from these individuals 28 revealed that env was the most variable gene. Furthermore, recombinant SFV strains, some 29 of which involve sequences in the env gene, have been recently identified. Here, we 30 investigated the variability of the env gene of zoonotic SFV strains, and searched for 31 possible recombinants. We sequenced the complete env gene or its surface glycoprotein 32 region (SU) from DNA amplified from the blood of: 1) a series of 40 individuals from 33 Cameroon or Gabon infected with a gorilla or chimpanzee FV strain; and 2) one gorilla and 34 three infected chimpanzees living in the same areas as these hunters. Phylogenetic analyses 35 revealed the existence of two env variants among both the gorilla and chimpanzee FV 36 strains that also were present in zoonotic and NHP strains. These variants differ greatly 37 (more than 30% variability) in a 753 bp long region located in the receptor-binding domain 38 of the SU whereas the rest of the gene is very conserved. Although the organization of Env 39 protein sequences is similar, the potential glycosylation patterns differ between variants. 40 The analysis of recombination suggests that the variants emerged through recombination 41 events between different strains, although all parental strains could not be identified. 42  43 
Importance  44 SFV infection in humans is a great example of a zoonotic retroviral infection that has not 45 spread among human populations, in contrast to human immunodeficiency viruses (HIV) 46 
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and human T-lymphotropic viruses (HTLV).  Recombination was a major mechanism leading 47 to the emergence of HIV. Here, we show that two SFV molecular envelope variants circulate 48 among ape populations in Central Africa and that both can be transmitted to humans.  These 49 variants differ greatly in the SU region that corresponds to the part of the Env protein in 50 contact with the environment. These variants may have emerged through recombination 51 events between SFV strains infecting different NHP species.  52 
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INTRODUCTION 53 The emergence of zoonotic viruses is a multi-step process involving the transmission 54 of viruses from domestic or wild animals to humans and their subsequent spread among 55 human populations. Such viral infections are frequent (1). In particular, several viruses 56 originating from non-human primates (NHPs) have had a major impact on human health. 57 Among them, the retroviruses, simian immunodeficiency virus (SIV) and simian T-58 lymphotropic virus (STLV), have crossed the species barrier from NHPs to humans, leading 59 to the emergence of human immunodeficiency virus (HIV) and human T-lymphotropic virus 60 (HTLV), respectively, in human populations (2).  61 Another retrovirus that can be transmitted from NHPs to humans is the simian foamy 62 virus (SFV). SFVs are complex retroviruses from the Spumaretrovirinae subfamily that are 63 ubiquitous in both Old and New World NHPs, with a seroprevalence of up to 75–100% in 64 adult NHPs. Phylogenetic studies suggest that SFV have evolved by co-speciation with Old 65 World primates over more than 85 million years (3, 4). Consequently, host-specific groups 66 have emerged. Recombination can also be involved in the genetic diversity of SFV. Indeed, 67 NHPs can become co-infected with strains either from the same group (5-7), or from 68 different groups, as shown by some chimpanzees, which were found to be co-infected with 69 SFVcpz strains and with SFV from colobus monkeys, or Cercopithecus monkeys (5, 8). Co-70 infection may create recombinant strains, as suggested within the env, gag and pol genes (5, 71 7, 9). Of note, both co-speciation and host switching may have contributed to the 72 evolutionary history of SFVs infecting New World prosimians (10).  73 Humans are not considered to be natural SFV hosts; however, more than 100 cases of 74 human SFV infection have been reported mostly among individuals exposed to NHPs either 75 
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in a professional context (e.g. veterinarians or zookeepers) (11-15) or natural settings (e.g. 76 hunters in Africa, and monkey temple workers or visitors, pet owners, or people living 77 around free-ranging macaques in Asia) (16-22). The clinical significance of zoonotic SFV 78 infection remains unknown. This may be due to the very small number of persons yet 79 studied with a limited follow-up (23) and also to a possible recruitment bias (among healthy 80 individuals). SFV is mainly transmitted through biting (22). Indeed, in African green 81 monkeys and macaques, the oral mucosa is a major site for viral replication (24-26) and SFV 82 viral RNA accumulates at high concentrations in saliva (25, 27). In humans, SFV infection is 83 persistent. SFV DNA is detectable in peripheral blood and saliva cells. However, cell-84 associated viral RNA has not been detected (28), (21) and secondary human-to-human 85 transmission (22, 29) has not been reported. Hence, human infection with zoonotic SFVs 86 represents a unique natural model to study the role of viral and immunological factors in the 87 restriction of viral transmission.  88 In the past few years, we have undertaken a large epidemiological and molecular 89 study involving hunters of monkeys and apes, living in Central Africa, to obtain insight into 90 the natural history of SFV emergence in humans. We identified a large series (more than 50) 91 of hunters that had been infected with SFVs, mostly following severe bites from NHPs (17, 92 22). We previously showed that the virus mostly localizes to CD8+, CD4+ T, and B 93 lymphocytes in the blood of infected humans (30). Our study also revealed natural 94 polymorphisms in gag and bet between SFV strains originating from different chimpanzee 95 subspecies and polymorphisms in U3 and tas at the inter-individuals level (31). Based on the 96 complete sequence of five replication-competent strains, we found no evidence of viral 97 adaptation among SFV strains isolated in humans (31).  98 
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Our previous study revealed some genetic diversity in the env gene of zoonotic strains 99 of SFV from Apes. The env gene is involved in different viral cycle steps such as receptor 100 binding (32, 33), fusion (34-36), budding (37-39) and site of particle formation (40, 41). The 101 broad tropism of SFV suggests an ubiquitous cellular receptor (42, 43). While all SFVs seem 102 to use the same cellular receptor (44-46), only heparin sulfate has been identified as an 103 attachment factor so far (47, 48).  104 Here, we aimed to investigate the genetic variability of env among SFVs infecting 105 humans or NHPs living in Cameroon and Gabon. We found that viral strains from both gorilla 106 and chimpanzee FVs segregate into two env variants. These variants co-circulate among 107 humans and NHPs, and may have arisen by recombination.  108  109 
MATERIALS AND METHODS 110 
Population 111 Human population: In three previous studies, we identified 48 individuals from Cameroon 112 who were infected either with a SFV from a Gorilla gorilla gorilla (Ggo) or from a Pan 113 
troglodytes troglodytes (Ptr) as defined by the analysis of a 465 bp-long pol-integrase 114 fragment (17, 22, 49), In a few cases, SFV was detected by analyzing a smaller LTR fragment. 115 These individuals live in villages or settlements located in the rain forest of South and East 116 Cameroon. They belong to different Bantu tribes or the Baka and Bakola Pygmy tribes. 117 Fourteen Ggo- or Ptr-FV infected individuals from Gabon, all of whom were Bantus, were 118 also included in this study (20).  119 This study was approved by the research division of the Ministry of Public Health and the 120 National Committee of Ethics in Cameroon, the Ministry of Health and the Ethics Committee 121 
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of the CIRMF in Gabon, and the Comité de Protection des Personnes and the Commission 122 Nationale de l’Informatique et des Libertés in France. All individuals provided written 123 informed consent.  124 NHP population: One Ggo from Cameroon and three Ptr (one from Cameroon and two from 125 Gabon) were included in this study. NHPs from Cameroon were born and caught in the wild 126 in the Southern rain forest area (50, 51). NHPs from Gabon were all born in the wild (20). 127 Samples were collected in accordance with the rules of animal care committees. 128 
Sampling and DNA preparation 129 Blood samples were collected from all individuals and NHPs in EDTA tubes. The buffy coat 130 (BC) was obtained after centrifugation and genomic DNA was extracted using the Qiamp 131 DNA Blood minikit (Qiagen, Courtaboeuf, France). DNA samples were quantified using a 132 Nanodrop instrument (ThermoScientific). 133 
PCR amplification of env from genomic DNA 134 Regarding Ggo-FVs, three different overlapping env fragments (720, 1102 and 1490 bp-long) 135 were amplified from BC-DNA using specific primers (Table 1). Nested PCR was performed as 136 follows: 500 ng of DNA was mixed in the enzyme buffer with the external primers (0.25 μM 137 of each), MgCl2 (3.5 mM), dNTP (200 μM of each) and 0.5 μL of HotStarTaq polymerase 138 (Qiagen) in a final volume of 50 μL. The external PCR consisted of a 15’ long denaturation 139 step at 95°C, followed by 40 amplification cycles (45’’ at 95°C, 45’’ at 57°C and 1’ per kb at 140 72°C) and a 7’ long extension step at 72°C. The product (5 μL) was then used as template for 141 a second internal PCR in the same conditions, but using the internal primers (table 1).  142 Regarding Ptr-FVs, two different overlapping env fragments (1645 and 1802 bp) were 143 amplified from BC-DNA using specific primers (Table 1). The PCR parameters were the same 144 
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as those used for the Ggo-FV strains, except for the annealing temperature of the PCR of the 145 second fragment (60°C instead of 57°C).  146 The env gene of the prototypic Pan troglodytes verus SFVpvr.SFV7 strain (52) was amplified 147 from SFVpvr.SFV7-infected BHK-21 cells (a gift from A. Rethwilm) using the CPZENVF1 and 148 CPZENVR2b primers (Table 1) with an annealing temperature of 57°C and an extension time 149 of 3’30’’. 150 PCR products were directly sequenced by MWG Operon (Ebersberg, Germany). Both sense 151 and antisense sequences were obtained for each fragment and were found to be identical. To 152 obtain complete env sequences, the different env fragments were concatenated (the 153 overlapping regions were identical in all samples). 154 
Phylogenetic analyses 155 Multiple sequence alignments on the previously known (Table 2) and the newly generated 156 sequences were performed using the DAMBE program (v4.2.13 157 [http://www.dambe.bio.uottawa.ca]). Modeltest v3.6 was used to select the most 158 appropriate nucleotide substitution model, based on the Akaike information criterion (AIC). 159 GTR was found to be the best-fitting model. Phylogenetic trees were constructed using the 160 Neighbor Joining method and bootstrap values were calculated on 1,000 replicates. 161 Phylogenetic tree topologies were confirmed using the maximum likelihood method with the 162 PAUP program (v4.0 [http://www.paup.csit.fsu.edu]). Percentage identity was calculated by 163 CLC software (CLC DNA Workbench 6 [http://www.clcbio.com]) on the alignment obtained 164 with DAMBE. 165 
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By definition, a clade is a monophyletic group supported by a strong bootstrap value. 166 Herein, we used “group” as a host-specific clade, and “subgroup” as a clade defined on the 167 central region of env. 168  169 
Recombinant analyses 170 To search for potential recombination events, similarity plot and bootscanning analyses 171 were performed with Simplot software (v3.5.1 [http://www.simplot.com]). These analyses 172 were performed with default parameters, except for the bootscan repetitions (set to 1,000) 173 and the evolution model (Kimura 2-parameter). The similarity plot depicts a similarity score 174 between a group of interest (query) and other groups (defined based on the phylogenetic 175 tree) over a 200 bp-long region and the overall env gene was analysed by 20 bp-long steps. 176 The bootscan analysis reflects the phylogenetic relationship (bootstrap value) between a 177 group of interest (query) and the other groups (window 200 bp, step 20 bp).  178 The Recombination Detection Program (RDP4 (53)) was also used to investigate putative 179 recombination. Unlike the Simplot derived studies, the RDP method looks for recombination 180 by analyzing every possible sequence triplet (instead of considering groups). A window is 181 moved along the genome and a percentage of identity between each of the three possible 182 pairs is calculated at each position. A p-value is calculated to determine the likelihood that 183 the potential recombination event is due to chance. 184 
Protein analysis 185 Percentage identity was calculated by CLC software (CLC DNA Workbench 6) on the 186 alignment obtained with DAMBE after the translation of the sequences into amino acids. 187 Putative glycosylation sites were identified by the NetGlyc 1.0 program and consisted of 188 
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NXS/T sites, where X denotes any amino acid except proline [http://www.cbs.dtu.dk/ 189 services/NetNGlyc].  190 
Nucleotide sequence accession number 191 All complete and partials env sequences generated in this work are published in GenBank. 192 Complete sequences are published through accession numbers KT211246 to KT211269, the 193 latter corresponding to SFVpvr.SFV7 sequence; partial sequences through accession 194 numbers KT211270 to 211290. 195 
 196 
RESULTS 197 We previously identified 48 SFV-infected individuals in Cameroon (17, 22, 49) and 14 198 SFV-infected individuals in Gabon (20). The strains belonged to the Gorilla gorilla gorilla 199 (Ggo)- or Pan troglodytes troglodytes (Ptr)-FV groups according to their pol and/or LTR 200 sequences. In addition, we previously obtained complete SFV sequences (Bad468, Bak74, 201 AG15 and Bad327) from four Cameroonian individuals (31). Buffy coat or DNA samples were 202 available for 51 of the remaining 58 individuals. From these samples, 40 new env sequences 203 were generated by PCR and direct sequencing (19 env sequences were complete and 21 204 partial). Low viral load may explain the absence of amplification in the 11 remaining 205 samples. Thus, overall, our study population yielded 44 env sequences from zoonotic SFVs 206 (33 Ggo-FV and 4 Ptr-FV from Cameroon, five Ggo-FV and two Ptr-FV from Gabon) (Table 3, 207 Figure 1).  208 In addition, we also obtained complete env sequences from four wild-born NHPs 209 living in the same region as the infected individuals (one gorilla, and three chimpanzees) and 210 
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we sequenced the env gene of a prototypic SFVpvr.SFV7 Pan troglodytes verus strain (Table 211 3). 212  All newly obtained sequences contained an Open Reading Frame of 2958 to 2970 bp 213 and were unique.  214  215 
Complete env sequences define host-specific SFV groups 216 We analyzed phylogenetically the complete env sequences using the neighbor joining 217 (Figure 2) and the maximum likelihood methods (data not shown). The newly generated 218 complete env sequences were included together with the available SFV env sequences in 219 Genbank (Table 2). The topologies of both phylogenetic trees were comparable. Host-220 specific groups (Gorilla, Chimpanzee, Cercopithecus, Macaque) were identifiable and 221 supported by strong bootstraps (>90). Moreover, among the strains from the chimpanzee-FV 222 group, we identified three different clades corresponding to different subspecies: Pan 223 
troglodytes troglodytes, P. t. schweinfurthii and P. t. verus. 224 Interestingly, the gorilla-specific FV group was composed of two monophyletic 225 subgroups supported by strong bootstraps. These subgroups did not correspond to 226 geographic segregation. Indeed, each subgroup contained sequences from both Cameroon 227 and Gabon (underlined strains on the tree; Figure 2), as well as both zoonotic and NHP 228 strains (SFVggo or SFVggo.Cam7). We named the subgroup containing the previously 229 described Bad468 env FV sequence, SFV-GorI, and the one containing the Bak74 env FV and 230 the prototypic SFVggo sequences, SFV-GorII.  231 
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Similarly, two phylogenetic subgroups were identifiable within the Ptr-FV group. We 232 named the one containing the previously described Bad327 and AG15 env sequences, SFV-233 CpzII, and the other one, SFV-CpzI. 234  235 
Definition of a central variant region within the surface env sequence 236 We performed sequence alignments to understand better the origins of the two 237 subgroups present in the Ggo-FV and Ptr-FV groups.  238  Concerning the Ggo-FV strains, SFV-GorI env sequences were 2970 bp long, whereas 239 SFV-GorII sequences were 2964 bp long. Complete sequences within a subgroup were 96.4 240 to 99.8% identical, whereas those belonging to different subgroups were only 88.2 to 90.4% 241 identical (Figure 3.A). SFV-GorI and SFV-GorII sequences differed the most in a central 242 region beginning at position 769 bp (red line) and ending at position 1473 bp (green line; 243 the positions were defined on the env PFV strain) (Figure 3.B). In the Ptr-FV strains, SFV-244 CpzI sequences were 2967 bp long whereas SFV-CpzII sequences were 2958 bp long. These 245 two Ptr-FV subgroups differed the most between positions 721 (red line) and 1440 (green 246 line) (Figure 3.C). Interestingly, this corresponds closely to the same variable region defined 247 for Ggo-FV strains. 248 Thus, we defined two regions in the env sequence (Figure 3.D): a conserved region, 249 which comprises nucleotides 1 to 720 and 1474 to 2967 (positions defined in the PFV 250 strain), and a variant region, from 721 to 1473. We confirmed a high sequence similarity 251 (96.4 to 99.3% identity) in the conserved region between the SFV-GorI and SFV-GorII 252 subgroups, and a very important divergence (62.2-64.7% identity) in the variant region 253 (Figure 3.D). Similarity of the variant region was very high between strains from the same 254 
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subgroup (94.8-100% identity). This was also true for the two Ptr-FV subgroups (SFV-CpzI 255 and SFV-CpzII). Strikingly, in the variant region, SFV-GorI and SFV-CpzI showed an identity 256 score of 71.7-73% which is higher than that between SFV-GorI and SFV-GorII (62.2-64.7%) 257 (Figure 3.D).  258  259 
Two variants are present within SFV-groups 260 Given that a conserved and a variant region were defined, we performed phylogenetic 261 analyses on each segment separately.  262 In the conserved region (Figure 4.A), sequences segregated following host-species 263 and subspecies. The four major monophyletic and highly supported groups corresponded to 264 SFV strains of gorilla, chimpanzee, macaque or Cercopithecus origin. Moreover, Ggo-FV 265 strains were now subdivided into groups reflecting geographic origin (two Cameroonian 266 clades and one Gabonese clade, underlined in Figure 4.A). This distribution resembles that of 267 the pol-based phylogenetic tree established in previous studies on the same individuals (20, 268 22).  269 The phylogenetic tree based on the variant region (Figure 4.B) was quite different. 270 The Ggo- and Ptr-FV segregated according to the subgroups identified previously (SFV-GorI, 271 SFV-GorII, SFV-CpzI and SFV-CpzII,). In this phylogenetic tree, we could define two clades for 272 African Ape SFVs (clade 1 and clade 2), each comprising both Ggo-FV and Ptr-FV strains. Of 273 note, P.t.verus-FV sequences (SFV7 and SFVcpz) were also split: the SFV7 env sequence was 274 closer to the SFV-CpzII sequences, whereas the SFVcpz env was closer to the 275 
P.t.schweinfurthii PFV and the SFV-CpzI strains. Finally, macaque- and cercopithecus-FV 276 isolates were also divided into two distinct subgroups. 277 



 14

To confirm these findings, in the analysis of the variant region, we included the 21 278 partial env sequences obtained from other individuals infected by a Ggo-FV strain (Table 3) 279 and 21 previously published African Green Monkey (AGM, cercopithecus group) env SU 280 sequences (Table 2)(54). Phylogenetic analysis of the variant region (Figure 4.C) confirmed 281 the robustness of the two major African Ape clades (clade 1 and clade 2) and of the different 282 subgroups SFV-GorI, SFV-GorII, SFV-CpzI and SFV-CpzII. Interestingly, cercopithecus strains 283 separated into two major subgroups: SFV-CercI and SFV-CercII. Macaque-FV strains were 284 also split into two distinct subgroups (SFV-MacI and SFV-MacII). Of note, the unrooted 285 phylogenetic tree was star-shaped (Figure 4.C), suggesting that, although SFV-GorI and SFV-286 CpzI are the closest groups, the sequences are still genetically distant and do not share a 287 recent common ancestor.   288 Thus, the strains from four simian species (gorilla, chimpanzee, macaque, 289 Cercopithecus) systematically segregate into two subgroups that differ regarding the env 290 central region.  291  292 
 Genomic and functional organization of the envelope gene   293  All protein sequences generated from the new env sequences showed typical Env 294 organization with the leader peptide (LP), the surface glycoprotein (SU) and transmembrane 295 glycoprotein (TM) regions separated by RXXR cleavage signals (data not shown). Other 296 important domains such as the fusion peptide (FP) or the membrane-spanning domain 297 (MSD) were also present (figure 5.A, data not shown). Every cysteine residue (essential for 298 proper folding) described for PFV Env (32) was also conserved. 299 
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The variant region was located within the SU domain, more specifically within the 300 Receptor Binding Domain (RBD) identified on PFV (32). Given that glycosylation is 301 important for RBD function, we examined the conservation of the putative glycosylation 302 sites. Although amino acid sequences diverge in the central region between variants (figure 303 5.B), 13 of the potential glycosylation sites (previously defined on PFV) were conserved 304 among Ggo- and Ptr-FV strains (55)(figure 5.C). Ggo-FV subgroups differed at position of 305 N11 and chimpanzee-FV subgroups differed at positions of N11, N5 and N8. Thus, the 306 different subgroups might have different glycosylation patterns. 307  308 
Could variants be generated by recombination? 309 We performed bootscan analysis on the env sequences grouped by host specific 310 subgroups to search for potential recombinants among Ggo- and Ptr-FV strains (Figure 6). 311 Consistent with the phylogenetic trees, the conserved region of SFV-GorII env sequences was 312 closely related to SFV-GorI (more than 99% of permuted trees grouped them together), 313 whereas the variable region was closer to sequences from SFV-CpzII (Figure 6.A). Similarly, 314 the conserved region of SFV-CpzI strains was closer to that of SFV-CpzII strains whereas the 315 variable region of SFV-CpzI strains was closer to that of SFV-GorI strains (Figure 6.C).  316 Such a pattern suggests that strains from the SFV-GorII subgroup originated from a 317 recombination event between SFV-GorI and SFV-CpzII strains. However, similarity plot 318 analysis argues against this conclusion. Indeed, the similarity score between SFV-GorII and 319 SFV-CpzII strains is low throughout the whole gene, and is lowest in the variant region 320 (between 52 and 62% similarity)(Figure 6.B). Thus, if the strains from the SFV-GorII 321 
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subgroup did indeed appear by recombination, one of the parental strains remains 322 unknown.  323 To investigate further this hypothesis, we performed a Recombinant Detection 324 Program (RDP) analysis to detect recombinant sequences. This analysis strongly suggests 325 that the strains from the SFV-GorI and SFV-GorII subgroups diverged upon recombination 326 (p-value=4.745.10-12). Similarly, the SFV-CpzI and SFV-CpzII subgroups probably 327 recombined (p-value=2.074.10-12). However, in both cases, the parental strain from which 328 the central region was obtained could not be identified.  329  We conclude that the two variants observed among Ggo- and Ptr-FV strains probably 330 arose by a recombination event, and that one of the parental strain is still unknown.  331  332 
DISCUSSION 333 Here, we studied the variability of the envelope gene of SFVs infecting Apes (gorillas 334 and chimpanzees) and humans living in Cameroon or Gabon. We demonstrate the co-335 circulation of two SFV env molecular variants in both the gorilla- and chimpanzee-FV groups. 336 In a given group, the complete nucleotide sequence of env differs by more than 10% between 337 the variants. These differences are mostly located in a central region of the envelope that we 338 have called the “variant” region, in contrast with the “conserved” region that corresponds to 339 the rest of the env gene. The genetic diversity of env may have arisen from recombination. 340 These findings raise several important issues and questions: 341  342 
1) Genetic variability in the conserved region reflects host-species origin and 343 
geographical clustering. 344 
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In the conserved region, the nucleotide variability among Ggo-FV strains was low, 345 ranging from 0.2% to 3.6%. This genetic stability is consistent with the low in vivo variation 346 rate estimated to be around 1.7.10-8 substitutions per site per year (3). The genetic 347 variability of the conserved regions of the different Ggo-FV reflects geographic location. 348 Indeed, we defined two clusters of Cameroonian sequences and a cluster from strains 349 isolated in Gabon by phylogenetic analysis. Interestingly, these clusters were observed 350 previously when the same strains were divided according to their pol sequence (20, 22). 351 Similarly, geographic segregation was also observed in SFV strains in macaque populations 352 in Bangladesh (7), and in mandrill populations in Gabon (56). Indeed, geographic 353 segregation and consequent isolation lead to the accumulation of distinct mutations and 354 speciation.  355 By contrast, Cameroonian and Gabonese Ptr-FV sequences did not segregate together, 356 consistent with the findings of studies on the pol-integrase gene (20, 22). This may suggest 357 that, unlike Gorillas, Ptr populations are not genetically or virologically isolated, despite 358 being geographically distant. However such results are based on few sequences. 359 In the central variant region, we found two subgroups for each FV host-specific group 360 with more than 35% nucleotide variability. This variability did not reflect geographic 361 location. Strains from every Ggo- and Ptr-FV subgroup were present in both humans and 362 NHPs. 363  364 
2) What is the mechanism leading to the emergence of env diversity among the SFV 365 
variants? 366 
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 We first examined whether recombination, which is a frequent evolutionary event in 367 retroviruses, could explain the diversity of env sequences. (57-60). Indeed, recombination is 368 also frequent among SFVs. In vitro studies show that it can occur between PFV-based vectors 369 and reveal that the probability of a template-switching event within a 1 kb-long region is 370 27% (61).  371  Our analyses suggested that a Ggo-FV variant originated from recombination between 372 
Ggo-FV strains and unknown FV strains (the closest known strain being the chimpanzee 373 strains). Similarly one of the Ptr-FV variants may have arisen from recombination between 374 chimpanzee- and gorilla-like FV strains. Until the parental strains are found, the 375 recombination origin of these sequences might be debated. However this hypothesis is the 376 most realistic.  377 Such a scenario implies that NHPs can be co-infected with SFV strains of different host-378 species, and that these strains have recombined. Co-infection has been documented in 379 chimpanzees (5, 6) and rhesus macaques (7). However, in these cases, co-infection occurred 380 with strains from the same host-specific group. Interestingly, in these populations, 381 recombination in FVs has been observed in the pol or gag gene (5, 7). Furthermore, co-382 infection with strains belonging to different NHP-related groups has been documented in 383 wild chimpanzees. These animals were infected with both Colobus monkey- and 384 chimpanzee-related FVs (5, 8) but no recombinant strain was detected. Recently, 385 recombination between macaque- and Cercopithecus-FV strains has been reported (9, 62). 386 However, macaques and Cercopithecus live in different continents, suggesting that the 387 recombination event occurred in captivity. Indeed, animals from various species and/or 388 geographical areas are frequently mixed in primate centers. The variants we report would 389 
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be the first recombinants detected between SFVs of different primate hosts found in a 390 natural setting.  391 Interestingly, the putative recombination sites were quite similar between the gorilla- 392 and the chimpanzee-FV variants. This site also corresponds closely to the same region 393 described in macaque (9) and African Green Monkey FV sequences (54). A similar variant 394 region, with similar recombination points, has been described in feline FVs (63). Together, 395 this suggests that a recombination hot-spot may exist in the env region of foamy viruses. 396  Our data suggest the different env-based subgroups arose by recombination, but 397 many questions remain unsolved. First, the identity of one of the parental strains is still 398 undetermined. This second parental strain, which purportedly introduced the central 399 variable region into the env gene, may be either an existing but yet undescribed FV, or a 400 strain that has disappeared. Second, the date of the recombination events has not been 401 addressed. If the recombination event was ancient, genetic drift would have segregated SFV-402 GorI and SFV-GorII even in the conserved region. Given that the conserved region is very 403 similar between SFV-GorI and SFV-GorII strains and that they do not form separate 404 monophyletic groups in the conserved region, the recombination event probably occurred 405 fairly recently. 406  407 
3) Why are only two env genetic variants present? 408 Strikingly, we observed two env molecular variants for each NHP species studied (i.e. 409 gorilla, chimpanzee, macaque and Cercopitecus).  If the defined sites were hot spots of 410 recombination, we would expect many more variants to be generated. Strong functional 411 



 20

constraints may be an effective source of purifying selection that would only allow for the 412 emergence of two subgroups per host.  413 The variant central region is located in the putative receptor-binding domain of the 414 SU domain, as identified on PFV (32). SFV uses heparin sulfate to attach to target cells (47, 415 48), but the receptor for SFV is still unknown (64). Interference studies showed that one 416 cellular receptor is used by all SFV (44 , 45 , 46). Binding studies of recombinant envelope 417 protein suggest that SFVcpz interacts with two receptors, one low affinity and one high 418 affinity (65). Although most glycosylation sites are conserved, we found that the pattern of 419 glycosylation may differ between the Ggo- and Ptr-FV subgroups. Consequently, it is possible 420 that the two FV variants correspond to viruses that use different receptor complexes, as this 421 is the case for Murine Leukemia Virus (66). Alternatively, the SFV receptor may be expressed 422 in different conformations at the cell surface, allowing two modes of engagement by the two 423 Env variants. Indeed, such conformational heterogeneity was described for the CCR5 424 molecule and its interaction with the envelope of HIV and chemokines (67).  425  Finally, env molecular variants will probably induce distinct immune responses. The 426 Env SU is indeed the target of neutralizing antibodies (65). Two env genotypes 427 corresponding to two serotypes have been described among feline FVs (63, 68). The two 428 genotypes differ in a central region corresponding nearly to the one described in our study. 429 SFV strains from macaques and chimpanzees also segregate into two serotypes as defined by 430 neutralization assay with immune plasma or sera, serotype 1 and 2 for macaques (69), 431 serotype 6 and 7 for chimpanzees (52, 70, 71). We show here two cases in which strains 432 belonging to different serotypes belong to distinct genetic subgroups. Indeed SFV-mcy1 and 433 SFV-mcy2 are from serotype 1 and 2 respectively while belonging to SFV-MacI and SFV-434 
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MacII respectively (fig. 4C); PFV/SFVcpz and SFVpvr.SFV7 are from serotype 6 and 7 435 respectively while segregating with SFV-CpzI or SFV-CpzII respectively (fig. 4C). Preliminary 436 results on neutralizing antibodies present in the plasma of infected persons support the 437 correspondence between serotype and genotype for SFV from the chimpanzee group (72). 438 Studies are currently ongoing to characterize immune responses induced by SFV strains 439 from the gorilla group. 440  441 
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Figure 1. Geographic location of the 44 individuals infected with Ggo- or Ptr-foamy 663 
virus strains. Individuals infected with Ggo-FV strains are indicated by a circle: purple for 664 SFV-GorI strains and blue for SFV-GorII strains. Individuals infected with a Ptr-FV strain are 665 indicated by a square: yellow for SFV-CpzI strains and orange for SFV-CpzII strains. These 666 colors will be used in all figures. 667  668 
Figure 2. Phylogenetic analysis of complete simian foamy virus envelope sequences. 669 Phylogenetic analysis of complete env sequences (2967 bp long for the PFV strain) from 43 670 SFV isolates including the 24 complete sequences generated in this study (in bold) and 19 671 previously published sequences. SFVmarm, a marmoset strain from South America, was the 672 outgroup. Gabon isolates are underlined and asterisks indicate FVs isolated from non-673 human primates. The phylogenic tree was derived by the neighbor-joining method using 674 the GTR model (gamma=0.6749). Horizontal branch lengths are drawn to scale, with the 675 
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bar indicating 0.1 nucleotide replacements per site. Numbers on each node indicate the 676 bootstrap value (calculated on 1,000 replicates) supporting the group. 677 
 678 
Figure 3. Definition of a conserved and a variant region in the envelope gene of Ggo- 679 
and Ptr-foamy virus. A, D: (%) nucleotide identity between the different subgroups of Ggo- 680 and Ptr-FV in the complete (A), the conserved (D) or the variant region (D) of the envelope 681 gene. Percentage identity was determined after alignment by the DAMBE program and 682 using CLC software. B, C: Gorilla and chimpanzee foamy virus sequences were aligned using 683 DAMBE software. The region from 698-798 bp and 1398-1498 bp (positions defined 684 according to the PFV env sequence) are shown for Ggo-FV sequences (B) and Ptr-FV 685 sequences (C), respectively. Dots indicate identity. The red vertical lines indicate the 686 position between two codons where the env sequences diverge into separate variants 687 (defined on the right of the alignment) and the green vertical lines show the position where 688 the variants become very similar again.  689  690 
Figure 4. Phylogenetic analysis of the envelope conserved and variant regions. 691 Phylogenetic trees corresponding to (A) the conserved region (2214 bp for PFV) or (B) the 692 variant region (753 bp for PFV) were derived from the neighbor joining method (GTR; 693 gamma = 0.6749). Horizontal branch lengths are drawn to scale, with the bar indicating 0.1 694 nucleotide replacements per site. Bootstrap values were calculated on 1,000 replicates. The 695 SFVmarm strain was used as an outgroup; Gabon isolates are underlined and asterisks 696 indicate FVs isolated from non-human primates. 697 
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C- Unrooted phylogenetic tree of the variant region. Closely related strains that formed a 698 robust cluster (as seen on B) are represented with black triangles. AGM A, B, C and D are 699 clusters of African Green Monkey (Cercopithecus) sequences previously defined by 700 Schweizer (54).  701  702 
Figure 5. Comparison of Env protein of Ggo-FV and Ptr-FV strains. A: Structure and 703 important domains of Env FV protein present in all sequences of this study. LP: leader 704 peptide, SU: Surface glycoprotein, TM: Transmembrane glycoprotein; WXXW motif: Trp-X-705 X-Trp motif, interaction site with Gag protein; RXXR: Arg-X-X-Arg cleavage sites; RBD: 706 Receptor Binding Site; FP: fusion peptide (i, i+3/4,i+7 pattern); MSD: Membrane Spanning 707 Domain; ERRS: Endoplasmic Reticulum Retrieval Signal (Lys at -3, Lys or Arg at -4 or/and -708 5 relative to C-terminus). B: Amino acid identity in the conserved and variant regions was 709 investigated using CLC software based on the alignment performed with DAMBE. C: 710 Location of N-glycosylation sites of the different Ggo- and Ptr-FV subgroups. 711  712 
Figure 6. Recombination analysis of the SFV-GorII and SFV-CpzI envelope sequences. 713 A, B, C, D: Bootscan (A,C) analyses and (B,D) Simplot analyses using the SFV-GorII (A,B) or 714 SFV-CpzI (C,D) env sequences as a query against the other groups of SFV isolates were 715 performed. 716  717  718  719  720 
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Gorilla FV Length  Name Sequence 5'->3' Site of hybridization
/SFVggo (bp) 

Fragment 1 720 bp External PCR F AENVF1b GAACTGTGGTAATTGTGGACC 6566-6586 
R AENVR1b CCACGAGACCAAGAACAATA 7292-7311 

Internal PCR F AENVF1 GGTAATTGTGGACCATCTTGG 6573-6593 
R AENVR1 GGATCCACGAGACCAAGAAC 7288-7307 

Fragment 2 1102 bp External PCR F BF3 CATCCACCCCTCCTGCCT 6431-6448 
R RR3 CCTGTAAATGAAATGCCTAAT 8228-8248 

Internal PCR F DF3 CTATAATACACACGGAGAGG 7113-7132 
R RR3 CCTGTAAATGAAATGCCTAAT 8228-8248 

Fragment 3 1490 bp External PCR F AENVF2 TACGACAACAAGATTATGAAG 8109-8129 
R AENVR3 CTGAGTGAGCTTGTTGGTCC 9640-9659 

Internal PCR F AENVF2b ATATCAAGAATGTAAGTTGG 8140-8159 
R AENVR3b TCTGCAAACTCTGAGTGAGC 9630-9649 

Chimpanzee 
FV Length  Name Sequence 5'->3' Site of hybridization

/PFV (bp) 
Fragment 1 1645 bp External PCR F CPZENVF1b ACTGTTGTTATTTTGGACCA 7066-7085 

R CPZENVR1 CCTTTGTAGGCCTAGTAGAT 8763-8782 
Internal PCR F CPZENVF1 GGCAACAACAGAACTGTAAG 7090-7109 

R CPZENVR1b CCTGTAAATGAAATGCCTAA 8735-8754 

Fragment 2 1802 bp External PCR F CPZENVF2 TTCTCTTTGTGGGAAGGAG 8330-8349 
R CPZENVR2 CTTAGTGAGCTTGTTGGTCC 10141-10160 

Internal PCR F CPZENVF2b TCTTTGTGGGAAGGAGATTG 8333-8352 
R CPZENVR2b CAGACTCTTAGTGAGCTTGT 10135-10154  721 

Table 1. Polymerase chain reaction primers used to amplify the envelope gene of 722 
gorilla and chimpanzee foamy virus strains. 723 F: Forward; R: Reverse; bp: base pair. Position / SFVggo or PFV complete sequences. 724  725  726  727  728  729  730  731 
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Isolate Strain Origin Type of sequence Genbank Accession no.
PFV Chimpanzee (P. t. schweinfurthii) human complete genome Y07725 

SFVcpz Chimpanzee (P. t. verus) NHP complete genome U04327 
AG15 Chimpanzee (P. t. troglodytes) human complete genome JQ867462 

Bad327 Chimpanzee (P. t. troglodytes) human complete genome JQ867463 
SFVggo Gorilla (G. g. gorilla) NHP complete genome HM245790 
Bak74 Gorilla (G. g. gorilla) human complete genome JQ867464 

Bad468 Gorilla (G. g. gorilla) human complete genome JQ867465 
SFVora Orangutan NHP complete genome AJ544579 

SFVAGMhu African Green Monkey (Chlorocebus aethiops) human complete genome AX575326 
SFV-agm3 African Green Monkey (Chlorocebus aethiops) NHP complete genome NC_010820 

SFVka African Green Monkey (Chlorocebus aethiops) human partial env AJ244092 
SFV3 African Green Monkey (Chlorocebus aethiops) NHP partial env AJ244094 

agm1 to agm37 
(19 isolates) African Green Monkey (Chlorocebus aethiops) NHP partial env AJ244067 to AJ244091

AG16 Cercopithecus NHP complete genome JQ867466 
SFV-mcy1 Macaque (Macaca cyclopis) NHP complete genome NC_010819 
SFV-mcy2 Macaque (Macaca cyclopis) NHP complete genome KF026286 

SFVR289HybAGM Macaque (Macaca mulatta) NHP complete genome JN801175 
SFVmmu-K3T Macaque (Macaca mulatta) NHP env KF026287 
SFVmmu-A4W Macaque (Macaca mulatta) NHP env KF026288 

SFVsp Spider monkey NHP complete genome EU010385 
SFVmar Marmoset NHP complete genome GU356395 
SFVsq Squirrel monkey human complete genome GU356394  732 

Table 2. Genbank accession numbers and origin of other SFV isolates used in the 733 
study. 734 NHP: Non Human Primate. 735  736  737  738  739  740  741  742  743  744 
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Human 
individuals Country Ethnicity Individual Sex Age at 

cont/samp FV strain Type of env 
FV sequence

FV 
variant FV isolate (accession number) 

Cameroon Pygmy Pyl106 M 15/60 Chimpanzee Complete SFV-CpzI SFVptr-hu.Pyl106 (KT211263) 
BAK46 M 26/50 Gorilla Complete SFV-GorI SFVggo-hu.Bak46 (KT211255) 
BAK74 M 26/47 Gorilla Complete SFV-GorII Bak74 (JQ86746) 
BAK82 M 46/50 Gorilla Complete SFV-GorI SFVggo-hu.Bak82 (KT211247) 

BAK228 M 29/70 Gorilla Complete SFV-GorII SFVggo-hu.Bak228 (KT211246) 
BAK242 M 30/49 Gorilla Complete SFV-GorI SFVggo-hu.Bak242 (KT211254) 
Sabak36 M 40/68 Gorilla Complete SFV-GorII SFVggo-hu.Sabak36 (KT211249) 
BAK33 M 25/45 Gorilla Partial SFV-GorI SFVggo-hu.Bak33 (KT211277) 
Bak55 M 30/65 Gorilla Partial SFV-GorI SFVggo-hu.Bak55 (KT211273) 
BAK56 M 40/65 Gorilla Partial SFV-GorI SFVggo-hu.Bak56 (KT211274) 

BAK132 M 30/64 Gorilla Partial SFV-GorI SFVggo-hu.Bak132 (KT211276) 
BAK177 M 26/36 Gorilla Partial SFV-GorI SFVggo-hu.Bak177 (KT211281) 
BAK224 M 19/38 Gorilla Partial SFV-GorI SFVggo-hu.Bak224 (KT211280) 
BAK232 M 40/60 Gorilla Partial SFV-GorII SFVggo-hu.Bak232 (KT211278) 
BAK270 M 25/60 Gorilla Partial SFV-GorI SFVggo-hu.Bak270 (KT211272) 

Bobak153 M 53/59 Gorilla Partial SFV-GorI SFVggo-hu.Bobak153 (KT211279)
Bobak237 M ?/68 Gorilla Partial SFV-GorI SFVggo-hu.Bobak237 (KT211275)

Lobak2 M 37/57 Gorilla Partial SFV-GorI SFVggo-hu.Lobak2 (KT211282) 
Lobak89 M 20/50 Gorilla Partial SFV-GorI SFVggo-hu.Lobak89 (KT211287) 
Mebak65 M 20/40 Gorilla Partial SFV-GorI SFVggo-hu.Mebak65 (KT211283) 
801001 M 35/60 Gorilla Partial SFV-GorI SFVggo-hu.801001 (KT211284) 
CH29 M 49/50 Gorilla Partial SFV-GorI SFVggo-hu.CH29 (KT211289) 

Bantu AG15 M 28/71 Chimpanzee Complete SFV-CpzII AG15 (JQ867462) 
Bad316 M 35/51 Chimpanzee Complete SFV-CpzII SFVptr-hu.Bad316 (KT211262) 
Bad327 M 30/33 Chimpanzee Complete SFV-CpzII Bad327 (JQ867463) 
BAD348 M 19/27 Gorilla Complete SFV-GorI SFVggo-hu.Bad348 (KT211252) 
BAD456 M 24/30 Gorilla Complete SFV-GorI SFVggo-hu.Bad456 (KT211251) 
BAD463 M 37/43 Gorilla Complete SFV-GorI SFVggo-hu.Bad463 (KT211253) 
BAD468 M 25/35 Gorilla Complete SFV-GorI Bad468 (JQ867465) 
BAD551 M 37/38 Gorilla Complete SFV-GorII SFVggo-hu.Bad551 (KT211248) 
CH101 M 65/76 Gorilla Complete SFV-GorII SFVggo-hu.CH101 (KT211256) 

BAD332 M 25/37 Gorilla Partial SFV-GorI SFVggo-hu.Bad332 (KT211288) 
BAD349 M 32/40 Gorilla Partial SFV-GorI SFVggo-hu.Bad349 (KT211270) 
BAD350 M 40/68 Gorilla Partial SFV-GorII SFVggo-hu.Bad350 (KT211290) 
BAD447 M 40/56 Gorilla Partial SFV-GorI SFVggo-hu.Bad447 (KT211271) 
AKO394 M 53/53 Gorilla Partial SFV-GorII SFVggo-hu.AKO394 (KT211286) 

CH61 M 52/65 Gorilla Partial SFV-GorI SFVggo-hu.CH61 (KT211285) 
Gabon Bantu H3Gab56 M 47/48 Chimpanzee Complete SFV-CpzII SFVptr-hu.H3Gab56 (KT211267) 

H4Gab59 M 50/51 Chimpanzee Complete SFV-CpzII SFVptr-hu.H4Gab59 (KT211268) 
H2Gab54 M 52/53 Gorilla Complete SFV-GorI SFVggo-hu.H2Gab54 (KT211257)
H5Gab27 M 53/80 Gorilla Complete SFV-GorI SFVggo-hu.H5Gab27 (KT211258)
H6Gab51 M 28/56 Gorilla Complete SFV-GorI SFVggo-hu.H6Gab51 (KT211259)
H7Gab42 M 20/65 Gorilla Complete SFV-GorII SFVggo-hu.H7Gab42 (KT211261)

H12Gab69 M 22/38 Gorilla Complete SFV-GorI SFVggo-hu.H12Gab69 (KT211260)
Non Human 

Primates Country Species Name Sex Age at 
sampling Situation Type of env 

FV sequence
FV 

variant  
Cameroon Gorilla GgoCam7SFV F 7 wild-born, zoo Complete SFV-GorI SFVggo.Cam7 (KT211250) 

Chimpanzee CpzCam15SFV M 6 wild-born, zoo Complete SFV-CpzI SFVptr.Cam15 (KT211264) 
Gabon Chimpanzee CpzJudWd F adult wild-born, zoo Complete SFV-CpzII SFVptr.JudWd (KT211266) 

Cpz133Wd ? adult wild-born, pet Complete SFV-CpzII SFVptr.133Wd (KT211265)  745 
Table 3. Epidemiological data of the 44 individuals and four non-human primates 746 
infected with simian foamy virus included in this study. 747 
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The env of FVs from individuals in bold (BAK74, AG15, BAD327, BAD468) was sequenced 748 by our laboratory in a previous study (31). Cont : contact; samp : sampling; FV : Foamy 749 Virus. 750 














