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Abstract. Bacteria living on surfaces form heterogeneous three-dimensional
consortia known as biofilms, where they exhibit many specific properties one
of which is an increased tolerance to antibiotics. Biofilms are maintained by a
polymeric network and display physical properties similar to that of complex
fluids. In this work, we address the question of the impact of antibiotic treatment
on the physical properties of biofilms based on recently developed tools enabling
the in situ mapping of biofilm local mechanical properties at the micron scale.
This approach takes into account the material heterogeneity and reveals the
spatial distribution of all the small changes that may occur in the structure. With
an Escherichia coli biofilm, we demonstrate using in situ fluorescent labeling
that the two antibiotics ofloxacin and ticarcillin—targeting DNA replication
and membrane assembly, respectively—induced no detectable alteration of the
biofilm mechanical properties while they killed the vast majority of the cells. In
parallel, we show that a proteolytic enzyme that cleaves extracellular proteins
into short peptides, but does not alter bacterial viability in the biofilm, clearly
affects the mechanical properties of the biofilm structure, inducing a significant
increase of the material compliance. We conclude that conventional biofilm
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control strategy relying on the use of biocides targeting cells is missing a
key target since biofilm structural integrity is preserved. This is expected to
efficiently promote biofilm resilience, especially in the presence of persister
cells. In contrast, the targeting of polymer network cross-links—among which
extracellular proteins emerge as major players—offers a promising route for the
development of rational multi-target strategies to fight against biofilms.

S Online supplementary data available from stacks.iop.org/NJP/15/125026/
mmedia
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1. Introduction

Although our understanding of bacterial biofilm molecular biology has markedly increased
recently, the development of these complex and fascinating living assemblages still raise a
number of fundamental and practical questions. Rational strategies to control their development,
maintenance or removal are still rare, calling for a deeper understanding of the causal
relationships linking their physical, chemical and biological properties. For this purpose, an
integrated and comprehensive description of biofilm mechanical properties is necessary. The
challenge is not only to bring about new ideas for the physical control of biofilms, but also
to find the mainspring of the material’s mechanical behavior and eventually clarify the role
of the physical cues in biofilm specific lifestyle. The heterogeneity and the highly dynamical
nature of the biofilm material seriously hinders this enterprise. During the last decade, the
question of bacterial biofilm mechanical properties has been addressed by several groups using
a variety of methods such as the analysis of biofilm streamer deformations due to variations
in fluid flow rates (Stoodley et al 1999, Klapper et al 2002), uniaxial compression of biofilm
pieces lifted from agar medium or grown on cover slides (Korstgens et al 2001, Cense et al
2006), shearing of biofilm collected from the environment and transferred to a parallel plate
rheometer (Towler et al 2003, Shaw et al 2004), atomic force microscopy using a glass
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bead coated with a bacterial biofilm attached to an AFM cantilever (Lau et al 2009) or
a dedicated microcantilever method for measuring the tensile strength of detached biofilm
fragments (Poppele and Hozalski 2003, Aggarwal et al 2010). These approaches have produced
a large range of elastic moduli, viscosities or cohesion forces that differ by several orders of
magnitude. Discrepancies observed in the literature originate in part from important differences
in the biological material investigated across the various studies and in the experimental
approaches involving disparate force and time scales as well as calculation methods (Aravas and
Laspidou 2008). In addition, authors have also recognized large variations in data sets stemming
from the same consistent investigations (Brindle et al 2011) and conceded to both technical
difficulties and biofilm inherent variability. In this context, a general agreement about the visco-
elastic nature of bacterial biofilms has emerged but the large dispersion of the values usually
obtained on biofilms removed from their native environment compromised further insights
into the understanding of the fundamental components underpinning biofilm mechanical
properties. Most investigators have considered biofilms as homogeneous materials and therefore
analyzed mechanical responses averaged over the whole material, whereas almost all biofilm
characteristic properties such as biomass, concentration of chemicals or gene expression
measured at the micron scale were shown to exhibit strongly heterogeneous spatial distribution
(Stewart and Franklin 2008). To address the question of the biofilm mechanical heterogeneity,
we recently introduced a biofilm-microrheology experiment directed to measuring in situ the
biofilm mechanical properties at the micron scale and mapping out their spatial distribution.
The principle of the experiment consists of remote actuation of micrometric magnetic particles
seeded in a growing biofilm using a dedicated magnetic tweezer setup. Using this new tool
with Escherichia coli biofilms, we were able to measure the three-dimensional (3D) spatial
distribution of their visco-elastic parameters and to demonstrate their heterogeneity, collecting
values spreading over almost three orders of magnitude in the same biofilm. Thereby, we have
demonstrated the clear-cut effect of cell surface appendages and environmental conditions on
the mechanical properties of biofilms (Galy et al 2012).

Here, we raise the question of the effect of antibiotics on biofilm mechanical properties.
This problem is not only relevant to the design of biofilm control strategies but also to
a better understanding of the molecular features supporting biofilm mechanical properties.
Indeed, finding effectors altering these properties should help to identify their bases. Moreover,
biofilms have been shown to build up significant strong multifactorial resistance to antibiotic
treatment (Stewart and Costerton 2001, Anderson and O’Toole 2008, Hoiby et al 2010) but the
potential role of physical factors in these processes is still poorly understood. Mainly based on
semi-quantitative evaluation, previous studies addressing this question have not brought out a
definitive picture of the effects of antibiotics on biofilm mechanics. On the basis of macroscopic
rheometry data, Lieleg and co-workers examined several Pseudomonas biofilms and have
concluded to the absence of the effect of antibiotics (Lieleg et al 2011), while in another
investigation, the authors found that ciprofloxacin and rifampicin weakened P. aeruginosa and
S. epidermidis biofilms (Jones et al 2011). However, there is a concern that scrapping and
pooling of the biofilm before transfer to the rheometer could have blurred potentially induced
changes. The purpose of the work reported here is to take advantage of the detailed information
provided by the remote actuation of magnetic particles in a biofilm maintained in its native
environment, to reconsider the question of the effect of antibiotics on biofilm physical properties
and to collect information useful to the recognition of the molecular factors contributing to
biofilm physical properties.
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We conducted this study in a model biofilm formed by an E. coli strain carrying a
derepressed conjugative plasmid F and producing F pilus, a surface appendage that promotes
bacterial adhesion and biofilm formation (Ghigo 2001). In order to test the effect of two
antibiotics holding different mechanisms of action we used ofloxacin, known to inhibit DNA
gyrase, and ticarcillin, known to prevent cross-linking of peptidoglycan during cell wall
synthesis. We describe here the mechanical profile of a reference biofilm grown under a
controlled nutrient flow before and after antibiotic treatment. In parallel, we probed in situ
bacterial mortality induced by the antibiotic using a cell death fluorescent marker. To endorse
the antibiotic results and gain further insight into the understanding of the biofilm mechanics,
we also assessed the effect on biofilm mechanics induced by the proteolytic enzyme, trypsin.

We compare the impact of antibiotic and protease on biofilm physical characteristics and
conclude that biofilm mechanics are strongly resistant to antibiotic treatment. We also propose a
crucial role for extracellular proteins in the E. coli biofilm structural organization. These results
support the idea already proposed by others of a distinction between cell killing power and
biofilm elimination efficiency of antibiotics. Eventually, we analyze the consequences of our
findings for the development of new biofilm control strategies.

2. Materials and methods

2.1. Chemicals, media, strains

Tetracycline, ticarcillin (Ticarpen®) was from GlaxoSmithKline (Marly-le-Roi, France) and
ofloxacin from Sigma-Aldrich (France). Propidium iodide (PI) and magnetic beads (Dynabeads
M-270 Amine) were purchased from Life Technologies (France).

Bacteria were grown in lysogeny broth medium and in defined M63B1 medium with
0.4% glucose (M63B1Glu). We used isogenic E. coli bacterial strains carrying a derivative of
the F-conjugative plasmid (F’tet) (Ghigo 2001) and constitutively producing green fluorescent
protein (GFP), MG1655 ampg f p F′tet (TetR, AmpR) and MG1655 kmg f p F′tet (TetR, KmR).
Minimum inhibitory concentration (MIC) values of ticarcillin and ofloxacin were taken equal
to be 1 and 0.0625 µg ml−1, respectively (Bernier et al 2013).

2.2. Biofilm growth and magnetic probe seeding

Bacteria grown in the presence of tetracycline 7.5 µg ml−1 at 37 ◦C, taken in the exponential
phase were introduced at OD = 0.05 in a 800 µm side length internal side and 160 µm wall
thickness capillaries (Composite Metal Services, Shipley, UK) at the same time as the magnetic
particles, 2.8 µm in diameter, at a final concentration of 2.5 × 106 ml−1. The mixed suspension
was allowed to sediment under static conditions for 1 h before starting the flow for the entire
growth period. Continuous flow was applied using a push–pull syringe pump which delivered a
0.3 ml h−1 laminar flow (Reynolds number below 2) and an approximate wall shear 10−3 Pa.

2.3. Biofilm treatments and labeling

2.3.1. Enzymatic and antibiotic treatment. Antibiotics—ofloxacin and ticarcillin—and en-
zyme were soaked through the biofilm by adding the required concentrations in the medium
flow—M63B1 medium containing glucose—at 37 ◦C from time ti, generally 24 h after biofilm
initiation, to final incubation time, tf.
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2.3.2. Propidium iodide. PI 20 µM was introduced in the biofilm from flow circuit outlet
enabling flow inversion during the time necessary for the counterflow to reach the capillary.
Then the flow was stopped for 5 min and the capillary was imaged before re-starting the nutrient
flow forward.

2.4. Magnetic force setup

Magnetic tweezers were set up as detailed in a previous paper (Galy et al 2012). Briefly, two
magnetic poles, each made of a copper coil with 2120 turns of 0.56 mm in diameter copper wire
and soft magnetic alloy cores (Supra50-Arcelor Mittal, France) were mounted on an inverted
Nikon TE-300 microscope, north pole facing south pole, in order to generate a magnetic force in
one direction along the length of the capillary. In order to determine the absolute force acting on
the beads embedded in the biofilm, we measured the velocity of beads dispersed in a purely
viscous mixture of glycerol and water (39.8 g in 200 µl water). We derived the force from
Stokes’ law neglecting the inertia of the particles and checked linear dependence between force
and current. The variation in the force with the distance to the poles was taken into account by
recording the particle trajectories in the entire volume of interest, and storing the velocities with
their coordinates (xi, yi, zi) in a calibration file which was used to derive visco-elastic parameters
from particle displacement curves in the biofilm. The amplitude of force in the zone of interest
varied from 29 pN in microvolumes most distal from the poles at the center of the capillary to
104 pN at the side walls of the capillaries near the pole pieces. The linearity of the visco-elastic
response at applied forces ranging from 20 to 100 pN was verified. As well, superimposed creep
curves were obtained when the same force was applied successively on the same particle.

2.5. Particle imaging and tracking

Particles in the biofilm were imaged in the capillary using a Nikon S Fluor ×40 objective (NA
0.9, WD 0.3) and an electron multiplying charge coupled device (EMCCD) camera (C 9100-02,
Hamamatsu Photonics). Particles were imaged using their large-spectrum intrinsic fluorescence
signal (filters Exc 540/25 nm; DM 565; Em 605/55). To monitor particle motion upon magnetic
force application, image sequences were recorded at a frequency of 30 Hz over a period of
20 s and further analyzed using an ImageJ particle tracker, as developed by Sbalzarini and
Koumoutsakos (2005), that yielded particle trajectories from which individual particle creep
curves giving material strain versus time could be plotted. The error made on the particle
position was evaluated by monitoring the position of the resting beads and found to be equal to
0.02 µm.

2.6. Microrheology analysis

Material compliance was derived from particle motion as previously established for a probe
particle of radius R embedded in an incompressible, homogeneous visco-elastic medium
(Schnurr et al 1997), which gives the time-dependent creep compliance of the network J (t)
(equal to the reciprocal macroscopic shear modulus), knowing probe deflection d(t) and applied
force f as follows:

J (t) = d(t) ×
6π R

f
. (1)
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Next, we extracted the visco-elastic moduli by fitting the creep curves to the time-
dependent visco-elastic behavior of Burger’s model—an equivalent mechanical circuit made
of a spring and a dashpot combined in parallel and a second spring and dashpot added in
series—as classically done to quantify visco-elastic materials, but also more complex and
biological polymer rheological properties (Bausch et al 1998, Jones et al 2011). The results
were analyzed according to the corresponding analytical solution as follows:

J (t) = J0 + J1

(
1 − e−t /τ

)
+

t

η0
, (2)

where J0 is the elastic instantaneous compliance, τ is the relaxation time required for the
transition from the elastic to the viscous regime, J1 gives the amplitude of elastic relaxation
and η0 measures the effective viscosity of the material.

Boundary conditions were evaluated using the theoretical approach of Perkins and Jones
1991, 1992) for both hard wall and free surface effects. The correction function was calculated
to the fifth order and taken into account to correct particle velocity in the capillary in the limit of
20% correction, i.e. from 4 µm from the bottom of the capillary to 3 µm from the free surface.
Particles located outside of these limits were not taken into account in the analysis.

2.7. Confocal imaging

Confocal microscopy images were acquired using a Leica TCS SP5 AOBS inverted confocal
laser scanning microscope equipped with HCX PL APo 63x/1.4-0.6 Oil immersion objective
lens. We monitored cell GFP and PI fluorescence using 488 and 561 nm excitation wavelength,
respectively, and collecting emission band-pass filters centered at 520/20 nm (GFP) and
640/60 nm (PI).

3. Results

3.1. Biofilm mechanical profiles

To establish a reference mechanical profile, we grew a typical biofilm using F pilus producing
E. coli bacteria seeded with magnetic particles during 24 h under a continuous nutrient flow
of 0.3 ml h−1 providing an adherent bacterial layer of 30–40 µm height. Examples of particle
spatial distribution in a plane are shown in figure 1(A). Local mechanical properties of the
material were then probed by applying a 16 s force step on the particles dispersed in the
three dimensions of the biofilm. The induced particle deflection recorded versus time was
used to extract the visco-elastic parameters as previously shown (Galy et al 2012). Particle
displacements reported heterogeneous local mechanical environments exhibiting responses
differing both in shape and amplitude as shown in figure 1(B). Local responses were
predominantly of a visco-elastic nature displaying elastic compliance (J0), viscosity (η0) and
relaxation (J1, τ ) (see panel 1 in figure 1(B)). However, in 30 ± 15% of the cases, the particles
reported purely elastic behavior (see panel 2 in figure 1(B)). The spatial distribution of the
mechanical parameters indicated that environments with elasticity and viscosity values differing
from two orders of magnitude coexisted laterally and in the depth of the biofilm (see compliance
values spatial distribution in figure S1 (available from stacks.iop.org/NJP/15/125026/mmedia)).
A bottom layer extending to about 10 µm thickness close to the adhesive substrate exhibited
lower values of compliance as well as lower spreading of the values or in other words higher
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Figure 1. Typical E. coli biofilm mechanical property heterogeneity. (A) Pictures
of a 24 h biofilm seeded with magnetic particles, bright field images (left) and
fluorescence images (Exc 535/15 nm; Em 565/20 nm) (right); bar represents
10 µm. (B) Creep curves obtained upon magnetic force application; curves
from the particles numbered on the microscope images. (C) Distribution of
elastic compliance values normalized to the mean for a typical biofilm (left) and
equivalent data obtained in glycerol (right).

stiffness and lower heterogeneity. Considering that all the particles tested reported elastic
deformation of their environment, we focused our analysis on the elastic compliance (J0).
Figure 1(C) shows the distribution of J0 values for the reference biofilm. The values have
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Table 1. Parameters of the value distributions normalized to ensemble-average
for glycerol—amplitude of the viscous flow over (1/η0)—and for the reference
biofilm—elastic compliance (J0).

Material Median Standard deviation

Glycerol 1.01 ± 0.005 0.038 ± 0.002
F pilus biofilm 0.3 ml h−1—24 h 0.7 ± 0.16 0.82 ± 0.1

± Stdt error.

been normalized to the ensemble average, enabling distribution characterization independently
of the parameter itself and evaluation of the degree of heterogeneity of the material to be
compared with the distribution of the values obtained in glycerol by the same technique of
particle actuation (only viscous contribution as expected). In this case, the distribution displayed
a completely different symmetrical shape centered on unit as expected from a typically
homogeneous viscous liquid and a much lower standard deviation (see table 1). The spreading
of the data obtained in glycerol also gave the experimental error of the measurements—much
lower than the standard deviation of the data obtained in the biofilm. In this approach standard
deviation of the data is directly related to the degree of heterogeneity of the sample.

Thus, the reference biofilm exhibited an the overall mechanical profile reporting a
heterogeneous response dominated by an elastic deformation differing by two orders of
magnitude in the three dimensions of the material, exhibiting a mean elastic compliance value
of 0.4 m2 N−1 and a standard deviation of 0.33 m2 N−1 in good agreement with previous results
we have obtained on similar biofilms grown at slightly different flow rates (Galy et al 2012).

3.2. Antibiotic treatment

3.2.1. Impact on biofilm mechanics. We next examined the alterations induced by antibiotic
treatment on the mechanical properties of this reference biofilm. The experiments were
conducted using ofloxacin, which inhibits DNA replication and ticarcillin which targets cell
membrane. After having collected the creep curves of the particles embedded in a biofilm
selected volume, we started antibiotic treatment at initial time t = ti by adding 50 µg ml−1 of
ofloxacin or 800 µg ml−1 of ticarcillin to the nutrient flow that soaked through the biofilm.
These antibiotic concentrations corresponded to 800 times the MIC obtained on planktonic
cells. The treatment was maintained up to time t = tf, i.e. after 12 h in the presence of ofloxacin
and 20 h in the presence of ticarcillin. Then, the mechanical profile was recorded again in the
same volume of the biofilm, tracking the deflection induced by the magnetic force for the same
particles as the previous treatment. The same procedure was employed in parallel on control
capillaries in the absence of an antibiotic. We observed that the antibiotic-treated biofilm’s
height stagnated while the control biofilm kept on growing and was higher by approximately
10 µm (data not shown). In all cases particle location in the xy plane showed very small changes
and particles that had been tracked at ti could be easily found again at tf both in the treated
samples and in the controls on the basis of their xy coordinates. Creep curves obtained at
time ti and tf were used to derive elastic compliance differences 1J0 = (J0(tf)−J0(ti)) particle
per particle. The results displayed in figure 2 show typical distributions obtained after 12 and
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Figure 2. Elastic compliance changes caused by biofilm treatment with
antibiotics. Elastic compliance differences 1J0 = (J0(t f ) − J0(ti)) recorded
upon biofilm treatment with (A) ofloxacin 50 µg ml−1 for 12 h, (B) ticarcillin
800 µg ml−1 for 20 h (N) together with the corresponding controls treated the
same way without antibiotics ( ). Each point is derived from one particle.
The data shown are representative of three independent experiments. (C) The
histogram gives the average of the differences measured in one biofilm. Error
bars are standard deviations calculated over all the particles of the biofilm.

Table 2. Elastic compliance differences reported by the biofilm-embedded
particles after antibiotic treatment.

Elastic compliance differences Mean Standard deviation

Ofloxacin −0.1 0.2
Control, 12 h −0.05 0.18
Ticarcillin −0.07 0.31
Control, 20 h −0.06 0.19

20 h treatment of the biofilm with ofloxacin and ticarcillin, respectively. The corresponding
controls run and measured in parallel in the absence of antibiotic are also shown in the
same figure. Antibiotic-treated samples and control samples exhibited statistically identical
distributions of the differences (figure 2 and table 2). The histogram in figure 2 summarizes
the mean difference values all negative consistently with the tendency to stiffening that we
have previously observed as biofilm ages (Galy et al 2012). We checked, looking at the relative
difference of elastic compliance 1J0/J0(ti) that no effect possibly concentrated on the most
rigid environments that would induce small absolute differences but large relative changes had
been missed. Relative differences display larger spreading for low compliances—comprised
between 1 and −1 for compliances below 0.3 m2 N−1 and between −0.5 and 0.5 above—likely
due to higher incertitude on the smallest values. However, the distribution of the values did
not differ between treated samples and controls (plot shown in figure S2 (available from
stacks.iop.org/NJP/15/125026/mmedia) for ofloxacin). As well, plotting the relative differences
as a function of the biofilm depth showed no spatial dependence (data not shown). All the results
stated that the changes measured on biofilms treated with antibiotics were similar to the ones
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(A) Biofilm grown 24 h in standard conditions is labeled for 15 min with 20 µM
PI before acquiring GFP (Exc 488; EM 520/20) and PI (Exc 561; EM 640/50)
images (ti). Same procedure is applied after (B) 12 h treatment of the biofilm
with ofloxacin (tf) and (C) 12 h nutrient flow without antibiotic as a control.
HCX PL APo 63x/1.4-0.6 Oil immersion objective lens. The images shown here
were collected at 8 µm from the flow cell bottom. Bars represent 10 µm; small
images correspond to a ×1.5 zoom of the initial images. (D) Histogram of PI
fluorescence intensities averaged on image series taken at 8 µm from the bottom
of the flow cell before and after 12 h treatment with ofloxacin 50 µg ml−1 or with
medium without ofloxacin. Error bars are SDs from the image series.

measured on the control samples and fully explained by the material properties evolution as the
biofilm ages. No significant alteration of the structure was induced by these high concentrations
of antibiotics.

3.2.2. Antimicrobial activity. At that stage, we wished to verify the antibiotic biocidal activity
in the biofilm conditions. To this purpose, we evaluated in situ the level of cell mortality using
the dead cell marker, PI. This DNA-intercalating molecule does not penetrate living cells,
labeling only bacteria with a compromised membrane, which reasonably correlates with cell
death (Lehtinen et al 2004). Figure 3 shows confocal images recorded on biofilm with and
without ofloxacin treatment and labeled with PI. The images show that biofilm grown for 20 h
in standard conditions exhibited a residual level of cells permeable to PI characterized by a mean
PI fluorescence intensity/pixel of 7 ± 0.9 au (images taken at biofilm height at 8 µm from the
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bottom). This fluorescence significantly increased upon 12 h ofloxacin 50 µg ml−1 treatment,
reaching 91 ± 2 au, which corresponded to almost all the cells exhibiting PI labeling. However,
it should be mentioned that even in these conditions of high antibiotic concentration (800 MIC),
a small amount of cells remained free of PI and still exhibiting GFP content. By counting locally
on the PI and the GFP confocal images the number of GFP and PI labeled cells, we evaluated
that 96 ± 3% of the cells were killed by ofloxacin treatment, showing that although the vast
majority of the cells were killed, a small fraction of the cells remained alive. Similar results were
obtained with ticarcillin (figure S3 (available from stacks.iop.org/NJP/15/125026/mmedia))
although PI fluorescence pattern exhibited an additional fuzzy fluorescent pattern suggesting
that cells have released their internal content upon lysis. This is consistent with the ticarcillin
mechanism of action targeting cell membrane. The percentage of dead cells was then more
difficult to evaluate but very few cell still containing GFP were detected qualitatively indicating
high cell mortality.

3.3. Protease effect on biofilm mechanics

To demonstrate the ability of our approach to evidence local mechanical changes induced by
an external effector, we tested the effects of trypsin, an enzyme that cleaves proteins into
pieces but does not enter into the cells preserving their viability over the time scale of a
few hours. This experiment was inspired by our previous results indicating that extracellular
polymer matrix cross-linking might essentially support biofilm mechanical properties (Galy
et al 2012). The mechanical profile of the biofilm was determined before and after 1 h 30 min
treatment with 500 µg ml−1 of trypsin. Figure 4 shows the variation of the elastic compliance
induced by this treatment in a typical experiment. In contrast with what had been observed
with antibiotics, trypsin-treatment-induced a significant increase of compliance in the biofilm.
In addition, 20% of the particles initially recorded disappeared from the field of analysis which
reported an environment of compliance greater than 0.1 Pa−1, which had never been detected
in untreated samples. These long-trajectory particles appeared to be randomly distributed in the
biofilm and stemmed from initial environment with compliance values greater than 0.3 Pa−1.
Conversely, 25% of the particles reported small alterations remaining in the range of control’s
small changes. As for the particles removed from the field of observation, neither a defined
location nor a given initial compliance value range were found for these environments protected
from trypsin effects. The creep curve pairs recorded before and after trypsin treatment usually
exhibited quasi-homothetic shapes (see examples in figure 4(C)) indicating that both elasticity
and viscosity were jointly affected by trypsin treatment. Similarly, purely elastic signature was
also conserved after trypsin treatment but with much higher elastic compliance values.

Bacterial viability was tested using PI labeling which remained at the level of the
control—PI intensity found equal to 8 ± 1 au on the images taken at 8 µm from the
biofilm bottom—confirming as expected that trypsin did not induce bacterial cell death
at the concentration and at the time scale of our observations (figure S4 (available from
stacks.iop.org/NJP/15/125026/mmedia)).

In a different set of experiments, we grew the biofilm in the presence of trypsin from the
very beginning of the biofilm formation, just after initial surface colonization as we started
nutrient flow. This treatment did not prevent biofilm formation but limited its height that was
found equal to 20 ± 2 µm in the presence of trypsin versus 38 ± 4 µm in its absence. The biofilm
formed in the presence of trypsin displayed much higher compliance arising from the increase
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Figure 4. Trypsin-induced biofilm softening. (A) Elastic compliance differences
recorded upon treatment with trypsin 500 µg ml−1 for 1 h 30 min of a 24 h biofilm
grown at 0.3 ml h−1 nutrient flow rate (N) together with a control treated the
same way in the absence of trypsin ( ). Each point is derived from one particle.
(B) Histogram summarizing the effects induced by the three effectors used in this
study; averaged values of elastic compliance difference are shown. (C) Typical
pairs of creep curves obtained before and after trypsin treatment.

of both elastic contribution and viscous flow. Interestingly, this biofilm still exhibited a 10 µm
bottom layer which averaged compliance—J0 = 0.3 m2 N−1—was significantly smaller than the
one of the upper layer—J0 = 1.97 m2 N−1. This bottom layer was nevertheless much softer than
in the absence of trypsin.
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These results showed that trypsin breaking or preventing protein links in the biofilm
strongly affects its mechanical properties and that biofilm structural alterations were effectively
detected by our approach.

4. Discussion and conclusions

The complex 3D biofilm organization creates a specific environment where biofilm bacteria
exhibit properties absent in the planktonic mode of development. In the biofilm lifestyle, the
role of the cell processes—triggered by bacterial immobilization and concentration on the
surface, and the contribution of the specific physicochemical properties—generated by the 3D
architecture and the confinement, are closely interwoven and are still far from being sorted out.
The intrinsic spatial heterogeneity of bacterial biofilms, and the lack of microscale techniques
giving access to local values in undisturbed biofilms still worsen the problem.

Recently, biofilm mechanical properties have been mainly described from a macroscopic
material perspective, providing a large spectrum of values within apparently identical models
and even within same sets of homogeneous experiments (Brindle et al 2011). This large scatter
of the data does not help clarifying the causal relationships possibly linking the biofilm’s
physical and biological properties.

To gain insights into the understanding of the basic components supporting the biofilm’s
mechanical properties, investigating how they are impacted by various external stresses,
including antibiotics, could be a particularly worthwhile strategy. A number of previous
investigations have underlined the tolerance of bacterial biofilms to biocidal treatment and
particularly to antibiotics. The involvement of different factors such as restricted penetration
of antimicrobials, expression of specific resistance genes, mutations affecting antibiotic target,
increased level of persisters, adaptation to stress, have been considered as possible factors of
this resistance and widely reviewed (e.g. Stewart and Costerton 2001, Anderson and O’Toole
2008, Lewis 2008, Hoiby et al 2010). This question is still actively scrutinized all the more
since the reduced susceptibility of biofilm bacteria to antimicrobial agents is a crucial problem
in the treatment of chronic infections frequently involving biofilms (Costerton et al 1999, Potera
1999, Hoiby et al 2011).

The role of the extracellular polymeric substances (EPS) matrix itself in the biofilm
tolerance to antibiotics is not clear. It might be very dependent on the organisms forming
the structure. For instance, while a recent work has shown that Bacillus subtilis biofilms
displayed non-wetting properties that should severely limit the penetration of antimicrobial
liquids into the biofilm, other authors studying the vancomycin diffusion in E. coli biofilms
have shown that the biofilm matrix was not an obstacle to the diffusion reaction of the
antibiotic that can reach all cells through the biofilm (Daddi Oubekka et al 2012). The type of
antimicrobial agents evaluated might also explain the significant differences observed (Stewart,
2003). Moreover, how antibiotics possibly affect the EPS matrix itself and what would be the
impact of this on the biofilm resistance is not completely understood. To bring about clues to
these questions we monitored the evolution of biofilm mechanical properties upon antibiotic
treatment. Surprisingly, although antibiotics still remain the most common means of fighting
infections, little work has been done to characterize the changes induced on biofilm architecture
and mechanics upon antibiotics treatment. On the basis of macroscopic rheology measurements,
Jones and co-workers (2011) reported weakening effects of ciprofloxacin in P. aeruginosa
and of rifampicin in S. epidermidis biofilms while Lieleg and co-workers (2001) concluded
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to the absence of effect of antibiotics including ofloxacin in several Pseudomonas species.
Still, the biofilm architecture holds inherent heterogeneity and complexity which generates
large variations in biofilm mechanical responses and important spreading of the data collected
from material mean response (Brindle et al 2011). Therefore, the variations induced by specific
effectors could easily be blurred in the scatter of data.

In the work described here, we took advantage of our recently developed technique
enabling the in situ characterization of biofilm local mechanical properties, to clarify the effects
of antibiotic treatment on biofilm structural organization. Our approach relies on the remote
actuation of magnetic microparticles seeded in the three dimensions of the biofilm to report
individually their local environment. Similarly, the different local mechanical microniches of
a given biofilm can be evidenced and their spatial distribution precisely described. Moreover,
we have shown in a previous paper that successive actuation runs could be performed without
inducing mechanical response alteration. So here, we were able to investigate at the micron
scale the potential effects of antibiotics on the biofilm micro-organization by recording the
mechanical response of each particle located inside the biofilm before and after antibiotic
treatment. We worked here with young biofilms grown in the presence of a low shear stress
(approximately 10−3 Pa) displaying elastic modulus values comprised between 0.5 and 200 Pa.
For the sake of comparison, Streptococcus mutans polysaccharides extracted from 5-day-old
biofilm exhibit elastic moduli between 10−3 and 10−1 Pa depending on the stress frequency
while the one found for bacterial cell wall has been found in the range of tens of kPa to MPa.

We did this for ticarcillin and ofloxacin, which were aimed at different cell targets, i.e.
cell membrane through peptidoglycan polymerization inhibition and cell replication machinery
through DNA-gyrase inhibition, respectively. The mechanical profile of the biofilm after 24 h
growth, established before antibiotic treatment, displayed a heterogeneous distribution of visco-
elastic parameter values differing by more than two orders of magnitude depending on spatial
coordinates in the biofilm as previously shown (Galy et al 2012). None of the two antibiotics
altered significantly this initial mechanical profile. Neither the nature of the material response
to the mechanical stress—from purely elastic to visco-elastic with a relaxation time—nor the
amplitude of the parameters were changed to a higher extent in the antibiotic-treated samples
than in the controls. The elastic compliance differences only reported a slight stiffening of the
material, which was characteristic of the biofilm ageing. In the mean time, antibiotic-treated
biofilms stopped growing as shown by thickness increase arrest and PI-labeling results proved
that most of the cells were killed after antibiotic treatment was applied.

Thereby, we demonstrate that mechanical properties revealed in situ at the micron scale are
not affected by several hours of treatment at high antibiotic concentrations (800 MIC) which
kill at least 95% of the cells. This is in good agreement with the observations of Lieleg and
co-workers but tend to contradict other results that showed weakening effects of antibiotics
(Jones et al 2011). This discrepancy might originate in the use of different bacterial species
but might also be due to the difficulty in interpreting data from macroscopic rheology in a
highly heterogeneous material. Nevertheless, the results of Jones and co-workers also stated the
distinction between the killing power of an antimicrobial agent and its ability to alter biofilm
mechanical properties which was also suggested in previous investigations dedicated to other
biocides (Davison et al 2010, Brindle et al 2011, Lieleg et al 2011).

From our results, the mechanical properties appeared to remain unchanged upon cell death
indicating that cell activity is not necessary for structure maintenance. To go further in the
analysis of the biofilm mechanical property bases, it is worthwhile to consider the strong
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analogy between biofilm mechanical properties and the ones of actin gels that have been
extensively investigated. The large spreading of the values and the strong asymmetry of the
distribution have been shown to originate in actin gels from high actin concentrations and a
high degree of cross-linking of the gel by specific proteins such as fascin or scruin (Apgar
et al 2000, Gardel et al, 2004). These observations prompted us to hypothesize that our E. coli
biofilm structure similarly relies on a polymer network cross-linking in which proteins play a
crucial roles.

To test this hypothesis and validate our approach using a biofilm effector that actually
affected its physical properties, we have tested here the effect of trypsin, a protein-hydrolyzing
enzyme that preserves cell viability. By contrast with antibiotic treatment, infusing a biofilm
with this proteolytic enzyme had a large effect on biofilm mechanics significantly increasing the
local compliance throughout the three dimensions of the biofilm. These results evidence a rise
of the elastic compliance, reflecting—as described by semi-flexible polymer scaling relations
(MacKintosh et al 1995)—an increase of polymer mesh size and of the averaged distance
between the cross-links due to the decrease of the number of cross-links of network. We also
observed an increase in the viscous flow upon trypsin treatment suggesting that the removal of
the tightest links expose softer cross-linking such as polymer entanglement. However, randomly
distributed islets in the biofilm remained mechanically unchanged by trypsin treatment; they
displayed no particular initial compliance range of values. This might correspond to biofilm
niches structured by different factors such as multivalent ions or tighter polymer entanglement.
Our results show that cleavage of extracellular proteins lead to a profound remodeling of the
biofilm. Consistently, multivalent ions or cross-linking agents such as glutaraldehyde have been
shown to stiffen biofilms of several micro-organisms (Stoodley 2001; Wloka 2004; Ahimoe
2007; Mohle 2007, Lieleg 2011) while divalent cations chelating agents promote the eradication
of mature biofilms in vivo (Chauhan et al 2012).

Interestingly, introducing trypsin at the beginning of the biofilm growth just after the initial
adhesion step on the flow cell bottom did not prevent biofilm growth although the thickness
of the attached layer was lower. The material exhibited significantly higher compliance values
in all the dimensions of the biofilm confirming that extracellular proteins acting as polymer
cross-linkers represent a key factor of this E. coli biofilm structuration and stabilization. This
corroborates the findings of other authors having previously recognized the effects of proteases
on biofilm formation (Chaignon et al 2007, Gilan and Sivan 2013). Boles and Horswill even
proposed that protease secretion by the constituting cells might be involved in the community
self-controlled dispersion (Boles et al 2010). Our results suggest that the dispersion is induced
by the enzymatic breaking of the extracellular polymer network cross-linkers.

In summary, we have used our recently developed magnetic particle remote actuation
approach to investigate in situ the effects of antibiotic treatment on the mechanical properties
of an established E. coli biofilm. We have demonstrated that antibiotics, although killing the
majority of the cells, did not alter the biofilm’s physical properties, preserving its integral
spatial organization and solidity. This should provide a remarkable advantage for the persister
cells present in all bacterial populations (Lewis 2010, Balaban 2011) and especially in biofilm
(Lewis 2008)—the shelter built by the ancestor cells remaining safe and sound, ready to promote
persister cells resilience at any favorable condition change. This underlines that conventional
bacteria control relying on the use of biocides targeting cells is missing a key target in the
fight against biofilm. We have also shown here that a non-toxic effector, enabling to break
biofilm cross-linkers on which biofilm architecture seems to rely can be much more efficient in
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destabilizing the edifice. We believe that further insights in the unveiling of the origin of biofilm
mechanical properties are needed to make significant progress in biofilm control strategies. Our
results promote an approach consisting the combining of local mechanics analysis and the use of
biofilm effectors targeting the polymer network to eventually reveal the biofilm microstructure
locks and find new strategies to specifically release them.
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