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Abbreviations 

AF: ammonium formate 

ETD: electron-transfer dissociation 

GELFrEE: gel elution liquid fraction entrapment electrophoresis 

HCD: higher-energy collision-induced dissociation 

LFQ: label-free quantification 

PS-DVB: polystyrene-divinylbenzene co-polymer 

PTM: posttranslational modification 

SAX: strong anion exchange 

SCX: strong cation exchange  
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Summary 

Protein posttranslational methylation has been reported to occur in archaea, including members 

of the genus Sulfolobus, but has never been characterized on a proteome-wide scale. Among important 

Sulfolobus proteins carrying such modification are the chromatin proteins that have been described to 

be methylated on lysine side chains, resembling eukaryotic histones in that aspect. To get more insight 

into the extent of this modification and its dynamics during the different growth steps of the 

thermoacidophylic archaeon S. islandicus LAL14/1, we performed a global and deep proteomic analysis 

using a combination of high-throughput bottom-up and proteomics approaches on a single high-

resolution mass spectrometer. 1,931 methylation sites on 751 proteins were found by the bottom-up 

analysis, with methylation sites on 526 proteins monitored throughout three cell culture growth stages: 

early-exponential, mid-exponential and stationary. The top-down analysis revealed 3,978 proteoforms 

arising from 681 proteins, including 292 methylated proteoforms, 85 of which were comprehensively 

characterized. Methylated proteoforms of the five chromatin proteins (Alba1, Alba2, Cren7, Sul7d1, 

Sul7d2) were fully characterized by a combination of bottom-up and top-down data. The top-down 

analysis also revealed an increase of methylation during cell growth for two chromatin proteins, which 

had not been evidenced by bottom-up. These results shed new light on the ubiquitous lysine 

methylation throughout the S. islandicus proteome. Furthermore, we found that S. islandicus proteins 

are frequently acetylated at the N-terminus, following the removal of the N-terminal methionine. This 

study highlights the great value of combining bottom-up and top-down proteomics for obtaining an 

unprecedented level of accuracy in detecting differentially-modified intact proteoforms. The data have 

been deposited to the ProteomeXchange with identifiers PXD003074 and PXD004179.  
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Introduction 

Living organisms are classified into three domains of life, Bacteria, Eukarya and Archaea. 

Archaea inhabit highly diverse environments, ranging from marine waters and soil to the human gut. 

However, they are perhaps best known for their ability to sustain harsh physicochemical conditions, 

which are too extreme for the growth of bacteria and eukaryotes. Indeed, archaea can thrive in the 

environments where the temperature exceeds 100°C (up to 121°C; (1)) and pH drops below 1 (2). 

Like in eukaryotes and bacteria, protein posttranslational modifications (PTMs) play a crucial 

role in the functioning of archaeal cells. More and more studies are dedicated to archaeal PTMs (3, 4), 

and several PTMs have already been described: proteolytic processing, methylation, acetylation, 

phosphorylation, ADP-ribosylation, glycosylation (5) and modification with ubiquitin-like proteins (6). 

Nonetheless, thus far, most of the studies on archaeal PTMs have focused on single proteins or protein 

complexes, with only few of them using proteome-wide approaches (7, 8). Therefore, the global extent 

of PTMs and their dynamics in the course of cell cycle remain largely unexplored. 

Although the subcellular organization of archaea is generally similar to that of bacteria (both 

lack nucleus and intracellular compartments), some molecular machineries responsible for the key 

aspects of archaeal cell biology closely resemble the corresponding systems of eukaryotes. Members of 

the phylum Crenarchaeota, including the Sulfolobus species, encode a distinct set of chromatin proteins 

that do not belong to the histone family and have no equivalent in either eukaryotes or bacteria. 

However, reversible acetylation at a specific lysine residue has been reported in the case of the 

crenarchaeal chromatin protein Alba (9), in a manner resembling eukaryotic histone acetylation. 

Moreover, deacetylation of Alba by the eukaryotic-like Sir2 deacetylase has been shown to increase its 

DNA binding affinity (hence the name: acetylation lowers binding affinity), indicating that PTMs in 

archaea may play an important regulatory role, similar to that in eukaryotes. In hyperthermophiles, 

PTMs, specifically methylation, also appear to play a significant role in increasing protein thermostability 
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(10, 11). Indeed, a number of experimental studies have shown that protein methylation in 

hyperthermophilic archaea significantly increases resistance to heat denaturation and aggregation 

compared to the unmodified recombinant counterpart (10, 11)(12–14). Although the basis of this 

phenomenon is not well understood, it has been suggested that methylation at sites located on the 

accessible protein surface might modulate the intra- and inter- molecular interactions by changing the 

local hydrophobicity and surface charge (13).  

Top-down proteomics (15), which implies the analysis of complex protein samples without prior 

enzymatic digestion, emerged recently as a powerful method for unambigous characterization of intact 

proteoforms (16) bearing multiple PTMs in various combinations (17, 18). With the capabilites of the 

latest high-resolution tandem mass spectometry systems, it is now possible to envision an ambitious 

goal: perform high-throughput discovery of proteoforms on a proteome-wide scale (19), analysing both 

qualitative (20) and quantitative (21, 22) changes at the proteoform level. This makes top-down 

proteomics a complementary approach to bottom-up proteomics, which offers a tremendous depth of 

analysis, but lacks information on intact proteoforms. Top-down proteomics has been used to 

characterize heavily modified histone proteoforms (23). In this study we show that it can be also 

successfully applied to study posttranslationally modified archaeal chromatin proteins, which have 

comparable molecular weights (6-11 kDa). 

In the present study, we combined bottom-up and top-down proteomics approaches to monitor 

the proteome-wide posttranslational modifications in the hyperthermoacidophilic archaeon Sulfolobus 

islandicus during 3 different cell growth stages, including the early-exponential, mid-exponential, and 

stationary stage. We used bottom-up proteomics to perform relative quantitation of proteins at 

different stages and to achieve high proteome coverage for PTM investigation, whereas high-throughput 

top-down analysis allowed us to characterize the posttranslationally modified proteoforms and their 

dynamics throughout the cell growth. Our results reveal abundant N-terminal protein acetylation and 
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massive methylation of the S. islandicus proteome which becomes more pronounced in the stationary 

phase of the cell growth. This tendency is also observed in the case of several chromatin proteins, 

including Alba, which are progressively methylated in the course of the cell growth, revealing potential 

parallel with chromatin remodeling in eukaryotes. 

Experimental Procedures 

Experimental design and Statistical Rationale 

Early exponential  (OD600 of 0.15) and stationary stage [OD600 of 1.2] were selected for the study, 

as well as one time point in between at OD600 = 0.6 (Fig. S1  in the file ESI 1). Samples on each stage were 

prepared in 3 biological replicates to allow a basic assessment of reproducibility and reliability of the 

experimental findings. Each biological replicate was analyzed in 3 technical replicates for the label-free 

quantitation. 

Cell Culture and Lysis 

Sulfolobus islandicus strain LAL14/1 (Taxonomy ID 1241935) cultures were grown at 78°C in rich 

medium containing 0.2% (w/v) tryptone, 0.1% (w/v) sucrose and 0.1% (w/v) yeast extract. The pH was 

adjusted to pH 3.5 with H2SO4
 (24). Growth was monitored spectrophotometrically at 600 nm, and a 

doubling time of approximately 11 h was obtained. 

Samples collected at the "Early" (OD600 of 0.15), "Mid" (OD600 of 0.6) and stationary ("Late") 

[OD600 of 1.2] growth stages in 3 biological replicates on each stage. Cells were harvested and washed 

three times with the sample buffer (20 mM Tris acetate, pH 6 and complete protease inhibitor cocktail). 

Cells were resuspended in the sample buffer and disrupted by French press (3 passages of 800 

psi). Unbroken cells were removed by low-speed centrifugation for 20 min at 2,000 x g at 4°C. 
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Subcellular Fractionation 

Cell membranes were separated from the cytosolic fraction by ultracentrifugation at 100,000 x g 

at 4°C for 45 min. Cytosolic proteins in the supernatant were precipitated with ice cold acetone (80% 

final concentration), incubated for 1 h at -20°C and pelleted at 15,000 x g for 15 min at 4°C. 

Protein Fractionation 

Protein concentration was determined using micro BCA assay kit (Thermo Scientific, Rockford, 

USA) and NanoDrop 2000 spectrophotometer (Thermo Scientific, USA). 

For strong anion exchange (SAX) protein fractionation, 1 mg of the precipitated cytosolic sample 

was redissolved in 100 µl of 10 mM TrisHCl buffer (pH 8.0), the sample was split into three equal parts to 

avoid column overload, and each was separated on an ÄKTAmicro chromatography system (GE 

Healthcare Life Sciences, Sweden) using MonoQ PC 1.6/5 SAX column (GE Healthcare Life Sciences, 

Sweden). For each part, the flow-through fraction and 10 eluted fractions were collected. After 

injection, the column was washed by 10 column volumes (CV) of solvent A, then eluted at 0.1 ml/min 

with gradient of 0% to 100% of solvent B in 40 CV (Sol. A. – 10 mM TrisHCl buffer pH 8.0, Sol. B. – 0.5 M 

NaCl, 10 mM TrisHCl buffer pH 8.0). Replicates of each fraction were combined, and the resulting 11 

fractions (except flow-through) were exchanged 3 times to 10 mM TrisHCl, pH 8.0 using Amicon Ultra 

0.5 ml 3K centrifugal filters (Merck Millipore, Tulagreen, Ireland). The resuting fractions were dried on 

Speedvac and stored at -20°C. 

The GELFrEE (Expedeon Protein Discovery and Analysis, San Diego, USA) separation (25) was 

accomplished using a 12% Tris-Acetate GELFrEE cartridge in full accordance with manufacturer’s 

instructions. Briefly, 1 mg of each sample was separated into 4 fractions during 1 h at 50 V (fr. 1), 10 min 

35 s at 50 V (fr. 2), 4 min 47 s at 85 V (fr. 3) and 6 min 6 s at 85 V (fr. 4). Each fraction was exchanged 4 
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times with 50 mM ammonium bicarbonate and simultaneously concentrated to 40 µl using Amicon Ultra 

0.5 ml 10K centrifugal filters (Merck Millipore, Tulagreen, Ireland) and the resulting solution was 

subjected to methanol/water/chloroform precipitation as described previously (26). The precipitate was 

dried on Speedvac and stored at -20°C. 

Western Blot 

Cytosolic fractions from the three growth stages (50 µg of proteins) were loaded onto a NuPAGE 

4–12% polyacrylamide Bis-Tris gel (Novex) using NuPAGE-MES SDS running buffer (Novex). Proteins 

were visualized using Coomassie-based Instant Blue (Expedeon) staining. For Western hybridization, 

proteins were transferred onto a PVDF membrane. Acetylated proteins were visualized using a 1:250 

dilution of the anti-acetyllysine rabit antibody (SAB5200090, Sigma-Aldrich, Saint Louis, MO, USA) and 

peroxidase-coupled anti-rabbit IgG produced in goat (Sigma-Aldrich) and the SuperSignal West Pico 

Chemiluminescent Substrate (Thermo Scientific) on Amersham Hyperfilm ECL (GE Healthcare). 

Acetylated BSA (B-2518, Sigma-Aldrich, Saint Louis, MO, USA), S. solfataricus and  E. coli cytosolic 

proteins and  S. cerevisiae protein extracts were used as positive controls. 

Digestion and Peptide Fractionation 

E. coli tryptic digest was purchased from Waters (Milford, USA). 

100 µg of each S. islandicus sample was dissolved in 50 mM ammonium bicarbonate (pH 8.0), 8 

M urea, reduced with 10 mM dithiothreitol for 30 min at 56°C, alkylated with 15 mM iodoacetamide at 

room temperature in the dark for 30 min, then digested at 37°C in 8M urea using sequencing grade Lys-

C (Promega, USA) at 1:100 enzyme/protein ratio for 4 h and with sequencing grade modified trypsin 

(Promega, USA) in 1 M urea at 37°C overnight. The resulting digested sample was purified using C18 Sep-

Pak cartridges (Waters, Ireland), dried on Speedvac and stored at -20°C. 
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In-gel digestion was performed with trypsin as described previously(27). 

SCX peptide fractionation was performed on the Late stage sample replicate 1 using SCX 

SpinTips (Protea Biosciences, Morgantown, USA, PN SP-155) according to the manufacturer’s 

instructions. Purified peptide sample was redissolved in loading buffer (5 mM ammonium formate (AF), 

pH 3.64, 20% acetonitrile) and loaded 3 times on the SCX tip, unbound fraction (“flowthrough”) was 

collected, as well 5 eluted fractions: 50, 100, 250 and 500 mM AF, pH 3.6, 10% acetonitrile and 1 M AF, 

pH 6.5. The resulting fractions were evaporated on Speedvac and stored at -20°C. 

Bottom-up LC-MS Analysis 

A nanoflow ultra-high pressure liquid chromatography system consisted of Thermo Scientific 

Dionex NCS-3500RS NANO pump unit and WPS-3000TPL RS autosampler (both – Dionex Softron GmbH, 

Germering, Germany) was used for all LC-MS experiments. Solvent A consisted of 0.1% aqueous formic 

acid, solvent B consisted of 80% acetonitrile with 0.1% of formic acid. Mass spectrometry was 

performed on the ETD-enabled Orbitrap Fusion Tribrid instrument (Thermo Scientific, San Jose, USA) 

with Easy-Spray nano-ESI source (Thermo Scientific, USA). 

C18 μ-precolumn cartridge (300 µm i.d. x 5 mm, C18 PepMap 100 particles with 5 µm size and 

100 Å pores, PN 160454) and Easy-Spray PepMap C18 analytical column (75 µm i.d. x 50 cm, 1.9 µm 100 

Å particles, PN ES803) were purchased from Thermo Scientific (USA). 2 µg (5 µg for SCX-fractionated 

peptides) of a digested sample was trapped on a precolumn for 3 min at 20 µl/min of 100% solvent A, 

then eluted at 300 nl/min onto the analytical column using the following gradient: 1% B at 3 min, 8% B 

at 5 min, 35% B at 70 min, 50% B at 120 min, 90% B at 125-130 min. 

All data-dependent LC-MS runs were performed with MS1 scan resolution 60,000, MS2 

resolution 15 000. For label-free quantitation, the HCD-only runs were acquired. Separate ETD-only runs 
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were acquired for the PTM characterization. “Top time” data-dependent settings with duty cycle time of 

0.7 s for label-free quantitation HCD runs and 2 s for ETD runs were used. Precursor selection range was 

330-1530 for HCD and 330-1000 for ETD. Precursors with the charge states 2-24 were selected for HCD 

and 3-24 were selected for ETD. Quadrupole isolation window was 1.4. Dynamic exclusion was set to 60 

s with the mass tolerance of +/- 10 ppm. HCD collision energy was set to 28. ETD reaction time was 70 

ms and CID supplementary activation at collision energy of 20 was used. Maximum injection time was 50 

ms for HCD and 200 ms for ETD. For more detailed MS method description see the Supplementary 

Methods in the file ESI 1. HCD runs for label-free quantitation were performed in 3 technical replicates 

for each biological replicate. 

Top-down LC-MS Analysis 

The same equipment and eluents as the ones described for bottom-up analysis were used for 

top-down LC-MS experiments. 

C4 μ-precolumn cartridge (300 µm i.d. x 5 mm, C4 PepMap300 particles with 5 µm size and 300 

Å pores) and Easy-Spray PepSwift monolithic reversed-phase PS-DVB analytical column (200 µm i.d. x 25 

cm) were purchased from Thermo Scientific (USA). After loading a protein sample onto a precolumn for 

3 min at 20 µl/min of 100% solvent A, different elution gradients at 1 µl/min flow rate were used: for 

SAX fractions – 5% B at 3 min, 10% B at 5 min, 60% B at 125 min, 90% B at 128-130 min; for GELFREE 

fraction 1 – 5% B at 3 min, 10% B at 5 min, 40% B at 35 min, 60% B at 40 min, 90% B at 42-46 min; for 

GELFREE fractions 2-4 – 5% B at 3 min, 25% B at 5 min, 50% B at 125 min, 90% B at 126-130 min. 

Orbitrap Fusion was operating in the intact protein mode. For each SAX or GELFrEE fraction, an 

HCD-only LC-MS run and an ETD-only LC-MS run were acquired. MS1 scans were performed at 120,000 

resolution (60,000 for GELFrEE fraction 1) with 2-5 microscans per scan. Data-dependent selection was 

performed on top 3 most intense precursor ions with 90 s dynamic exclusion time. HCD collision 
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energies of 20 to 25 and 1 microscan for were used for HCD runs, ETD reaction time 4 to 7 ms and 2-3 

microscans per scan were used for ETD runs. MS/MS resolution was 120,000 (60,000 resolution was 

used for GELFrEE fraction 1). Alba1-containing SAX fraction was also rerun with 240,000 MS/MS 

resolution and 4 MS/MS microscans to increase fragmentation spectra quality. For more detailed MS 

method description see file ESI 1. 

Data Analysis 

Fasta files for the E. coli strain K12 (reference proteome, version from May 2016, 4306 entries) 

and S. islandicus LAL14/1 (December 2014, 2591 entry) were downloaded from Uniprot, common 

contaminants database was furnished with MaxQuant. Andromeda search engine in MaxQuant 1.5.2.8 

(28) was used for protein identification and label-free relative quantitation. Briefly, Acetyl (protein N-

terminus) and Oxidation (M) and Methylation (K) were used as variable modifications, trypsin/P was 

used as an enzyme with maximum of 2 missed cleavages allowed, precursor and fragment tolerances 

were 5 ppm and 18 ppm, respectively, peptide and protein identification FDRs were set to 1%, for 

detailed settings see file ESI 1. For the stagewise datasets with HCD and ETD data, the FDRs were 

calculated jointly for HCD and ETD files of a biological replicate. For gel band identifications, Acetyl 

(protein N-terminus), Acetyl (K), Oxidation (M) and Methylation (K) were set as variable modifications.  

Methylation sites obtained with Andromeda database search were filtered using home-made scripts. A 

K-methylation site was considered confident if it had a continous fragment ion series localizing the site, 

i.e. having the fragment ion series continuing on both sides of the lysine (or at one, if it is a C-terminal 

lysine). Home-made scripts were written on Python 3.3.2 using Pyteomics package (29). Unless stated 

otherwise, we use the term methylation interchangably with the term monomethylation throughout this 

article. 
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For label-free quantitation, the averaging of technical replicates, intensity normalization and 

retention time alignment (2 min window) were performed automatically in MaxQuant 1.5.2.8 using the 

MaxLFQ algorithm (30), unique and razor peptides were used for calculation. The MaxLFQ-normalized 

values were loaded into Perseus 1.5.4.0, were log2-transfromed, the proteins used for quantitation 

must contain 3 valid values at at least 1 growth stage. The missing values were imputed from a normal 

distribution (shift 1.8, width 0.3). Two-sided Student t-tests were performed on different groups, 

permutation-based FDR was calculated (with S0 parameter of 1) and the proteins with q-values of 0.01 

or less were considered differentially expressed between conditions. For quantification of K-

monomethylated peptides, the non-normalized peptide intensities were loaded into Perseus 1.5.4.0, the 

peptides used for quantitation must contain 3 valid values at at least 1 growth stage. Intensities were 

normalized on the median in each sample, then log2-transformed. The missing values were imputed 

from a normal distribution (shift 1.8, width 0.3). Two-sided Student t-tests were performed on different 

groups, permutation-based FDR was calculated (with S0 parameter of 2). 

ProSight PC 3 SP 1 (Thermo Scientific) was used for top-down database search. For detailed 

search parameters see in ESI 1. Briefly, raw files were deconvoluted using Xtract and subjected to a 4-

stage database search consisted of “Absolute Mass” search with 4.08 Da precursor tolerance, then 3 kDa 

precursor tolerance, then “Biomarker” search with 10 ppm precursor tolerance and “Absolute Mass” 

search with 250 kDa precursor tolerance, fragment ion tolerance was set to 3 or 4 ppm. S. islandicus 

LAL14/1 TrEMBL database of 2591 entries was downloaded in Uniprot flatfile format and imported with 

full PTM annotation, N-terminal acetylation and methionine excision, yielding a database of 10,442 

entries. According to the paper from Catherman et al (31) FDR cutoff of 0.01 corresponded to a 

ProSightPC p-score cutoff of 4.7x10-9, which gives an E-value cutoff of 5x10-5 on the database of 10,442 

entries. ProSightPC E-value cutoff of 5x10-5 was thus used to filter the confident identification results. 

Annotated top-down spectra from ProSightPC search output can be viewed in MS-Viewer (32) on the 
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Protein Prospector public website (prospector.ucsf.edu), search key dk458i4qtb for ETD data and 

rvs63gz69o for HCD data. 

To quantify the relative abundancies of Alba1 and Cren7 proteoforms, for each biological 

replicate in 2 technical repeats, extracted ion chromatograms (XIC) were calculated in Xcalibur 2.2 

(Thermo Scientific) with 10 ppm accuracy for 4-5 charge states per proteoform. Then, peak areas for 

methylated proteoform in each file were divided by the non-methylated proteoform XIC area in the 

respective chromatogram, the results were summarized and averaged (see the file ESI 10). Welch t-tests 

were performed using standard function of R 3.1.2. 

Results 

Label-Free Relative Quantitation of Protein Expression Between Different Growth Stages by 

Bottom-Up Proteomics 

Cultures of S. islandicus cells were harvested at three different time points corresponding to the 

early-exponential (throughout the text referred to as ‘Early’), mid-exponential (‘Mid’) and stationary 

(‘Late’) growth phases (Fig. S1) in 3 biological replicates. Cytosolic fraction of each cell lysate was 

digested in solution and analyzed using a 2h chromatography gradient and an Orbitrap Fusion in data-

dependent mode with HCD fragmentation. This single-shot approach allowed us to identify 1,529 

proteins at FDR 0.01 (out of 2,591 sequences in the S. islandicus LAL14/1 protein database) and to 

quantify 1,335 proteins with non-zero intensities for all 3 biological replicates at least at one time point. 

To assess the suitability of the data for the label-free quantitation, coefficients of variability (CVs) were 

calculated for technical replicates on the non-logarithmized non-normalized peptide intensities. The 

determined median (11-20%) and mean (16-23%) CV levels for different biological samples were 

considered  acceptable for label-free quantification. The details of the calculation are provided in ESI 2. 
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Figure 1 represents the volcano plots corresponding to the relative changes in protein 

abundances between Early and Mid (Fig. 1A), Mid and Late (Fig. 1B) as well as Early and Late (Fig. 1C) 

time points. An FDR of 0.01 and S0 parameter of 1 were chosen as the threshold values to filter 

statistically significant changes in Perseus. Spreadsheet containing the intensity data for all the proteins, 

as well as lists of differentially expressed proteins, can be found in the ESI 3 file. 

Figure 1 

As evidenced from Figure 1A, the vast majority of proteins shows insignificant differences in 

expression level between the Early and Mid growth phases. The two exceptions are 

phosphoribosylformylglycinamidine synthase subunit PurQ (Uniprot accession M9U759) and 

phosphoribosylaminoimidazole-succinocarboxamide synthase (M9UE35), which are significantly up-

regulated (4.5-7-fold increase) at Mid compared to the Early time point. Both proteins participate in 

purine biosynthesis (33), pointing towards a more active nucleotide metabolism during the transition 

from the early- to mid-exponential growth phase. 

Changes from the Mid to Late sampling points are more pronounced (see Fig. 1B), with 13 

proteins being differentially expressed at FDR 0.01 and 106 at FDR 0.05 (ESI 3 file). Among them, 4 

proteins involved in oxidative stress response showed 3 to 8-fold increase in abundance at the Late time 

point. The latter observation is consistent with the studies in bacteria showing that development of 

cellular resistance to oxidative stress is a classical trait of the stationary phase, when reactive oxygen 

species might be particularly harmful for non-dividing cells (34, 35). Not surprisingly, proteins involved in 

cell division, ribosome biogenesis, tRNA biogenesis are down-regulated, when comparing Mid growth 

stage to the stationary Late stage. 

Proteomic changes between the actively growing and stationary S. islandicus cells are the most 

prominent when comparing Early and Late time points (Fig. 1C), with 93 proteins found to be 
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significantly differentially expressed at FDR 0.01. Fifteen enzymes participating in amino acid (8 

proteins), carbon (3 proteins) and sulfur (3 proteins) metabolism are found to be significantly down-

regulated (2.5 to 8.9-fold decrease in abundance), as are four cell division-associated proteins, including 

Vps4 and ESCRT-III (2.5-3.5-fold decrease). By contrast, 6 proteins involved in nucleotide metabolism are 

significantly up-regulated (3.2-8-fold increase), in accordance with the trend observed between Early 

and Mid time points. Other proteins that increase in abundance include five oxidative stress response 

proteins (2.1 to 6-fold), two heterodisulfide reductase subunits (3 to 6-fold increase), three lipid 

metabolism proteins (2.3 to 4-fold increase) and two carbohydrate metabolism-associated proteins (Fig. 

1C). 

Despite reported growth phase-dependent changes in the organization of the Sulfolobus 

nucleoid (36, 37), the major chromatin proteins, namely Alba1 (M9UDF6), Alba2 (M9U6G3), 7-kDa DNA-

binding proteins Sul7d1 (M9UD85) and Sul7d2 (M9UII2) as well as Cren7 (M9U8W4), do not significantly 

change their relative abundances across the three sampling time points. 

Characterization of Protein N-Terminal Acetylation by Bottom-Up Proteomics 

The shotgun analysis of the Lys-C/trypsin digests of S. islandicus on the Orbitrap Fusion allowed 

us to routinely identify around 1,500 proteins, which corresponds to almost 60 % of the whole 

theoretical proteome. To achieve a better proteome coverage depth, peptides were prefractionated 

before the LC-MS/MS analysis. To this end, one sample at the Late stage (as the amount of available 

material at the Late stage is maximal) was digested with Lys-C and trypsin and subjected to fast tip-

based strong cation exchange (SCX) fractionation into 6 fractions, which were analysed with separate 

HCD and ETD LC-MS/MS methods. The fractionation proved rather efficient: 11,602 out of 18,227 

peptides (63.6%) were identified only in one fraction, and 4,396 additional peptides (24.1%) were 

identified in 2 fractions. However, SCX prefractionation increased the number of identified proteins only 

to 1,618 (FDR 0.01), i.e. by 5 % compared to single-shot LC-MS. 
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Additionally, we reused the files from the LFQ dataset (HCD fragmentation) and acquired a 

supplementary shotgun run with ETD fragmentation for each biological replicate on the unfractionated 

samples of each growth stage. The resulting HCD+ETD shotgun datasets for each biological replicate 

were then subjected to database search with PTMs of interest set as variable modifications. 

Global identification of protein lysine N6-acetylation is notoriously difficult due to its dynamic 

property and rather low abundance (38–40). Indeed, searches for lysine side chain acetylation yielded 

no occurences in our dataset, suggesting that special enrichment steps might be required for detection 

of this modification. Thus, lysine N6-acetylation was not further considered in this study. 

Similar to eukaryotes, archaeal proteins can also be acetylated at the alpha-amino group of the 

N-terminal amino acid (41). Our dataset contained N-terminal peptides of 372 different proteins. In 

nearly half of them (180; 48%) the N-terminal methionine is removed. One third of all detected protein 

N-termini (127; 34%) were found to be acetylated (ESI 4). Among the N-terminally acetylated proteins, 

91 have their N-terminal methionine removed. Serine and glutamate residues in the second and third 

position, respectively, strongly facilitate N-terminal methionine excision and subsequent acetylation 

(see Fig. S3 in the file ESI 1). Additionally, acetylation occurs frequently at the N-terminal methionine 

itself when a glutamate residue is situated in the second position. Other terminal amino acids that 

undergo acetylation after the N-terminal methionine removal include alanine (11 occurrences), 

threonine (7), glutamate (1) and valine (1). Acetylation of the latter two amino acids at the N-terminal 

position has not been previously described in archaea (42). 

Ubiquitous Lysine Methylation Revealed by Bottom-Up Proteomics 

It has been previously shown that certain Sulfolobus proteins are methylated (unless stated 

otherwise, monomethylation is meant) on lysine residues (43). This methylation might play a role in 

thermal stabilization of these proteins (44)(12), which is highly important for cell functioning of 

hyperthermophilic archaea. Modern proteomic techniques recently allowed the characterization of 
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lysine methylation sites on several Sulfolobus proteins. For example, 20, 21 and 26 methylation sites 

were identified on different subunits of the DNA-directed RNA polymerases (DdRp) from S. shibatae, S. 

solfataricus and S. acidocaldarius, respectively (11)(45). However, a proteome-wide analysis of lysine 

methylation has not been performed thus far on any archaeon.  

Searching the SCX HCD+ETD dataset for lysine side-chain monomethylation revealed a 

staggering number of 2,518 sites on 872 proteins, i.e. more than half of the total 1,623 identified 

proteins were found to be methylated. To increase the confidence of methylation localization we 

decided to filter the results based on the fragmentation quality of the corresponding spectra (Fig. 2A, B). 

A methylation site was considered confident only if b, c, y or z-ion series in a fragmentation spectrum 

was continuous on both sides of the methylated lysine residue, i. e. ions corresponding to fragmentation 

at N- and C-termini of a methylated lysine were registered in the same spectrum. For example, the 

spectrum shown in Fig. 2A contains continuous c, y and z-series, thus the methylation site was 

considered confident, whereas the ion series in Fig. 2B are discontinous around the lysine methylation 

site and, accordingly, was not taken into account. This approach filters out low quality spectra, 

increasing the confidence of identification. It also introduces a certain degree of modification site 

localization to distinguish lysine methylation from glutamate side-chain O-methylation, which is also 

known to occur in archaea (46)(47), although not in Sulfolobus species. After such filtering, we obtained 

1,931 confident lysine methylation sites on 751 proteins (Fig. 2D, ESI 5 file). In comparison, recent 

analysis of PTMs in E. coli identified only 84 methylated lysine residues in 64 different proteins (48) in an 

extensive study employing OFFGEL peptide prefractionation before LC-MS analysis. Analysis of the 

trypsin digest of E. coli cell lysate using the same LC-MS/MS setup and data processing workflow as for 

the S. islandicus proteome, gave even lower number of methylation sites (12 sites on 10 proteins out of 

4,305 encoded proteins; see file ESI6), emphasizing a major difference with respect to proteome 

methylation in the two organisms (Fig. 2D). 
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Figure 2 

To gain insight into the specificity of lysine methylation in hyperthermophilic archaea, we 

generated a sequence logo for all identified K-methylated sites and compared it with that of all lysine 

residues in the corresponding proteins (Fig. 2F). The two sequence logos look strikingly similar, 

confirming that the involved methyltransferase lacks sequence specificity. The methylated proteins 

belong to all 21 functional categories defined in the new implementation of the archaeal clusters of 

orthologous groups (arCOGs) (49, 50). Over 70% of all detected proteins in the “Posttranslational 

modification, protein turnover, chaperones (O)” category are found to be methylated (Fig. 3). By 

contrast, in some of the relatively well populated functional categories (i.e., with more than 60 detected 

proteins), such as “Carbohydrate transport and metabolism (G)” and “Defense mechanisms (V; e.g., 

components of the CRISPR-Cas system)”, just above 40 % of the proteins are methylated. Nevertheless, 

the average level of methylation for detected proteins across all functional categories is 58.8%, 

suggesting that there is little specificity towards proteins of any particular functional category. No 

difference in molecular weight has been observed between the methylated and non-methylated 

proteins (data not shown). However, the calculated pI values for the non-methylated proteins have a 

clear maximum around pI 9.5, whichis not well pronounced for the proteins which are found to be 

methylated (see Fig. S5 in the file ESI 1). The reasons for such tendency remain unclear. 

Figure 3 

The comparison of the extent of lysine methylation between different growth phases shows that 

the total number of identified methylation sites tends to increase from the Early to Mid and ultimately 

to the Late stage (Fig. 2C). About 42-44 % of all the sites being found in all 3 biological replicates for each 

stage (termed confident sites). Some confident methylation sites are found at one growth stage, but are 

absent in all 3 biological replicates at a different stage. For example, there are 13 sites which are 
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reproducibly found at the Early stage, but absent at the Late stage (see file ESI 5). These 13 sites include 

K-88 and 167 sites for aspartokinase (Uniprot accession M9U961) and K-109 and 182 sites on 

phosphoribosyltransferase (M9U3M0). However, these proteins are downregulated at the Late stage 

according to LFQ data, hence the absence of any confident methylation sites could be attributed to the 

low abundance of the corresponding tryptic peptides. By contrast, 60 confident sites, which emerge at 

the Late stage, are absent at the Early stage. For instance, the isocitrate dehydrogenase (M9UDB0) has 3 

sites out of 9 emerging at the Late stage, although the protein total LFQ intensity remains stable 

throughout the growth stages. In 32 other cases the number of methylation sites increased at the Late 

stage without a noticeable increase of the LFQ abundance of the corresponding protein. 

Peptide intensity values from the reprocessed LFQ dataset were normalized according to the 

median value of the sample and t-tests were performed to compare the peptide abundances across 

growth stages. Due to variability in peptide intensity and high number of peptides, which inevitably 

result in the elevated multiple testing error probability, only 4 K-monomethylated peptides passed the 

FDR threshold of 0.01. After relaxing the FDR threshold to 0.05 (S0 = 2), 625 peptides out of 18,369 were 

found to significantly change in abundance from Early to Late stage (see Fig. 2E and the ESI file 7). 

Among them, 15 K-methylated peptides significantly decrease in their abundance, including 4 which do 

not show the corresponding change at the protein level.  At the same time, 82 K-methylated peptides 

significantly increase in their abundance from Early to Late stage, including 53 cases where there was no 

such increase at the protein level (ESI file 3). The abundance of methylated sites K-53 and K-61 of the 

Sul7d DNA-binding proteins were found to be significantly increased at the Late stage. The other cases 

include metabolic enzymes and ribosomal proteins, with no obvious functional clustering between 

them. 

Chromatin-associated proteins, with the exception of Alba1, were also found to be methylated 

in the shotgun proteomic dataset (see Table 1). Lysine methylation on Alba1 has not been found in the 
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LFQ dataset, but the in-gel digestion of the 12 kDa band from an SDS-PAGE gel (see Fig. S2 in ESI 1) 

allows for the confident identification of the lysine methylation site on K-16 (see Fig. S4 in ESI 1). Alba2 

protein was found to be methylated at lysine-4, which has not been reported previously. Cren7 protein 

is methylated at lysine residues 11, 16, 24, 31, 42. The genome of the S. islandicus strain LAL14/1 

contains two closely related (95 % sequence identity) 7-kDa DNA-binding proteins, which we call Sul7d1 

and Sul7d2 (Table 1). Non-unique peptides, shared by both Sul7d proteins, are methylated on lysine 

residues 28, 40, 49, 53, 61, 63 and 64, whereas the peptide unique to Sul7d1 shows an additional 

methylation on lysine 5 and/or 7. Sul7d methylation has been recently investigated by Niu et al in S. 

islandicus REY15A (Sul7d from strain REY15A has an identical sequence to Sul7d1 from strain LAL14/1) 

(51). Our study confirms the Sul7d methylation pattern determined in S. islandicus REY15A and reveals 

two additional sites, Lys-28 and Lys-40, which were not identified in the previous report. When 

comparing the different growth stages, Alba2 methylation is not detected at the Early stage, but 

emerges at the Mid and Late time points. The same is observed for the methylation at K-49 of the Sul7d 

proteins. When the label-free quantitation at the peptide level is considered, a clear tendency towards 

higher abundance of the K-Me peptides for Cren7 and Sul7d proteins is readily apparent (see file ESI 8). 

The peptides, corresponding to the K-53 and K-61 sites of Sul7d and K-11, 16, 24 and 31 of Cren7 protein 

pass the t-test p-value threshold of 0.05 when comparing the abundances between the Early and Late 

growth stages (see ESI 8). The difference for Sul7d methylated peptides remains significant even after 

the multiple-testing FDR correction with the threshold of 0.05 (ESI 7). This suggests that at least 3 of the 

5 chromatin proteins conform to the same tendency of increased methylation level from the Early 

towards the Late stage. 

Table 1 

As mentioned above, several studies have investigated the methylation state of the 

multisubunit DNA-directed RNA-polymerase (DdRp) in different Sulfolobus species. Our dataset also 
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contains the information on 24 methylation sites distributed over 9 subunits of the DdRp in S. islandicus 

(Table S1 in file ESI 1). This result is comparable to the 21 sites/9 subunits identified by Botting et al in S. 

solfataricus (11) as well as 20 sites/13 subunits in S. shibatae and 26 sites/13 subunits in S. 

acidocaldarius identified recently by Azkargorta et al (45). The methylation sites are not fully conserved 

between the mentioned studies and our report: 12 sites from our dataset have not been reported 

previously. This observation might further point towards low sequence specificity of the lysine 

methyltransferase in action. However, it cannot be excluded that the observed variation arises from the 

technical differences in the experimental setup between the respective analyses.  

Interestingly, our results indicate that the chromatin-associated proteins show no significant 

change in their relative abundance at the protein level across the three sampling time points, but Cren7 

and Sul7d show a tendency toward increased lysine methylation at the Late stage. When considering 

PTMs, important changes in the PTM profiles of the chromatin proteins might occur at the proteoform 

level. To explore this possibility, we performed the proteome-wide top-down analysis. 

Proteoform-Level Characterization by High-Throughput Top-Down Analysis 

Unlike bottom-up mass spectrometry, top-down analysis allows for the characterization of intact 

proteoforms containing combinations of PTMs, rather than separate modification sites. Top-down is also 

useful for the characterization of unexpected PTMs, since modified forms often co-elute during 

chromatography and can be easily linked together.  One should note that the sensitivity of top-down 

approaches is not (yet) as good as the one for the bottom-up and that the analysis is restricted to 

proteins with low molecular mass (generally < 30 kDa), which can introduce a bias in the analysis. 

However, analysis of the intact proteoforms by top-down approaches provides valuable complementary 

information to that obtained by bottom-up techniques. 
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 Top-down proteomics has already proven to be a useful tool to study archaeal proteins 

(52)(53). However, thus far, it has not been applied to Sulfolobus species. 

Strong anion exchange (SAX) chromatography has been reported by Bunger et al (54) to be an 

efficient prefractionation method which can be coupled with subsequent RPLC-MS top-down analysis. 

Using an LTQ XL ion trap mass spectrometer, Bunger et al (54) identified 322 proteoforms of 174 

proteins of E. coli. We therefore performed a SAX separation of 1 mg of one of the S. islandicus cytosolic 

preparations (Late stage replicate 1) into 11 fractions, including flow-through and 10 eluted fractions. All 

fractions were further analyzed on the Orbitrap Tribrid Fusion, using data-dependent methods with HCD 

or ETD fragmentation. ProSightPC was used for the database search, allowing the characterization of 

intact unmodified proteoforms, modified proteoforms and proteolytic fragments. Figure 4 summarizes 

the results for the 2D SAX-RPLC-MS global top-down analysis. 

Figure 4 

Figure 4A exemplifies the SDS-PAGE-like representation of the experimental intact charge-

deconvoluted masses measured in the SAX top-down dataset. The maximal measured mass is around  

28 kDa. In S. islandicus LAL14/1, 1351 proteins (52% of all the proteins) are lighter than 28 kDa. 

Collectively, in the 11 fractions, 3,978 proteoforms of 681 unique protein IDs (see Fig. 4B) are identified 

with an E-value cutoff of 5x10-5 (see the list in the file ESI 9). As shown in Figure 4B, 61 to 208 unique 

protein IDs are found in each fraction, with fractions 4-6 being the largest in terms of unique IDs. Most 

proteins can be found in more than one fraction, which in some cases is caused by the presence of 

several proteoforms, e.g. different proteolytic fragments, and in other cases – by insufficient separation. 

The 681 detected unique proteins correspond to more than 40 % of the proteins identified in the same 

S. islandicus sample by bottom-up approach and to 26 % of the total number of encoded proteins. For 

comparison, 563 unique IDs (12 % of the encoded proteins) and >1600 proteoforms have been identified 
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in the recent study by Ansong et al (20) for another prokaryotic organism, enterobacterium Salmonella 

Typhimurium. However, in that study the authors utilized 5 % FDR cutoff and a different software (MS-

Align+) for database search, while the present study assumes an FDR cut-off of 1 %. 

Abundant cytosolic proteins are represented by a large number of different proteoforms. For 

instance, there are 270 forms for peroxiredoxin (M9UAA7, see Fig. 4C). Proteolytic fragments represent 

ca. 3,483 (~87%) of all the identified proteoforms (Fig. 4D), despite the use of a protease inhibitor 

cocktail during sample preparation. N-terminal methionine cleavage and N-terminal acetylation (113 N-

terminal acetylation occurrences) were also frequent and easily characterized by the top-down 

approach (Fig. 4D). As discussed in a recent paper by Fortelny et al (55), about 90 % of N-terminal 

processing events in the human proteome remain unexplained, and this percentage may be even higher 

in archaea, given their largely undiscovered protein processing pathways. 

Massive methylation is also observed in the top-down dataset, with 292 potentially methylated 

proteoforms (Fig. 4D). For 85 methylated forms of 54 proteins it is possible to locate the most plausible 

methylation sites using high-resolution MS/MS data (see Table S2 in the file ESI 1 for data on all the 85 

methylated proteoforms). Methylated proteoforms are in the 5.7 to 19.5 kDa mass range. Among those 

were ribosomal proteins L14e and L29P, transcriptional regulators, DNA-directed RNA polymerase 

subunits H and L and peroxiredoxin. Some of the characterized proteins bear up to 5 methyl groups on 

the same polypeptide (prefoldin subunit β [M9U9D6] and acylphosphatase [M9UDL6]). Lower sensitivity 

of the top-down analysis as compared to the bottom-up approach is the most plausible explanation for a 

lower number of methylation sites detected in the top-down mode. 

Cysteine-containing putative redox proteins M9U7N8 and M9UCV1 appear to bear methylthio 

groups (-SMe, 45.99 Da) on their cysteine-18 and cysteine-17, respectively (see Fig. S6 in the file ESI 1). 

This may be a result of cellular oxidative stress or, if the methylthio group transfer is reversible, a 

specific metabolic form of these redox proteins. 
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Small and basic chromatin proteins are particularly suitable for top-down approaches. All of the 

five chromatin proteins are identified as two or more proteoforms. Fragmentation maps for the 

characterized proteoforms based on ETD and HCD experiments are represented in Figure 5. ETD yielded 

high sequence coverage and site location confidence. Notably, for the chromatin protein Cren7, we 

identified proteoforms with up to 4 methylations. The MS/MS data indicates that the most plausible 

locations for these modifications are in the N-terminal part of the sequence between lysine-5 and 11; by 

contrast, the bottom-up data suggested additional methylation sites on lysine-11 to 42 (see Table 1). 

Top-down and bottom-up approaches are therefore complementary in this case, since top-down 

provides the exact number of simultaneously methylated lysine residues and the preferential 

modification locations, whereas bottom-up reveals minor methylation locations. This is in accordance 

with a previous report (51) showing that Cren7 is methylated on many residues, however the top-down 

analysis allows us to suggest that the N-terminal part is methylated preferentially. 

Sul7d1 and Sul7d2 proteins are 95 % identical to each other and the mass difference between 

the two proteins is 15 Da. Consequently, they can be partially separated on the PS-DVB HPLC column. 

For both proteins, proteoforms with up to 3 methylations are characterized (Fig. 5). Surprisingly, despite 

high sequence similarity, the proteins show a difference in their methylation pattern: Sul7d1 tends to be 

methylated at its N- and C-terminal extremities, while Sul7d2 is preferentially methylated in its C-

terminal part and at lysine-17. These differences may be attributed to different DNA binding modes for 

these proteins or unequal availability to the methyltransferase in the cytosol. Alba2 methylation at 

lysine-4 is also confirmed by top-down analysis. 

Figure 5 

Analysis of Alba1 Methylation by Top-Down Proteomics 
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Unlike in the bottom-up analysis, the Alba1 protein is one of the most abundant proteins in the 

top-down total ion chromatograms, which enables the facile characterization of its proteoforms. Alba1 

is found to be acetylated at the N-terminal serine and occasionally oxidized on methionine-20. The 

previous report states that Alba1 is not methylated in vivo and even in vitro under action of the 

promiscuous Sulfolobus protein methyltransferase aKMT4, which is known to methylate other 

chromatin proteins (51). However, our results unequivocally show that Alba1 is methylated at lysine-16. 

Interestingly, the same residue has been previously found to be acetylated in vivo (9). Importantly, 

acetylation at this position modulates the DNA-binding affinity of Alba. Strikingly, lysine-16 is not only 

monomethylated, but can also be di- and trimethylated (Fig. 5). The HCD fragmentation confirms that an 

acetyl group is indeed on the N-terminus of the protein and suggests that methyl groups are on Lys-16 

or Lys-17. By contrast, ETD data confidently places both methyl groups on Lys-16, i.e. Lys-16 is 

dimethylated. In addition, a proteoform with a nominal ΔM of 42 Da was found, which could correspond 

to the expected lysine acetylation. However, the high-resolution, high mass accuracy ETD data indicate 

that lysine-16 is trimethylated (ΔM = 42.0469 Da) rather than acetylated (ΔM = 42.0106 Da). At 3 ppm 

matching tolerance, 40 fragments match to the acetylated form of the protein and 56 fragments match 

to the trimethylated form (see Fig. S7 in ESI 1). To investigate the acetylation state of Alba we performed 

western blot analysis using anti-acetyllysine primary antibody (Fig. S2). We analyzed cell extracts from 

the Early, Mid and Late sampling points, whereas extracts from E. coli, Saccharomyces cerevisiae and S. 

solfataricus (previously shown to contain acetylated Alba protein) were used as positive controls. 

Prominent protein bands were cut from the SDS-PAGE gel, in-gel digested and subjected to LC-MS 

analysis. In-gel digestion of the 12kDa band was dominated by the Alba1 protein. The anti-acetyllysine 

antibodies revealed the acetylation in the band corresponding to Alba1 in both S. islandicus and S. 

solfataricus (Fig. S2). Collectively, LC-MS and the western blot analyses strongly suggest that Alba 

proteins in S. islandicus LAL14/1 are both methylated and acetylated on the lysine side chains in vivo, 
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although acetylation appears to be less pronounced (and hence undetected by LC-MS) compared to 

methylation. For the three methylated Alba1 proteoforms, the complementary pair of c15 and z81-ions in 

ETD spectra suggests that the methylation is located on lysine-16, while the neighboring lysine-17 

appears to be unmodified. To date, lysine dimethylation and trimethylation have not been reported to 

occur in archaea. These modifications constitute a direct analogy between Alba1 and eukaryotic 

histones.  

Growth Stage-Dependent Dynamics of Methylated Proteoforms by Top-Down Analysis 

SAX prefractionation of the proteins at the Late culture growth stage allowed us to achieve a 

high proteome coverage in top-down mode with 681 unique identification. However, this strategy 

requires a large number of LC-MS runs and is not suitable for comparing the three growth stages in 

three replicates. We found a good compromise by using a GELFREE molecular weight-based separation, 

instead of a SAX fractionation. Each cytosolic sample was separated into 4 fractions in the range of 5-25 

kDa (Fig. S8 in the file ESI 1), representing the “light” part of the proteome, which is the most suitable 

for a high-resolution top-down analysis on an Orbitrap Fusion. The first fraction was therefore found to 

be enriched in the smallest proteins, such as Sul7d and Cren7, the second and third contained the Alba 

proteins along with other proteins of a similar weight. 

In accordance with the results of the bottom-up analysis, top-down approach also revealed the 

tendency towards an increase of the relative abundance of methylated proteoforms at the later growth 

stages (see Fig. S9 in ESI 1).  

For example, in the case of Alba1, Cren7 (see spectra in Fig. 6A and 6B, respectively), Sul7d 

proteins, small ribonucleoprotein (M9U8A0), ribosomal proteins L7Ae and L12 as well as the NT domain-

containing protein, the relative intensity of the signals corresponding to the methylated forms 

compared to those of the non-methylated counterparts clearly increased from the Early growth stage to 
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the Mid and the Late stage. By contrast, such changes in the relative abundances are not observed for 

the proteoforms of Alba2 and a transcriptional regulator (M9UEC7) (see Fig. S9). Interestingly, these 

proteins were not found to be differentially expressed between the different growth stages according to 

the LFQ data. This means that despite the same overall expression level, these proteins are more heavily 

methylated at the Late growth stage compared to the Mid and Early stages. This correlates with the 

increased number of identified methylation sites in the bottom-up experiments (Fig. 2). 

Figure 6 

To test the significance of the observed effect, we chose Alba1 and Cren7 to perform a relative 

proteoform quantitation, based on the relative XIC areas. The results are summarized on the dot plots in 

Fig. 6. The details of the calculations can be found in the file ESI 10. As shown in Fig. 6A, the relative 

abundance of methylated Alba1 forms compared to the non-methylated counterpart rises drastically 

from the Early to Mid and Late time points, from 1 to 2 for the dimethylated proteoform and from 0.6 to 

2 for the trimethylated form. These results are consistent for all three biological replicates. Welch t-test 

p-values were calculated on the ln-transformed relative intensity values to check the significance of the 

changes between growth stages (see Table S3 in ESI 1). The changes for mono-, di- and trimethylated 

forms appear to be significant with p-values < 0.05 for the comparisons between Early and Mid (p-values 

3.3x10-3 – 8.5x10-3) as well as between Early and Late stage (p-values 3.7x10-3 – 2.3x10-2). By contrast, for 

the Cren7 protein the differences between Early and Mid stages turned out to be insignificant , whereas 

the comparison of the relative methylated proteoform abundances between Early and Late stages 

reveals a significant rise with the Welch t-test p-values of 0.016 – 0.027 (see Fig. 6 above and Table S4 in 

ESI 1). Hence, we conclude that for both Alba1 and Cren7 there is a significant increase in the relative 

abundance of methylated proteoforms from the Early to the Late stage of cell growth, which strongly 
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confirms and complements the bottom-up data, where we were able to conclude a statistically 

significant increase of the methylated peptide abundance for the Sul7d proteins. 

Discussion 

We report here a comprehensive study of the proteomic landscape of the thermoacidophilic 

archaeon Sulfolobus islandicus during cell growth. Bottom-up and top-down proteomics approaches 

provided complementary information and shed light not only on the differential abundance of proteins 

at the three different growth phases but also on the nature and dynamics of posttranslational protein 

modifications in this archaeon. We paid a particular attention to a subset of small proteins that are 

abundant in the cell and involved in structuring of the Sulfolobus chromatin. 

Previous studies focusing on the nucleoid organization in different Sulfolobus species revealed 

that the nucleoids were highly structured and differentially distributed in the cell interior, depending on 

the cell growth phase (36, 37). These observations along with the changes in the kinetics of cell division 

at different growth phases (Fig. S1) imply a major shift in the metabolic activity as well as subcellular 

organization of Sulfolobus cells, which might be accompanied by changes in protein content and/or their 

posttranslational modification. To date, only a few quantitative proteomic studies of Sulfolobus species 

(56) have been reported. To assess the variations in relative abundance of Sulfolobus proteins during 

different stages of the cell growth, we performed a proteome-wide label-free relative quantitation (LFQ) 

(57) using an Orbitrap Fusion mass spectrometer (58). The results of this analysis were expected to serve 

a dual purpose: (i) provide novel information on the proteome dynamics during the growth of a 

hyperthermophilic archaeon; (ii) serve as a basis for the subsequent PTM and proteoform analyses. 

Proteome-wide label-free relative quantitation at the peptide level allowed us to gain insight 

into the changes in protein expression levels at different growth stages, known to be linked to changes 

in metabolic activity and architecture of the nucleoid (36, 37). A total of 93 proteins were found to 
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significantly change their relative abundances between the early-exponential and the stationary growth 

phases (FDR 0.01). Some of the proteins increased in abundance, whereas others were significantly 

diminished. Among the proteins that became more abundant in the stationary phase, we found proteins 

involved in the oxidative stress response and nucleotide metabolism, while proteins involved in various 

metabolic processes, such as enzymes implicated in metabolism of amino acid, carbon and sulfur, were 

found to be significantly down-regulated. Not unexpectedly, proteins participating in cell division, tRNA 

and ribosome biogenesis also became less abundant as the cell culture reached the stationary phase. 

The results obtained are fully consistent with the physiological response of the cell population towards 

the reduced availability of the resources in the growth medium, which manifests in the reduced rate of  

cell growth and diminished metabolic activity. 

Strikingly, there was no change in abundance at the protein level for any of the five chromatin 

proteins: Alba1, Alba2, Cren7, Sul7d1 and Sul7d2. Several in vitro studies have shown that Alba1 and 

Alba2 bind DNA as dimers and that binding affinities as well as effects on the chromatin folding are 

different for homo- and heterodimers (59, 60). Consequently, it has been suggested that differential 

expression of Alba1 and Alba2 would change the ratio of Alba homo- and hetero-dimers within the cell 

thereby providing means to regulate the global gene expression (59–61). Specifically, since heterodimers 

exhibit weaker dimer–dimer interactions compared with Alba1 homodimer, increase in the level of 

heterodimers would make the DNA more accessible for transcription (61). Our results demonstrate that 

the ratio between different chromatin proteins, including both Alba proteins, is rather constant 

throughout the growth stages, suggesting that, at least in S. islandicus, nucleoid organization and gene 

expression are likely to be regulated by a mechanism independent of the differential expression of 

chromatin proteins. 

One of the most striking result of our analysis is the unprecedented extent of lysine methylation 

in S. islandicus, with up to 1,931 methylation sites on 731 proteins, which were found using bottom-up 
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proteomics approach. Protein methylation in Sulfolobus is believed to be one of the adaptations to high 

temperature and its ubiquity is unique in comparison with mesophilic bacteria or eukaryotes (11, 44). 

The latter possibility is consistent with our observation that methylation is independent of the functional 

category to which the protein belongs – proteins from all 21 arCOG functional categories were found to 

be methylated, with roughly 50% of proteins from each category containing this PTM. Furthermore, 

comparison of the methylation profiles at different growth phases revealed that methylation of the 

proteome becomes considerably more pronounced as the cell culture approaches stationary phase. 

Consistent with the ubiquity of methylation, our analysis also shows a complete lack of sequence 

specificity for the involved lysine methyltransferase. Although it was beyond the scope of this work to 

pinpoint the exact enzyme(s) responsible for the modification, the previously described aKMT4 

methyltransferase, which remains the only characterized lysine methyltransferase in Sulfolobus (62), 

represents the most likely candidate. Indeed, the latter protein is conserved in organisms of the phylum 

Crenarcheota and has been shown to have a very relaxed specificity (62). According to our LFQ dataset, 

this methyltransferase (M9U9Y9) is abundant in S. islandicus and its abundance is stable throughout the 

growth phases. Notably both top-down and bottom-up analyses showed that the aKMT4 

methyltransferase is itself methylated (K-15, K-25 and K-74), consistent with the previous report (51).    

Although the bulk methylation is likely to represent a specific adaptation of hyperthermophiles 

to high temperatures, some of the methylations might also play other, sometimes regulatory, roles, like 

in the case of eukaryotic histones. By analogy, this might be the case for chromatin proteins. High-

throughput top-down analysis of S. islandicus cytosolic proteins enabled the comprehensive 

characterization of 85 methylated forms of 54 proteins of up to 19.5 kDa, including chromatin proteins. 

Very interestingly, the top-down approach brought a unique level of accuracy for the identified proteins, 

highlighting changes in PTMs during cell growth that could not be monitored by the classical bottom-up 

approach. In addition, the number of proteoforms identified in this study is the largest ever described 
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for prokaryotic cells. This was made possible by the use of a simple fractionation step before the LC-MS 

analysis and the use of a combination of fragmentation techniques such as HCD and ETD. We found, for 

the first time, that S. islandicus Alba1 and Alba2 proteins are methylated, and Alba1 may exist under 

mono-, di- and trimethylated proteoforms. To the best of our knowledge, lysine dimethylation and 

trimethylation have never been previously reported in Sulfolobus. Importantly, the methylation in Alba1 

protein occurs at lysine-16, the residue which is located at the protein-DNA interface. Previous reports 

have shown that acetylation of Alba1 from S. solfaricus at lysine-16 lowers the DNA-binding affinity of 

the protein. Methylation is expected to change the hydrophobic and steric properties of lysine-16 of 

Alba1 in S. islandicus and thus might also modulate the protein-DNA interactions. These observations 

further strengthen the previously noticed analogy between Alba and eukaryotic histones (63–65) . Since 

Alba1 bears dimethylation and trimethylation and it is not modified upon aKMT4 even in vitroin closely 

related Sulfolobus strains (51), we hypothesize that another methyltransferase may be involved in Alba1 

methylation in S. islandicus LAL14/1.  

Why does the proteome become more methylated at the later stages of the cell growth? We 

hypothesize that the protein turnover rate and availability to the methyltransferase may play a major 

role. If we assume the constant rate of any given protein methylation in the cytosol, then during active 

cell growth the proteins are synthesized at high rate in the dividing cells, constantly diluting the 

methylated protein pool with the “fresh” non-methylated proteoforms. When the protein turnover 

slows down, an average methylation reaction time for each protein copy increases and the extent of 

methylation rises. Proteins with limited availability to the solvent are not expected to show much 

increase in methylation because of the slow overall reaction rate. Also, proteins with high turnover will 

be unaffected by methylation increase as their short half-life may remain unchanged in actively growing 

and stationary phase cells. Another possible cause is the higher degradation rate of the non-methylated 

proteoforms as methylation has been shown to increase protein thermostability (11): in this case non-
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methylated forms are depleted faster, than methylated ones and this effect should be more pronounced 

in the stationary stage, since the overall protein synthesis rate is lower. However, the details, exact 

mechanism and consequences of the increase in the extent of lysine methylation in S. islandicus are 

subjects for future research. 

Although acetylation of the lysine side chains in S. islandicus was not detected by LC-MS in the 

present study, we found that N-terminal protein acetylation is rather prevalent. More than one third of 

the 372 detected N-terminal peptides were acetylated. This result is consistent with the previous 

smaller-scale analysis reported by Mackay et al (42) which showed that 17 out of 26 analyzed N-terminal 

peptides from S. solfataricus were acetylated. More generally, the extent of N-terminal acetylation 

appears to vary across archaeal species (41). For example, in halophilic archaea Halobacterium 

salinarum and Natronomonas pharaonis, 14% to 19% of proteins are N-terminally acetylated (66), 

whereas in another haloarchaeon, Haloferax volcanii, 29% of the analyzed proteins carry this 

modification (67). By contrast, it is believed that N-terminal acetylation in methanogenic archaea is very 

rare or does not occur at all (41). N-terminal protein acetylation in S. islandicus appears to be rather 

promiscuous – although serine residue is the most prevalent substrate, acetylated N-terminal 

methionine, alanine, threonine, glutamate and valine could also be detected, albeit at different 

frequencies. Biochemical and structural characterization of the N-terminal acetyltransferase of S. 

solfataricus (96% identical to the homolog in S. islandicus) revealed the basis of the relaxed substrate 

specificity and showed that the archaeal enzyme is homologous to the eukaryotic counterpart (68). 

Notably, three of the five chromatin proteins, specifically Alba1, Alba2 and Cren7, are N-terminally 

acetylated. However, the implications of this modification remain unclear. 

To sum up, this study shows that although bottom-up proteomics allows a deep analysis of 

proteomes, the high complexity and variability of the data complicates the discovery of subtle 

proteomic differences due to change in posttranslational modifications. Top-down approach allows to 
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reduce the sample complexity and to conveniently analyze proteins at the proteform level. The bottom-

up analysis enables comparing the intensities of different peptides, which increases the bredth of the 

results. The high number of peptides also allows for the multiple-testing error probability, addressed 

using FDR correction, which inevitably hides some of the results below the significance threshold. By 

contrast, the top-down approach provides the opportunity to compare the signal intensities of the 

proteoforms from the same spectra, which reduces the variability and facilitates the comparison of the 

proteoforms. Bottom-up and top-down proteomics approaches are therefore highly complementary, 

and as shown in this study, can be performed on the same mass spectrometer, in a routine fashion: all 

the consumables used here are commercially available and all the methods can be directly transferred 

to another instrument without much effort.  
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peptide-level abundance changes between the Early and Late growth stages for the 5 chromatin 
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Figure Legends 

Figure 1. LFQ–based volcano plots showing the protein expression level changes between the growth 

stages of S. islandicus: A: Early to Mid stage, B: Mid to Late stage, C: Early to Late stage. Black solid lines 

represent the significance threshold at FDR 0.01 and S0 = 1. Color-coded functions are shown for some 

of the differentially expressed protein functional groups. Four DNA-binding proteins are also highlighted 

in red: Alba1, Alba2, proteins Sul7d1 and Sul7d2 (quantified together) and Cren7 protein 

Figure 2. A and B – representative spectra of the methylated peptides from S. islandicus Lys-C/trypsin 

digest, corresponding fragmentation maps are shown below the spectra. A: spectrum (ETD) contains the 

continuous ion series on both sides of the methylated lysine residue, thus the methylated lysine site is 

filtered in; B: (HCD) fragment ion series is discontinuous, hence methylated lysine residue discarded; C: 

Venn diagrams show the number of the found methylation sites per growth stage (circles are given for 

each biological replicate B.R. at the corresponding growth stage); D: Venn diagram, showing the 

combined number of sites and methylated proteins for the three growth stages, and well as for the SCX 

fractionated late growth stage sample; E: volcano plot of the normalized peptide intensity changes 

between Early and Late stages. Significantly changing K-Me peptides are show in red, significance 

threshold at FDR 0.05 and S0 = 2; F: sequence logos, showing the frequency of the amino acid residue 

occurrences in the proximity of a methylated lysine (left) or in proximity to any lysine residue (right) 

Figure 3. Functional annotation of the identified methylated proteins. Pie-chart on the left shows the 

classification of identified methylated proteins according to functional categories, as defined in the 

archaeal clusters of orthologous groups (arCOG) (46, 47). The numbers in parenthesis indicate the exact 

number of identified methylated proteins in each category. The categories are denoted by capital letters 

and the key is provided in the right panel. Horizontal bars show the proportion of methylated proteins 

among all detected proteins in each functional category. 
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Figure 4. Summary of the top-down LC-MS/MS analysis of the SAX-prefractionated S. islandicus cytosolic 

sample: A: distributions of the experimental intact protein masses by fraction; B: numbers of protein 

IDs, identified in each SAX fraction, including a number of the unique IDs, found exclusively in the 

respective fraction, and non-unique IDs, which were also found in one or more other fractions; C: 

distribution of the proteoforms found per protein ID; D: distribution of the most frequent types of 

identified proteoforms. Fl – flow-through fraction 

Figure 5. Fragmentation maps, showing localization of methylations and acetylations on the main S. 

islandicus methylated chromatin protein forms by ETD or HCD MS/MS. A: Alba1 proteoforms; B: Alba2 

proteoforms; C: Cren7 proteoforms; D: Sul7d1 proteoforms, E: Sul7d2 proteoforms. Red box represents 

N-terminal acetylation; green box – lysine methylation; light blue box – lysine dimethylation; violet box – 

lysine trimethylation; grey box – methionine monooxidation 

Figure 6. Relative quantification of Alba1 and Cren7 proteoforms by top-down experiments. A: averaged 

spectra of Alba1 proteoforms at three growth stages; B: averaged spectra of Cren7 proteoforms at three 

growth stages; C: relative abundances of the Alba1 methylated forms at three growth stages; D: relative 

abundances of the Cren7 methylated forms at three growth stages. Peak areas on the extracted ion 

chromatograms (XIC) for each form are related to XIC peak area of non-methylated form in the 

corresponding chromatogram  
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Tables 

Table 1. Lysine methylation, identified on S. islandicus DNA/RNA-binding proteins by bottom-up 

approach with HCD and ETD fragmentation. Methylated residues are underlined and marked in bold. 

* - only found in the in-gel digested 12 kDa SDS-PAGE band 

Uniprot 

accession 

Protein 

description 

Methylation 

sites 
Sequence 

M9UDF6 Alba1 protein 16* 

SSGTPTPSN VVLIGKKPVM NYVLAALTLL 

NQGVSEIVIK ARGRAISKAV DTVEIVRNRF 

LPDKIEIKEI RVGSQVVTSQ DGRQSRVSTI 

EIAIRKK 

M9U6G3 Alba2 protein 4 

TEKLNEIVV RKTKNVEDHV LDVIVLFNQG 

IDEVILKGIG REISKAVDVY NSLKDRLGDG 

IQLVNVQTGS EVRDRRRISY ILLRLKRVY 

M9U8W4 
Chromatin protein 

Cren7 

11, 16. 24, 31, 

42 

SSGKKAVKV KTPAGKEAEL VPEKVWALAP  

KGRKGVKIGL FKDPETGKYF RHKLPDDYPI 

M9UD85 

7-kDa DNA-

binding protein 

(Sul7d1) 

5, 7, 28, 40, 49, 

53, 61, 63. 64 

TTVKFKYKG EEKQVDTSKI KKVWRVGKMI  

SFTYDEGGGK TGRGAVSEKD APKELLQMLE  

KQKK 

M9UII2 

7-kDa DNA-

binding protein 

(Sul7d2) 

28, 40, 49, 53, 

61, 63. 64 

VTVKFKYKG EDKEVDTSKI KKVWRVGKMI 

SFTYDEGGGK TGRGAVSEKD APKELLQMLE 

KQKK 
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