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Abstract

Cytotoxic CD8+ T cells (CTLs) play a critical role in controlling viral infections. HIV-infected individuals develop CTL responses
against epitopes derived from viral proteins, but also against cryptic epitopes encoded by viral alternative reading frames
(ARF). We studied here the mechanisms of HIV-1 escape from CTLs targeting one such cryptic epitope, Q9VF, encoded by an
HIVgag ARF and presented by HLA-B*07. Using PBMCs of HIV-infected patients, we first cloned and sequenced proviral DNA
encoding for Q9VF. We identified several polymorphisms with a minority of proviruses encoding at position 5 an aspartic
acid (Q9VF/5D) and a majority encoding an asparagine (Q9VF/5N). We compared the prevalence of each variant in PBMCs of
HLA-B*07+ and HLA-B*07- patients. Proviruses encoding Q9VF/5D were significantly less represented in HLA-B*07+ than in
HLA-B*07- patients, suggesting that Q9FV/5D encoding viruses might be under selective pressure in HLA-B*07+ individuals.
We thus analyzed ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N. Around 16% of HLA-B*07+ patients
exhibited CTL responses targeting Q9VF epitopes. The frequency and the magnitude of CTL responses induced with Q9VF/
5D or Q9VF/5N peptides were almost equal indicating a possible cross-reactivity of the same CTLs on the two peptides. We
then dissected the cellular mechanisms involved in the presentation of Q9VF variants. As expected, cells infected with HIV
strains encoding for Q9VF/5D were recognized by Q9VF/5D-specific CTLs. In contrast, Q9VF/5N-encoding strains were
neither recognized by Q9VF/5N- nor by Q9VF/5D-specific CTLs. Using in vitro proteasomal digestions and MS/MS analysis,
we demonstrate that the 5N variation introduces a strong proteasomal cleavage site within the epitope, leading to a
dramatic reduction of Q9VF epitope production. Our results strongly suggest that HIV-1 escapes CTL surveillance by
introducing mutations leading to HIV ARF-epitope destruction by proteasomes.
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Introduction

Multiple lines of evidence suggest that CD8+ cytotoxic T

lymphocytes (CTLs) play a critical role in controlling HIV-1

replication. During acute infection, expansion of HIV-specific

CD8+ T cells (HS-CTL), before appearance of neutralizing

antibodies, is associated with decreased viremia [1] and most likely

determines the viral set point during chronic infection [2,3].

Resistance to disease progression correlates with the detection of

Gag-specific CTLs and with the presence of particular HLA

alleles, such as HLA-B*57 and –B*27 [4,5]. HIV rapidly mutates

to evade virus-specific CD8+ T lymphocyte responses, underlying

the selection pressure exerted by CTLs [2,6,7–11]. In large part

due to its error prone reverse transcriptase activity, HIV possesses

a unique capacity to mutate and evade CTL responses. During

acute and chronic HIV infection, CTL escape mutations have been

well documented [9,12,13]. In most cases, these mutations are intra-

epitopic and affect HLA binding and/or alter TCR interactions

leading to loss of CTL activation or more subtle effects [14].

However, interference with antigen processing may also lead to a

reduced generation of precursor peptides and consequently peptide/

MHC-I complex formation and T cell activation. This could occur

at any stage of the processing pathway. Mutations in epitope-

flanking regions might affect proteasomal processing or N-terminal

trimming leading to escape from CTL recognition [15–20].

CTLs recognize peptides originating from proteasomal process-

ing of viral proteins or truncated misfolded viral polypeptides, also

called DRiPS (for defective ribosomal products) [21–23]. These

viral polypeptides are classically derived from the fifteen HIV-1

viral proteins encoded by the nine primary open reading frames
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[24]. However CTLs also target peptides translated from

alternative reading frames or ARFs (also called cryptic epitopes).

ARF-derived peptides (ARFPs) result from a differential usage of

the three-letter codon alphabet during protein synthesis. How this

change of reading frame occurs remains elusive but various

mechanisms have been proposed. Ribosomes can initiate transla-

tion at an internal initiation codon (Met or Cys), change reading

frame by shifting, or translate alternatively spliced mRNA.

Nonetheless, ARF polypeptides are processed in cells and thus

constitute an important source of cryptic epitopes for MHC-I

presentation [25]. CTL responses directed against these cryptic

epitopes have been detected in autoimmune disease [26], in

tumors [27,28] but also in several infectious diseases, including

influenza virus [29], murine AIDS [30], SIV [31] and importantly

HIV infections [32–35].

We previously described six ARFPs presented by HLA-B*0702

overlapping the alternative reading frames of HIV-1 gag, pol or env

genes [32]. CTL responses specific for these ARF-derived peptides

were detected in the blood of HIV+ patients. In addition, HIV-

infected cells were recognized by CTLs specific for the gag-

overlapping ARF epitope (so called Q9VF/5D epitope). Impor-

tantly, we showed that the introduction of a stop codon within gag-

ARF abrogated Q9VF/5D epitope generation and Q9VF/5D–

specific CTL activation [32]. Recent studies further highlighted

the in vivo relevance of ARFP-specific CTL responses [33,34,36].

In two independent cohorts studies, Bansal et al. and Berger et al.

investigated the association between specific HLA alleles and HIV

sequence polymorphisms within ARFs. This ‘‘HLA class I

footprint approach’’ allowed the prediction of numerous ARFPs

within the HIV-1 genome, both from sense and antisense

transcripts. On a restricted number of ARFPs, they also

demonstrated that these cryptic epitopes induced CTL responses

during natural infection that might contribute to viral control in

vivo [33,34].

In the present work, we bring to light a novel mechanism of

CTL escape altering the processing and presentation of the Q9VF

epitope encoded by the gag-overlapping ARF. In PBMCs of HLA-

B*07+ and HLA-B*07- HIV-infected individuals, we first

compared the prevalence of QPRSNTHVF (Q9VF/5N) and

QPRSDTHVF (Q9VF/5D) variants of the gag-ARFP. To this

end, we PCR amplified and sequenced twenty HIV proviral

genomes per individuals. We noticed that the proportion of

proviruses encoding Q9VF/5D was significantly lower in HLA-

B*07+ than in HLA-B*07- patients, suggesting that Q9FV/5D

encoding viruses might be under selective pressure in HLA-B*07+

individuals. In HLA-B*07+ and HLA-B*07- patients, we analyzed

ex vivo CTL responses directed against Q9VF/5D and Q9VF/5N

and we dissected the immunogenicity of Q9VF variants. We

observed that cells infected with HIV-1 strains encoding Q9VF/

5N were neither recognized by Q9VF/5N- nor Q9VF/5D-

specific CTLs. We demonstrate that this single amino acid (AA)

variation is responsible for the lack of CD8+ T cell recognition.

We show that HIV can escape CTL surveillance by introducing

mutations leading to epitope destruction by proteasomes.

Results

Analysis of Q9VF gag proviral sequences and
Q9VF-specific CTL responses in HLA-B*07+ patients

Q9VF was originally predicted from the sequence of the

consensus HIVHxB2 (HIVLAI) isolate [32]. HIVLAI bears an

asparagine (N) to aspartic acid (D) substitution at position 5

(Q9VF/5D) representing less than 5% of HIV-1 clade B strains

retrieved from Genbank. We decided to extend these observations

by sequencing HIV proviral sequences isolated from 10 HLA-

B*07+ and 10 HLA-B*07- patients. HLA-typing, virological and

clinical characteristics of these patients are presented in Table 1.

Both groups were age-matched and did not present any significant

differences in terms of CD4 counts, viral loads or treatments (not

shown). From the PBMCs of each patient, we cloned and

sequenced at least 20 HIV-proviral sequences encompassing the

gag-ARF DNA region (Figure 1A and Supplementary Figure S1).

The isolated HIV sequences encoded either Q9VF/5N (present in

16 out of 20 patients, representing 62% of all isolates), Q9VF/5N

variants (exhibiting within the epitope an additional AA difference

from the consensus sequence, 9 out of 20 patients, 14% of all

isolates) or Q9VF/5D (7 out of 20 patients, 15% of all isolates) and

Q9VF/5D variants (2 out of 20 patients, 1% of all isolates)

(Table 2). Between Q9VF/5N and Q9VF/5N-variants, Q9VF/

5N was the major variant representing 80% of proviral sequences

in this group. Q9VF/5D was the major sequence representing

94% of proviral sequences among Q9VF/5D and Q9VF/5D-

variants. Note that these mutations did not impact the translation

of classical gag ORF (Supplementary Figure S1 and not shown). In

contrast, HIV proviruses harboring a STOP codon prior to Q9VF

(8% of all isolates) that most likely abolishes Q9VF translation

were also identified (Figure 1A). HIV proviral sequences encoding

Q9VF/5N and Q9VF/5N-variants were predominant in both

HLA-B*07+ and HLA-B*07- patients. Q9VF/5D or Q9VF/5D-

variant HIV proviral sequences could be retrieved in two out of

the ten HLA-B*07+ patients and in six out of the ten HLA-B*07-

donors. Taking into consideration the diversity of HIV sequences

per donor with regard to their HLA-B7 status, we observe a

significant lower proportion of Q9VF/5D+ HIV strains in HLA-

B*07+ than in HLA-B*07- donors (p,0.04, mean value 3% vs

29% of proviral sequences in HLA-B*07+ and HLA-B*07-

donors, respectively, Figure 2B). Altogether, these results suggested

that Q9VF/5D-encoding HIV strains might be under negative

selective pressure in HLA-B*07+ donors. We thus analyzed CTL

responses directed against Q9VF/5D and Q9VF/5N epitopes in

PBMCs of patients including the 10 HLA-B*07+ patients used for

the analysis of HIV proviral sequences.

PBMCs from 31 HLA-B*07+ patients were loaded with various

peptides and submitted to IFNc-ELISpot (Figure 1C and not

shown). Incubations with peptides corresponding to well-charac-

terized HLA-B*0702-restricted immunodominant epitopes from

HIV-1 Gag classical ORF (SPRTLNAWV, TPQDLNTML,

YPLASLRSLF) induced a significant IFNc-release, demonstrating

that in the course of natural infection the donors mounted CTL

Author Summary

In addition to the classical open reading frames encoding
for the well characterized HIV proteins, HIV exhibits a vast
number of alternative reading frames that have the
potential to encode proteins or polypeptides. We have
previously shown that such reading frames within gag, pol
and env genes express T cell epitopes. In the present work,
we further characterized the role of T-cell responses
targeting the gag-overlapping reading frame in the
selection of HIV variants in vivo. We demonstrate that
under CD8+ T cell immune pressure, HIV escapes by
introducing mutation that affects T-cell recognition of HIV-
infected cells. We characterized the mechanism of CTL-
escape and demonstrate that HIV manipulates antigen
processing and presentation. Our results highlight the
importance of CTL targeting these alternative reading
frame-encoded antigens in the control of HIV replication.

HIV-1 Escapes CTLs Specific for Cryptic Epitope
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responses to HIV-1 antigens. Five out of the 31 HLA-B*07+
donors showed a low but significant activation with Q9VF/5D

and Q9VF/5N peptides (Figure 1C). Note that donors reacted to

both peptides or reacted to none and that the frequencies of CTL

responding to Q9VF/5D and Q9VF/5N peptides were in the

same order of magnitude (from 150 to 300 CTL per million of

PBMCs), suggesting that the reactivity to one or the other peptide

might be due to cross reactivity. We previously demonstrated that

CTL lines raised against Q9VF/5N were indeed cross-reactive on

Q9VF/5D and vice versa ([32] and Supplementary Figure S2).

Viruses encoding Q9VF/5D were not isolated from PBMCs of

the five Q9VF responders (Figure 1), with the exception of patients

P1 that harbored proviruses encoding a Q9VF/5D variant

(QPRGDTHVF, representing 16% of sequences in this donor).

These data prompt us to study the immunogenicity of the Q9VF/

5N and Q9VF/5D epitope variants.

Q9VF/5D to 5N substitution abrogates CTL recognition of
HIV-infected cells

We asked whether the Q9VF/5N epitope was processed and

presented to HS-CTLs by HIV-infected cells. HLA-B*0702+ cells

were infected with HIVLAI and HIVNL-AD8 strains encoding

Q9VF/5D or Q9VF/5N respectively. Five days post-infection (pi),

50 and 47% of the cells were productively infected by HIVLAI and

HIVNL-AD8 respectively (as monitored by intracellular Gag-p24

FACS-staining (not shown)). Infected cells were then co-cultured

with HIV-specific CTL lines and T cell activation measured using

IFNc-ELISpot assays (Figure 2). HLA-transgenic mice offer a

rapid and convenient model to identify human T cell epitopes [24]

and to generate CTL lines specific for peptides of unknown

immunogenicity in humans, such as Q9VF/5N. For this reason,

Q9VF/5D- and Q9VF/5N-specific CTL lines were generated by

peptide immunization of HLA-B*0702+ transgenic mice and in

vitro restimulations [32,37]. As expected, Q9VF/5D- and Q9VF/

5N- specific CTLs secreted high levels of IFNc in response to

Q9VF/5D and Q9VF/5N peptide loaded cells respectively

(Figure 2A). Note that Q9VF/5D- and Q9VF/5N-specific CTL

lines displayed similar capacity to recognize peptide-loaded cells

(Supplementary Figure S2), suggesting that the Q9VF/5N variant

affects neither MHC nor TCR binding of the peptide. As we

previously reported [32], HIVLAI-infected cells induced a robust

activation of Q9VF/5D-specific CTLs. Due to their capacity to

cross-react on Q9VF/5D peptide (Supplementary Figure S2 and

[32]), Q9VF/5N-specific CTLs were also stimulated by HIVLAI-

infected cells, thus demonstrating that these CTL lines are fully

competent in recognizing HIV-infected cells. In contrast, Q9VF/

5D- and Q9VF/5N-specific CTLs were not activated upon co-

culture with HIVNL-AD8-infected cells (Figure 2A). This is not due

Table 1. List of patients used in this study.

HLA class I

Patient Age Gender A B C
CD4 count
(cells/mL)

Time since
HIV infection
(yr) Viral loada Antiretroviral therapyb

Duration
of ART
(yr)

Patients HLA-B*07+

P1 42 M nd nd B*07 nd nd nd 491 4 ,20 d4T-ddi-NVP 4

P2 33 M nd nd B*07 nd nd nd 642 9 1776 3TC-d4T-NVP 5

P3 38 M A*01 A*02 B*07 B*08 C*07 C*07 667 19 ,20 TDF/FTC-ATV/r 17

P4 44 M A*02 A*03 B*07 B*27 C*02 C*07 1546 22 ,20 TDF/FTC-DRV/r 22

P5 46 F A*02 A*03 B*07 B*51 C*05 C*07 414 19 ,20 TDF/FTC-DRV/r-ETR-RAL 17

P6 58 M nd nd B*07 nd nd nd 866 2.5 11482 None

P7 41 M nd nd B*07 B*18 C*05 C*07 644 17 ,20 ddi/3TC-ATV/r 13

P8 47 M A*23 A*33 B*07 B*14 C*05 C*07 892 16 ,20 TDF/FTC-FPV/r 11

P9 50 M A*02 A*03 B*07 B*44 C*07 C*07 818 14 124 ABC/3TC-LPV/r-ETR 13

P10 48 M A*01 A*03 B*07 B*08 C*07 C*07 434 24 ,20 TDF/FTC-ETR-RAL 20

Patients HLA-B*07 -

P11 28 M A*01 A*02 B*08 B*27 C*07 C*07 613 0.25 20293 None

P12 44 M A*29 A*31 B*44 B*67 C*12 C*16 319 21 ,20 ABC/3TC-NVP 11

P13 53 M A*01 A*02 B*14 B*51 C*05 C*15 351 23 ,20 ddi/3TC-ATV/r 17

P14 43 M A*01 A*68 B*14 B*15 C*04 C*05 358 24 ,20 DRV/r 12

P15 63 M A*29 A*74 B*44 B*56 C*01 C*16 1282 23 ,20 TDF/FTC-ATV/r 18

P16 36 F A*01 A*02 B*53 B*82 C*03 C*06 440 6 ,20 ABC/3TC-ATV 6

P17 44 M A*03 A*03 B*27 B*35 C*02 C*04 529 16 20 ABC/3TC-DRV/r-TDF 13

P18 44 M A*03 A*11 B*14 B*27 C*01 C*05 1461 23 ,20 TDF/FTC-EFV 0.25

P19 36 F A*29 A*33 B*27 B*39 C*03 C*07 919 22 53 ABC/3TC-LPV/r 22

P20 23 F A*24 A*29 B*18 B*55 C*03 C*12 96 16 38035 None

aCopies of HIV-1 RNA per milliliter of plasma at the time of study.
bTreatment at the time of study: d4T, stavudine; ddi, diadanosine; TDF, Tenofovir; FTC, Emtricitabine; ATV, Atazanavir; r, ritonavir; DRV, Darunavir; ETR, Etravirine; LPV,

Lopinavir; RAL, Raltegravir; 3TC, Lamivudine; ABC, Abacavir; EFV, Efavirenz; FPV, Fosamprenavir; NVP, Nevirapine; SQV, Saquinavir; AZT, Zidovudine; MVC, Maraviroc.
ART, antiretroviral therapy; nd, not determined.
doi:10.1371/journal.ppat.1002049.t001
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Figure 1. Q9VF/5D-specific CTLs exert a selection pressure on HIV Q9VF gag-overlapping ARF. (A) Analysis of Q9VF proviral sequences in
HIV-infected donors. Using PBMCs, proviral DNA of 20 HIV+ individuals were extracted and the region corresponding to gag-ARF PCR-amplified and
cloned. Twenty clones per donor were sequenced. Results are presented as percentage of provirus encoding for Q9VF/5D and 5D variants exhibiting
within the epitope an additional AA difference from the consensus sequence, Q9VF/5N and 5N variants, and sequence harboring a stop codon prior
the epitope (no epitope). Pies on the right represent percentage of provirus combined for all isolates. Top and bottom panels, results for HLA-B*07+
and HLA-B*07- donors, respectively. (B) Percentage of provirus encoding Q9VF/5D or 5D variants within HLA-B*07+ and HLA-B*07- patients. Each dot
represents percentage within the PBMCs of one donor. In HLA-B*07+ patients, variants with 5D are under-represented (P,0.04). (C) Immunogenicity

HIV-1 Escapes CTLs Specific for Cryptic Epitope
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to the incapacity of HIVNL-AD8-infected cells to activate HS-CTLs

since CTL clones specific for an HLA-B*0702-restricted HIV-1

Nef epitope (F10LR), raised as a control in these experiments,

were activated upon co-culture with HIVLAI- and HIVNL-AD8-

infected cells.

To extend these observations to other HIV-1 isolates, HLA-

B*0702+ cells were also infected with HIVMN that encodes for

Q9VF/5N and used as target cells to activate Q9VF/5D- and

Q9VF/5N-specific CTLs (Supplementary Figure S3). HIVNL-AD8-

and HIVMN-infected cells did not induce Q9VF/5D- nor Q9VF/

5N-specific CTL activation. Overall, these results suggested that

HIV-infected cells did not present the Q9VF/5N peptide.

Epitope flanking regions have a direct impact on antigen

processing and presentation [38]. Thereafter, to exclude the

possibility that HIV sequence variations outside the Q9VF/5N

peptide might be responsible for the lack of presentation, we

introduced in HIVLAI a D to N mutation within the Q9VF epitope

(so called HIVLAI-5D.5N). This mutation did not affect the primary

open reading frame of Gag (Supplementary Figure S1) and did not

alter viral replication in T cell lines or primary CD4+ T cells

(Figure 2B). However, cells infected with HIVLAI-5D.5N could not

activate Q9VF/5D- nor Q9VF/5N-specific CTLs (Figure 2C).

Thereafter, this single amino acid substitution was sufficient to

abrogate CTL recognition, thus indicating that this asparagine

alters Q9VF MHC-I presentation. We then sought to dissect the

mechanism responsible for the lack of Q9VF/5N MHC-I

presentation.

Q9VF/5N binds TAP pumps and HLA-B*0702 molecules
The capacity of antigenic peptides to bind to a given HLA allele

is determined by the so-called anchor residues [39]. Mutating an

anchor residue abrogates peptide HLA-binding and subsequent T

cell activation, a strategy often used by viruses to escape viral-

specific T cell responses. The anchor residues of HLA-B*0702

reside at position 2 and 9 of the peptide-ligands. Thereafter, the D

to N substitution at position 5 was not predicted to influence

Q9VF peptide binding to HLA-B*0702 [40]. However, besides

anchor residues, auxiliary residues might affect peptide binding,

we thus compared the capacity of Q9VF/5D and Q9VF/5N

peptides to bind HLA-B*0702. To this end, T2-HLA-B*0702 cells

were loaded O/N with Q9VF/5D or Q9VF/5N peptides and

binding to HLA-B*0702 molecules at the cell surface monitored

by FACS (Figure 3A, left panel). Q9VF/5D and Q9VF/5N

peptides exhibited similar capacities to bind HLA-B*0702 with a

relative affinity (RA, based on the reference peptide) of 2.6 and 1.5

respectively (Figure 3A, left panel). To further characterize the

impact of the 5D to 5N substitution on peptide-MHC interactions,

we compared the capacity of the peptides to stabilize HLA-B*0702

molecules at the cell surface of T2-HLA-B*0702 (Figure 3A, right

panel). To this end, T2-HLA-B*0702 were cultured O/N at 26uC
to allow surface expression of peptide-receptive MHC molecules,

loaded with a high concentration of peptides, shifted to 37uC and

the stability of HLA-B*0702-peptide complexes monitored by

FACS at various time points. An exponential regression of HLA-

B*0702 mean fluorescence intensity (MFI) vs. time reveals that the

stability (t1/2) of HLA-B*0702 pulsed with an irrelevant peptide

(S9L) is 22 min while binding of Q9VF/5D and Q9VF/5N

peptides prolongs the t1/2 to 211 and 641 min respectively

(Figure 3A, right panel). Thereafter, Q9VF/5D and Q9VF/5N

peptides are very good HLA-B*0702-binders and 5D to 5N

substitution tends to prolong surface expression of HLA-B*0702.

Precursor peptides are transported by the TAP pumps

(transporter associated with antigen processing) from the cytosol

into the endoplasmic reticulum (ER), and then loaded on nascent

MHC-I molecules [41]. N-terminally extended peptide precursors

are also transported and further trimmed in the ER by the

endoplasmic reticulum aminopeptidase ERAAP and bound to

MHC-I molecules [42,43]. We asked whether the absence of

Q9VF/5N peptide presentation by HLA-B*0702 within infected

cells might be the result of inefficient ER-translocation of the

Q9VF/5N epitope and/or Q9VF/5N-peptide precursors by TAP.

Hence, we used a TAP-binding assay [44] to evaluate the affinities

of Q9VF/5D and Q9VF/5N and their precursors with TAP.

Q9VF/5D and Q9VF/5N exhibited a poor affinity for TAP

(Figure 3B), most likely due to the presence of a proline at position

2 that negatively impacts on TAP-mediated peptide transport

[44]. In contrast, their N-terminally extended peptide precursors

EGF-Q9VF/5D and EGF-Q9VF/5N showed at least a two-log

increased efficiency to compete for TAP with an equal 1/IC50 of

0.15. Whatever the precursor, Q9VF/5D and Q9VF/5N

containing peptides did not show differences in their capacity to

bind human TAP molecules.

Overall, these data demonstrated that the D to N substitution

within Q9VF does not impact on TAP transport and HLA

binding. In contrast, the 5N substitution might prolong epitope

presentation on the cell surface.

Q9VF/5D epitope generation is dependent on
proteasomal cleavages

The proteasomes, that are the major catalytic enzymes involved

in antigen processing, generate the carboxyl termini of most

MHC-bound peptides [38,45]. We thus asked whether the

generation of Q9VF/5D was dependent on proteasomal process-

ing. To this end, HLA-B*0702+ cells were infected with HIVLAI.

Five days pi, infected cells were incubated with a potent and

selective proteasome inhibitor, epoxomicin [46], treated with a

citrate-phosphate buffer to remove residual MHC-peptide com-

plexes, washed and cultured with Q9VF/5D-specific CTLs as

previously described. Epoxomicin treatment abolished the capac-

ity of HIVLAI-infected cells to activate Q9VF/5D-specific CTLs,

as measured in IFNc-ELISpot (Figure 3C, left panel). Note that

epoxomycin inhibition affected neither MHC-density (as moni-

tored by FACS, not shown) nor the capacity of treated cells to

present exogenous peptide (at 0.1 mg/ml) (Figure 3C, right panel).

Thereafter, these results demonstrated that the generation of

Q9VF epitope depends on proteasomal processing.

5N introduces an aberrant proteasomal cleavage site
within Q9VF epitope

Proteasomes might also destroy CTL epitopes by generating

aberrant cleavages within the epitope [47] or in epitope-flanking

regions [19,48]. We thus asked whether aberrant proteasomal

of Q9FV peptide variants. PBMCs of HIV-infected HLA-B*07+ donors were loaded with peptides and T cell activation monitored by IFNc-ELISot. PBMCs
were incubated with HLA-B*07-restricted epitopes: Q9VF/5D, Q9VF/5N, a pool of 3 immunodominant HIV-1 Gag epitopes (SPRTLNAWV, TPQDLNTML,
YPLASLRSLF), a CMV-derived epitope (pp65 TPRVTGGGAM) or an HCV-derived epitope as negative control (GPRLGVRAT). Out of 31 HLA-B*07+
patients 5 reacted to Q9VF/5D and Q9VF/5N. Results for the 5 Q9VF reacting patients (Q9VF CTL +, full symbols) and 5 representative Q9VF non-
reacting patients (Q9VF CTL-, open symbols) are shown. Data are means of triplicates. Dotted line indicates threshold of significant positive
responses.
doi:10.1371/journal.ppat.1002049.g001
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Figure 2. Q9VF/5D to Q9VF/5N substitution abrogates CTL recognition of HIV-infected cells. (A) T1-B7 cells were infected with HIVLAI and
HIVNL-AD8 expressing Q9VF/5D and Q9VF/5N, respectively. Two days p.i., the percentage of HIV-infected cells was monitored by intracellular p24
staining and flow cytometry: 50 and 47% of the cells were infected with HIVLAI and HIVNL-AD8, respectively. In an IFNc-ELISpot assay, infected cells
were then used to activate CTL lines specific for Q9VF/5D, Q9VF/5N or an HLA-B*07-restricted HIV-1 Nef epitope (FPVTPQVPLR, F10LR) used as
control. For each peptide, specific CTL lines were generated in three different HLA-B*0702 transgenic mice and used in two independent
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cleavages might be responsible for the lack of Q9VF/5N

presentation.

The proteasome is a large multicatalytic protease composed of

standard and inducible subunits that replace the standard subunits

upon exposure to IFNc and form the so-called ‘‘immunoprotea-

somes’’ (IP). IP is found in most cell types after IFNc-exposure, but

is constitutive in APCs and is induced in HIV-infected T cells [49].

Standard (SP) and IP proteasomes display discrete differences in

their capacity to cleave a given peptide substrate [50]. We

submitted the full-length polypeptides from the gag-overlapping

ARF to IP processing. 27mer peptides encompassing Q9VF/5D

or Q9VF/5N peptides were synthesized and incubated with IP

purified from T2.27 cells [51]. After 1 h incubation, the digestions

were analyzed by mass spectrometry (RP-HPLC SI) and peptide

fragments identified by MS/MS (Figure 4A). IP digestion of

Q9VF/5D encompassing peptide showed the presence of major

proteasomal cleavage sites after amino acids F10, F19, I22 and

R24 representing around 80% of total cleavages. The cleavage at

position F19 generated the C-terminal cut of the N-extended

precursors of Q9VF (M1-F19). After 1 h incubation, when

comparing the IP digestion profiles of Q9VF/5D and Q9VF/

5N encompassing peptides, we noticed the presence of a new

cleavage site within the Q9VF/5N epitope. This cut at position

N15 was the most prevalent among Q9VF/5N representing up to

28% of total IP cleavages. These results demonstrated that the D

to N substitution introduces a major cleavage site within the

Q9VF/5N epitope. Nonetheless the C-terminal cut necessary for

the generation of Nt-extended Q9VF/5N precursors was also

detected following 1 h of proteasomal digestion.

Thereafter, we sought to evaluate the amount of cleavage

products generated during Q9VF/5D and Q9VF/5N digestions.

To this end, we performed kinetics of IP digestion where aliquots

were regularly collected and submitted to mass spectrometry

analysis as before (Figure 4B). To compare the amounts of

cleavage products, we used the MS fragment intensity as a

surrogate marker for quantity since these two parameters correlate

significantly [15]. The variations among the different fragments

generated are presented as the relative intensity of peptides that

exhibit a Q9VF C-terminal cut (epitope or precursors) or peptides

issued from cleavages within the Q9VF epitope (referred to as the

antitopes) (Figure 4B). Kinetics of digestion of peptides encom-

passing either Q9VF/5D or Q9VF/5N were identical: 24%, 59%

and 96% of both substrates was degraded after 30 min, 1 h and

2 h respectively. At latter time points, both 27mers were

undetectable. In the course of Q9VF/5D substrate digestion, the

precursor (M1-F19) was readily produced starting from 30 min

with a peak at 4 h digestion (representing 20% of digested

products). The epitope was detected starting from 1 h digestion

and accumulated reaching 13% of all peptide fragments at time

18 h. At latter time points, Q9VF/5D epitopes and precursors

represented up to 14% of all peptide fragments detected. An

antitope corresponding to a cleavage at position S14 was also

generated but represented less than 2% of detected fragments at

each time point. In contrast, during Q9VF/5N substrate digestion,

the antitopes corresponding to the cleavage at position N15 were

already produced after 30 min of digestion and reached around

77% of all peptides from 4 to 18 h, further demonstrating that

N15 is a major cleavage site within Q9VF/5N. Interestingly,

during Q9VF/5N digestion, the epitope was barely detected even

at latter time points (less than 2% of digested products). The

precursor M1-F19 accumulated from 30 min to 2 h (8% of

digested products) but was undetectable after 4 h, suggesting that

the cleavage at position N15 destroyed this peptide. Overall, the

amounts of Q9VF/5N epitope and precursors produced were

markedly reduced as compared to Q9VF/5D digestion.

Taken together, these results demonstrate that the Q9VF/5D

epitope is efficiently produced by proteasomes and accumulates

with time. In contrast, the D to N substitution introduces a major

cleavage site within the epitope leading to the destruction of the

Q9VF/5N epitope and thus the absence of MHC-I binding and

presentation.

Discussion

The three-letter codon alphabet allows protein synthesis in six

possible overlapping reading frames. A vast number of ARFs have

the potential to encode proteins or epitopic peptides (ARFPs).

Using an ‘‘HLA class I footprint’’ approach, Bansal et al and

Berger et al recently predicted the existence of numerous ARFPs

within HIV-1 genome [33,34]. We have previously shown that

ARFP-specific CTLs are induced during natural infection [32].

These CTL responses might contribute to viral control driving

HIV evolution at the population level. ARFPs can mutate during

the first year of infection, suggesting a possible selection of escapes

variants [33,34]. Such a scenario has been highlighted in the

macaque model of SIV infection [31]. Mamu-B*17+ macaques

generate strong CTL responses against SIV ARF-encoded

epitopes leading to ARF mutation affecting epitope binding to

Mamu-B*17 molecules and subsequent SIV replication rebound

[31]. In the present study, we characterized a novel mechanism of

ARFP-specific CTL escape resulting from HIV epitope destruc-

tion by the proteasomes. We suggest that ARFP-specific CTLs

exert a selection pressure leading to negative selection of targeted

HIV strains. Overall, our work shows that CTL escape mutations

are not limited to epitopes encoded by classical ORF, highlighting

the role of ARFP-specific CTLs in the control of HIV infection.

We previously identified a panel of epitopes encoded by ARFs

within HIV-1 gag, pol and env genes [32]. The gag-overlapping ARF

encoding for the Q9VF epitope presented by HLA-B*0702 drew

our attention due to its polymorphism. In a cross-sectional cohort

study, we report that proviruses encoding the Q9VF/5D epitope

(and 5D variants) are rare and significantly under-represented in

PBMCs of HLA-B*07+ patients, thus suggesting Q9VF/5D-

specific CTLs might exert a negative selection pressure on HIV

strains encoding Q9VF/5D variants. In HIV-1 gag ARF, the virus

might escape CTL immune pressure by introducing a 5D to 5N

substitution or Stop codons but prior the epitope. We thus

analyzed CTL responses directed against Q9VF/5D and Q9VF/

experiments. One representative experiment with one CTL line is shown (mean values of triplicates 6SD). T1-B7 cells loaded with the cognate
peptide were used as positive controls. (B) 5N substitution does not affect HIV replication. T1-B7 cells (left panel) and CD4+ activated T cells (right
panel) were infected (at 100 and 1 ng/ml respectively) with HIVLAI and HIVLAI-5D.5N. HIVLAI-5D.5N expressing Q9VF/5N was engineered by PCR
mutagenesis of the HIVLAI strain. Whatever the viral input (1, 10 or 100 ng/ml), 5N substitution did not alter the replication capacity of HIVLAI-5D.5N.
T1-B7 cell infection (left panel) was monitored using GFP expression (upon trans-activation of LTR-GFP). Data are representative of at least five
independent experiments using various viral inputs. CD4+ T cells infection was monitored using p24-Elisa (right panel) and correspond to the mean
values (6SD) of two infections using activated CD4+ T cells from two donors and are representative of two independent experiments (using various
viral input). NI: not infected. (C) 5N substitution is sufficient to abrogate CTL recognition of HIV-infected cells. As in (A) using T1-B7 cells infected with
HIVLAI, HIVNL-AD8 and HIVLAI-5D.5N. Infection rates were around 30% of p24+ cells.
doi:10.1371/journal.ppat.1002049.g002
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Figure 3. Q9VF/5N binds TAP pumps and HLA-B*0702 molecules. (A) Q9VF/5N and Q9VF/5D peptides exhibit similar affinities for HLA-
B*0702. (Left panel) Q9VF/5D, Q9VF/5N and their natural EGF Nt-extended precursors were loaded O/N at RT on T2-B7 cells. An HLA-B*07-restricted
CMV-derived reference epitope (pp65 RPHERNGFTV, R10TV) and an HLA-A*02-restricted HIV-1-derived epitope (p17 SLYNTVATL, SL9) were also used
as positive and negative control, respectively. HLA-B*0702 binding was monitored using ME-1 antibody and flow cytometry. Based on the reference
peptide R10TV, a relative affinity (RA) was calculated. Data are representative of three different experiments (mean values of triplicates 6SD). (Right
panel) T2-B7 were cultured O/N at 26uC to increase peptide-receptive cell surface molecules, pulsed with the indicated peptides for 2 h in presence of
b2-microglobulin and BFA to stop delivery of newly synthesized MHC-I molecules. Cells were then shifted to 37uC for 1 h, washed to remove
unbound peptides and incubated at 37uC in presence of BFA (0.5 mg/ml) which is considered as time ‘‘zero’’. At the indicated time points, samples
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5N epitopes in PBMCs of patients. Q9VF/5D and Q9VF/5N

peptides induced CTL responses in 16% of HLA-B*07+
individuals tested. Donors reacted to both peptides or reacted to

none. The frequencies of CTLs responding to Q9VF/5D and

Q9VF/5N peptides were about the same magnitude, suggesting

that the reactivity to one or the other peptide might be due to cross

reactivity. The frequency and magnitude of Q9VF/5D responses

in HLA-B*07+ patients were rather low as compared to

immunodominant HLA-B*07-restricted responses (Figure 1 and

[24]). This might be due to the fact that the patients included in

the study were under retroviral therapy that might affect the

expression of ARF during residual HIV-1 translation (Table 1).

Alternatively in our assays, we are most likely monitoring memory

responses to Q9VF/5D that are usually of low magnitude. This

possibility is supported by the observation from Bansal et al that

ARFP encoding sequences mutate during the first year of infection

[33]. Overall, the low representation of Q9VF/5D encoding HIV

proviral sequences in PBMCs of HLA-B*07+ individuals and the

low frequency and magnitude of CTL responses to Q9VF/5D

strongly supported our initial hypothesis that 5N substitution is an

escape mutation.

We dissected the immunogenicity of the Q9VF/5N epitope. We

showed that cells infected with HIV-1 strains encoding Q9VF/5N

(HIVNL-AD8 and HIVMN) were not recognized by Q9VF/5N-

specific CTLs. In contrast, Q9VF/5N- and Q9VF/5D-specific

CTLs were activated by HIV-1 strains encoding Q9VF/5D

(HIVLAI). We demonstrated that the single AA substitution from

5D to 5N in HIVLAI sequence is sufficient and required to

abrogate CTL recognition of HIV-infected cells. Thereafter, the

acquisition of this 5N mutation by HIV might help the virus to

interfere with Q9VF epitope expression or processing and

presentation.

Viruses can interfere with antigen expression to escape CTL

lysis [23]. Various mechanisms have been proposed for the

biosynthesis of ARF-derived polypeptides. Ribosomes can scan

through conventional initiation codons [29], initiate translation at

an internal initiation non-AUG-codons (Leu or Cys) [34,52],

change reading frame by shifting [53], or translate alternatively

spliced mRNA (for review see [25]). We previously described the

presence of a conserved slippery motif (UUUAAAU) upstream of

gag-ARF start codon that may facilitate ribosomal slippage and

thus Q9VF synthesis [32]. Interestingly, a structured region

(hairpin) in HIV-1 RNA has been identified downstream of this

slippery motif [53]. This highly structured RNA region might

cause ribosomal pausing during gag translation thus facilitating

ribosomal slippery and Q9VF expression. The D to N substitution

within the Q9VF epitope is translated from a codon that is located

in the flexible loop of the RNA hairpin structure [53]. Although it

remains to be formally proven, this D to N substitution most likely

does not impact the RNA structure and hence Q9VF expression.

Viruses also manipulate antigen processing and presentation to

escape CTL responses. Interference with antigen presentation

could arise at any stage in the pathway, including processing by

proteasomes, binding of epitope-precursors to TAP, destruction of

these precursors by peptidases in the ER or cytosol and peptide

binding to the MHC-I molecule. HIV-specific CTL responses

have been shown repeatedly to select for intra-epitope mutations

that affect HLA-binding or TcR recognition. In addition, HIV

escape mutations outside the epitope (extra-epitope mutations) can

interfere with antigen processing by proteasomes [17–19,47,54,55]

or by the ER aminopeptidase ERAAP [16]. To our knowledge,

intra-epitope mutations affecting antigen processing have not been

described thus far. Several studies proposed that intra-epitope

variation might affect processing but did not provide a mechanism

[34,20]. The only evidence that intra-epitope mutations might

affect proteasomal processing of viral antigens comes from mouse

models [47,56].

We provide several lines of evidence strongly suggesting that the

D to N substitution within the Q9VF epitope impacts neither TcR

recognition nor MHC binding: i) Q9VF/5N- and Q9VF/5D-

specific CTLs can be generate upon peptide immunization of

HLA-B*07-transgenic mice and cross-react to the alternate

peptide ([32] and Supplementary Figure S2); and ii) Q9VF/5N

and Q9VF/5D peptides bind HLA-B*0702 (Figure 3A). In

addition, we show that Q9VF/5N and Q9VF/5D peptide and

their precursors (elongated on the N-termini) efficiently bind TAP,

thus demonstrating that the D to N substitution does not affect

peptide translocation into the ER. As previously observed with

peptides bearing a proline at position 2 [44], the optimal Q9VF/

5N- and Q9VF/5D epitopes had a reduced capacity to bind TAP

as compared to their Nt-extended precursors (Figure 3B),

suggesting that in the ER peptide-trimming is required for proper

HLA-B*0702 binding. The ER aminopeptidase ERAAP provides

peptides for many MHC-I molecules but has been also implicated

in the destruction of CTL epitopes [16]. However, ERAAP cannot

process X-P motifs in peptide sequences [42]. Thereafter, though

it cannot be formally excluded, a role of ERAAP in the destruction

of Q9VF/5N is very unlikely. Overall, these data support the

concept that the intra-epitope D to N substitution interferes with

proteasomal processing. Using in vitro proteasomal digestions, we

demonstrate that the D to N substitution introduces a major

cleavage site within the Q9VF epitope (at position N15). Note that

at 1 h-digestion time point we identify mainly primary cleavage

products since less than 50% of the peptide substrates (the 27mer)

have been digested (Figure 4A). To further highlight the potential

impact of this N15 cleavage site in the generation of the Q9VF

epitope, we performed kinetics of peptide digestion using IP. We

observed that amounts of Q9VF/5N epitope and precursors

produced were markedly reduced as compared to Q9VF/5D.

These results strongly suggest that proteasome cleavages at

were removed to 0uC, stained on ice using ME.1 Ab and analyzed by FACS. Data are mean values of two independent experiments. The capacity of
each peptide to stabilize HLA-B*0702 (t1/2) was compared using exponential regression. T1/2 of HLA-B*0702 pulsed with the irrelevant peptide (S9L)
was 22 min while binding of Q9VF/5D and Q9VF/5N peptides prolonged the t1/2 to 211 and 641 min respectively. T1/2 of CMV (pp65 TPRVTGGGAM,
T10AM) and Gag (p24 TPQDLNTML, T9ML) peptides used as positive were 552 and 124 min respectively. (B) Human TAP transporter binding assay.
Microsomes from insect cells expressing human TAPs were incubated with the labeled reference reporter peptide (RRYNASTEL, R9L) then loaded with
serial dilutions of unlabeled reference peptide or tested peptides with or without EGF Nt-extension. TAP affinities were determined as the
concentrations required to inhibit 50% of reporter peptide binding (IC50) and data are presented as 1/IC50 ratios: the highest the ratio, the stronger
the affinity. Results are mean values (6SD) from three independent experiments. (C) Q9VF/5D epitope generation is dependent on proteasomal
processing. T1-B7 cells were infected with HIVLAI (as in Figure 1), monitored for HIV infection by flow cytometry, treated or not (unTx) with
epoxomicin (6 h at 37uC). To remove residual MHC-peptide complexes, cells were then treated with a citrate-phosphate buffer, washed and used as
targets to activate Q9VF/5D-specific CTLs in IFNc-ELISpot assay (8h). Note that epoxomycin inhibition affected neither MHC-density (as monitored by
FACS, not shown) nor the capacity of treated cells to present exogenous peptide (0.1 mg/ml) (right panel). Results are mean values (6SD) of triplicates
and representative of three different Q9VF/5D CTL clones. Mock, non infected cells (left panel) or loaded with the irrelevant HCV peptide (right panel).
doi:10.1371/journal.ppat.1002049.g003

HIV-1 Escapes CTLs Specific for Cryptic Epitope

PLoS Pathogens | www.plospathogens.org 10 May 2011 | Volume 7 | Issue 5 | e1002049



HIV-1 Escapes CTLs Specific for Cryptic Epitope

PLoS Pathogens | www.plospathogens.org 11 May 2011 | Volume 7 | Issue 5 | e1002049



position N15 destroy the Q9VF/5N epitope and precursors

resulting in the lack of MHC-I presentation and CTL activation.

In conclusion, a single amino acid variation within HIV epitope

can result in epitope destruction and absence of HIV-specific CTL

activation.

Mutation in HIV-1 genome can be silent or can differentially

impact the fitness of the virus. Due to the redundancy of the codon

alphabet, the 5D to 5N substitution in Q9VF does not impact the

primary gag-ORF and thus viral replication (Figure 2B). Never-

theless, considering the multitude of existing ARFs, some

mutations within ARF encoding sequences most likely affect viral

fitness and these ARF sequences might be unavoidably conserved

throughout HIV-1 isolates. Thereafter, the great diversity of ARF

epitopes produced during HIV infection offers a vast panel of

therapeutic targets to stimulate CTL responses. It is interesting to

note that ARF-specific CD8+ T cells can performed multiple

functions [33,34] and control viral replication in vitro, character-

istics that correlate with slow disease progression [57]. In addition,

CTLs targeting ARF-derived epitopes can be induced upon

vaccination [58] and tumor infiltrating CTLs specific for ARFPs

have been also identified in various cancers, including melanoma

and breast cancers [25]. Such responses against crytptic epitopes

represent a great potential for future immunotherapeutic strate-

gies.

Materials and Methods

Study population
HIV-1-infected peripheral blood mononuclear cells (PBMCs)

were obtained from HCV (Hepatitis C virus) negative French

ALT-ANRS-CO15 cohort patients [59]. The 31 HLA-B*07+ and

10 HLA-B*07- individuals were identified using the anti-HLA-

B*07 antibody ME.1. HLA status was further confirmed by

genotyping using PCR [60] or using the Luminex xMAP

technology [61]. HLA-typing, virological and clinical character-

istics of the ten HLA-B*07+ and ten HLA-B*07- patients included

in the study are presented in Table 1.

Ethics statement
Patient samples were collected according to French Ethical

rules. Written informed consent and approval by institutional

review Board at the Pitié-Salpêtrière Hospital were obtained.

Animals were bred at the Pasteur Institute. The Office of

Laboratory Animal Care at Pasteur Institute reviewed and

approved protocols for compliance with the French and European

regulations on Animal Welfare and with Public Health Service

recommendations (Directive 2010/63/EU).

Human CTL assays
PBMCs were isolated by ficoll-centrifugation, pulsed with

Q9VF peptides (1 mM, 1 h at 37uC), and submitted to IFNc-

ELISpot assays as previously described [46]. The HLA-B*0702-

restricted peptides used were: HCV-derived epitope G9AT

(GPRLGVRAT), CMV-derived epitope T10AM (pp65

417TPRVTGGGAM426) used as negative and positive control

respectively and a pool of known Gag HIV-1-derived epitopes

(p24 16SPRTLNAWV24, p24 48TPQDLNTML56, p2p7p1p6

121YPLASLRSLF130) as control for HIV reactivity [24]. Respons-

es were considered positive when IFNc production was superior to

50 spots/106 PBMCs and at least threefold higher than

background (measured with the HCV peptide).

Mouse CTL recognition of infected T1 cells
Mouse CTL lines were derived from splenocytes of peptide

immunized HLA-B*07ma3 transgenic mice. In brief, these mice

express HLA-B*0702 heavy chain with a murine a3 domain and

their H-2Kb and H-2Db class Ia genes have been inactivated [37].

Cytolytic activity of splenocyte cultures was first assessed in a51Cr

release assay [32]. Peptide specific CTL lines were stimulated in

vitro (5 mg/mL of peptide) and cultured in RPMI 1640 medium

supplemented with 10% FCS, 0.5 mM 2-b-mercaptoethanol

(Sigma), 100 IU/mL penicillin and 100 mg/mL streptomycin

(Gibco-BRL). Ten days later, 26103, 400 and 80 CTLs in

triplicates were stimulated by 105 HIV-1-infected T1-B7 cells and

IFNc release was detected by ELISpot assay. Cross-reactivity of

Q9VF/5D- and Q9VF/5N-specific CTLs was tested in IFNc-

ELISpot and Cr51-release assays [32] using T1-B7 peptide-loaded

cells. Mouse CTL lines specific for the HLA-B*0702-restricted

HIV-1 Nef-derived epitope F10LR (Nef 68FPVTPQVPLR77; [22])

were used as controls. When stated, HIV-infected T1-B7 cells

were treated with epoxomicin (6 h, 1 mg/ml, Calbiochem). To

remove residual MHC-peptide complexes, epoxomycin-exposed

cells were treated with a citrate-phosphate buffer (pH 3.3)

containing 1% BSA and washed twice, prior co-culture with

CTLs for an additional 8 h.

Virus and infections
HIVLAI 5D.5N was generated by a single amino acid mutation

in HIVLAI provirus. The GAT codon (D) of Gag-ARF (AA in

position 15) was replaced by an AAT codon (N) without affecting

the primary Gag AA coding sequence, using the following primer

(59-GGC TTT CAG CCC AGA AGT AAT ACC CAT GTT

TTC AGC) and Quickchange XL Site-directed Mutagenesis Kit

(Stratagene). HIVLAI, HIVLAI-5D.5N, HIVNL-AD8 and HIVMN

were produced by transfection of 293T cells using routine

procedures [62]. T1 cells (174xCEM, CCR5+ LTR-GFP+) stably

transfected with the HLA-B v T1-B7 cells, [53]) were infected and

used as antigen-presenting cells. 56106 T1-B7 cells were infected

with 500 ng of p24 for 3 h in culture medium containing 10 mM

Hepes and 4 mg/ml DEAE-dextran. 2 to 5 days p.i., infected T1-

B7 cells were used as antigen-presenting cells in IFNc-ELISpot

assay. For the infection kinetics, T1-B7 cells were infected with the

indicated viruses according to the same procedure using 1, 10 or

100 ng/ml of p24. Primary CD4+ T cells were isolated from the

blood of healthy donors using ficoll centrifugation and magnetic

beads (Miltenyi) and activated using PHA (1 mg/ml, PAA) and

Figure 4. 5N introduces an aberrant proteasomal cleavage site within the epitope. (A) 5N introduces a strong cleavage site within Q9VF
epitope. 27mer synthetic peptides encompassing Q9VF/5D or Q9VF/5N were submitted to in vitro immunoproteasome (IP) digestion. Resulting
peptide fragments were analyzed by mass-spectrometry. Proteasome cleavage patterns are presented as C-terminal cleavages to a specific AA
(horizontal axis) of Q9VF/5D (upper panel) and Q9VF/5N (lower panel) substrates. The percentage of C-terminal cuts at each AA is indicated. The most
frequent fragments at 1 h IP digestion are depicted. Data represent one of two independent experiments. (B) The overall production of Q9VF epitope
is drastically reduced by the 5N substitution. Q9VF/5D (upper panel) and Q9VF/5N (lower panel) encompassing peptides were digested by IP from
0 h to 18 h. Resulting peptide fragments were analyzed by MS/MS, as in (A). Proteasome cleavage patterns are presented as the estimated
percentage of peptide fragments corresponding to either the substrate (M1-P27), the epitope Q9VF (Q11-F19), precursors with a C-terminal cut at
F19, peptide fragments with a cleavage within the epitope most likely abolishing epitope production (referred to as ‘‘Antitopes’’), or other fragments,
with the sum of all fragments intensities set as 100%.
doi:10.1371/journal.ppat.1002049.g004
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rhIL-2 (50 IU/ml, Chiron) [62]. Seven days post activation, CD4+
PHA blasts were infected with various doses of HIV (from 1 to

100 ng/ml of p24). HIV infection was monitored by FACS

(Becton Dickinson) using intracellular HIV p24 staining (KC57

Ab, Beckman Coulter) or p24-Elisa (PerkinElmer).

Sequencing of the Gag-ARF encoding region from clonal
HIV-1 populations

Total DNA was extracted from PBMCs of HLA-B*07+ and

HLA-B*07- HIV+ patients using QIAampblood DNA minikit

(Qiagen). To analyze the diversity of HIV-1 proviruses in the

PBMCs of patients, a 267-bp fragment encompassing the Gag-ARF

coding sequence was amplified by nested PCRs as followed: 5 min

of initial denaturation at 94uC, 1 min at 94uC, 1 min at 57uC, and

1 min at 72uC for 30 cycles, followed by 7 min at 72uC. The outer

primer pair used was (59- ATC AAG CTT GCA CAG CAA GCA

GCA GCT GAC) and (59- CAG GAA CTA CTA GTA CCC TTC

AGG AAT TCG G), and the inner primer pair was (59- TAC CCT

ATA GTG CAG AAC ATC CAG GG) and (59- GAT AGA GTG

CAT CCA GTG CAT GCA). Samples were treated separately and

negative controls were systematically included. Purified PCR

products were cloned using a TOPO-TA cloning kit (Invitrogen).

Twenty clones per patient were isolated and gag-ARF inserts from

each clonal DNA plasmid were amplified by PCR using M13

primers and sequenced (Applied Biosystem).

HLA-B*07.02-peptide binding and stabilization assays
The capacity of the peptides to bind HLA-B*0702 was

determined using a classical HLA stabilization assays with the

TAP-deficient cell line T2 HLA-B*0702+ [37]. Briefly, cells were

incubated overnight with 100, 10, 1 and 0.1 mM of peptide in

serum-free medium at room temperature. Cells were then stained

with the anti-HLA-B*07 ME.1 antibody and HLA-B*07 surface

expression analyzed by FACS (Becton Dickinson). The concentra-

tion needed to reach 50% of the maximal fluorescence (as defined

with the R10TV peptide (CMV pp65 265RPHERNGFTV274) was

calculated (IC50). The relative affinity (RA) is the IC50 ratio of the

tested and R10TV reference peptide (the lower the relative affinity,

the stronger the binding). The HLA-A*02-restricted peptide S9L

(HIV-1 p17 77SLYNTVATL85) was used as negative control. To

monitor the capacity of the peptides to stabilize HLA-B*0702, T2-

HLA-B*0702 were cultured O/N at 26uC and pulsed the last 2 h

with peptide (100 mM) in presence of b2-microglubilin (Sigma,

1 mg/ml) and brefeldin-A (BFA, Sigma, 10 mg/ml). Cells were then

shifted to 37uC for 1 h, washed to remove unbound peptides and

incubated at 37uC in presence of BFA (0.5 mg/ml). Samples were

removed to 0uC at the indicated time points. Cells were then stained

at 4uC using the ME.1 antibody and analyzed by FACS. Data

(HLA-B*0702 expression) are expressed as MFI vs. time. The

capacity of each peptide to stabilize HLA-B*07 (t1/2)is deduced from

an exponential regression (one phase decay) using Prism software. A

constrain corresponding to the MFI value obtained for the

irrelevant peptide (S9L) at the latest time point was applied to the

plateaus. T10AM (pp65 417TPRVTGGGAM426) and T9ML (p24

48TPQDLNTML56) peptides were used as positive controls.

TAP-binding assay
The capacity of the peptides to bind TAP was measured in a

competitive binding assay as described previously [44]. Briefly,

microsomes were purified from Sf9 insect cells expressing human

TAP1–TAP2 complexes, pulsed with the iodinated reporter

peptide R9L (RRYNASTEL) at 300 nM, and loaded with a

dilution of competitor test peptides (0.1 to 1,000 fold molar excess

relative to radioactive reporter peptide). TAP affinities were

determined as the concentrations required to inhibit 50% of

reporter peptide binding (IC50). Results are expressed as 1/IC50

ratios and are mean values from three independent experiments.

The highest the 1/IC50 ratio, the highest the affinity.

In vitro proteasome digestions
Immunoproteasomes were isolated from T2.27mp cells (that

stably express all three immunosubunits) as previously described

[51]. Purified proteasomes were analyzed by SDS-PAGE. The yield

was calculated at 90–95%. The 27mer peptides encompassing

Q9VF/5D or Q9VF/5N were synthesized using standard Fmoc

method on an Applied Biosystems 433A automated synthesizer.

The peptides were purified by HPLC and analyzed by mass

spectrometry. Three nmol of peptides were digested in vitro using

1 mg of proteasomes (for 0.5, 1, 2, 4, 8 and 18 h) in 100 ml of buffer

containing 20 mM Hepes/KOH, pH 7.8, 2 mM magnesium

acetate and 2 mM dithiothreitol. Reactions were stopped by the

addition of trifluoroacetic acid to a final concentration of 0.3%. The

digestions were analyzed, by mass spectrometry (RP-HPLC ESI)

and the products were identified by MS/MS.

Statistical analysis
A standard two-tailed nonparametric Mann-Whitney U-test

(with P,0.05 considered significant) was used to perform statistical

comparison of HIV-1 proviral sequences frequencies using

statistical analysis Prism software (GraphPad).

Supporting Information

Figure S1 Amino acid and nucleotide sequences of Gag and

Gag-ARF. (A) Nucleotide and corresponding amino acid sequenc-

es of Gag (frame 1) and Gag-ARF (frame 3, bold) are depicted.

Nucleotide numbering is according to HIVHXB2 sequence. ATG

start and TGA stop codons of Gag-ARF are in bold and the Q9VF/

5D epitope is underlined. (B) Nucleotide and amino acid

sequences of Gag and Gag-ARF from HIVLAI, HIVNL-AD8,

HIVMN and HIVLAI-5D.5N strains.

(TIF)

Figure S2 Q9VF/5D and Q9VF/5N CTL cross-reactivity. The

cross-reactivity of Q9VF/5D- and Q9VF/5N-specific CTLs

(generated in HLA-B*0702 transgenic mice) was tested in IFNc-

ELISpot (A) and Cr51-release assays (B) using T1-B7 cells loaded

with a single dose (1 mg/ml) (A) or a titration (B) of Q9VF/5D or

Q9VF/5N peptides. A CMV-derived HLA-B*07-restricted epi-

tope (RPHERNGFTV, R10TV) was used as negative control.

Q9VF/5D- and Q9VF/5N-specific CTLs displayed similar

capacity to recognize cells loaded with their cognate peptides.

CTLs were also equally activated by the alternate peptides. Data

are mean values of triplicates (6SD) and representative of at least

three independent experiments.

(TIF)

Figure S3 Q9VF/5N encoding HIV strains are not recognized

by Q9VF-specific CTLs. As in Figure 2A using T1-B7 cells

infected with HIVLAI, HIVNL-AD8 or HIVMN (X4-tropic isolate

encoding Q9VF/5N). Infection rates were equivalent (around

30% of p24+ cells). Infected cells were then used in an IFNc-

ELISpot assay to activate Q9VF/5D- and Q9VF/5N-specific

CTLs. For each peptide, specific CTL lines were generated in

three different HLA-B*0702 transgenic mice and used in two

independent experiments. One representative experiment with

one CTL line is shown (mean values of triplicates6SD).

(TIF)
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