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Abstract One of the major unanswered questions in evolutionary biology is when and how the

transition between diderm (two membranes) and monoderm (one membrane) cell envelopes

occurred in Bacteria. The Negativicutes and the Halanaerobiales belong to the classically

monoderm Firmicutes, but possess outer membranes with lipopolysaccharide (LPS-OM). Here, we

show that they form two phylogenetically distinct lineages, each close to different monoderm

relatives. In contrast, their core LPS biosynthesis enzymes were inherited vertically, as in the

majority of bacterial phyla. Finally, annotation of key OM systems in the Halanaerobiales and the

Negativicutes shows a puzzling combination of monoderm and diderm features. Together, these

results support the hypothesis that the LPS-OMs of Negativicutes and Halanaerobiales are

remnants of an ancient diderm cell envelope that was present in the ancestor of the Firmicutes, and

that the monoderm phenotype in this phylum is a derived character that arose multiple times

independently through OM loss.

DOI: 10.7554/eLife.14589.001

Introduction
The bacterial envelope is one of the oldest and most essential cellular components, involved in key

housekeeping functions such as physical integrity, cell division, motility, substrate uptake and secre-

tion, and cell-cell communication (Silhavy et al., 2010). Yet, bacteria show substantial differences in

their cell envelope architectures, among which the most dramatic one is the presence of one (mono-

derm) or two (diderm) membranes (Sutcliffe, 2010). The study of cell envelope architecture has

been mostly narrowed to the Firmicutes and the Gammaproteobacteria as textbook examples of

monoderm and diderm bacteria, respectively. In Bacillus subtilis, teichoic and lipoteichoic acids are

embedded in a thick peptidoglycan wall, while in Escherichia coli a thin peptidoglycan layer is sur-

rounded by an outer membrane (OM) whose biogenesis and functioning involve a complex system

of synthesis and transport for LPS, lipoproteins, and OM proteins (OMPs) (Silhavy et al., 2010).

The transition between monoderm and diderm cell envelopes must have been a significant and

complex process in the evolutionary history of Bacteria. Two major hypotheses have been largely

discussed in the literature, which can be generally defined as diderm-first (Cavalier-Smith, 2006)
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and monoderm-first (Gupta, 2011; Lake, 2009) scenarios. The fact that the majority of phyla seem

to possess two membranes might favor the diderm-first scenario, although the actual diversity of cell

envelopes in Bacteria remains largely unexplored (Sutcliffe, 2010). However, the lack of a robustly

resolved phylogeny for Bacteria, notably the uncertainty on its root and the nature of the earliest

branches, has left the relationships between diderm and monoderm phyla unclear, and not allowed

to define in which direction and how many times this transition occurred.

In this respect, the Negativicutes (Marchandin et al., 2010) represent an interesting case: while

belonging phylogenetically to the classical monoderm Firmicutes, they surprisingly display a diderm

cell envelope with an OM and LPS (Delwiche et al., 1985; Vos et al., 2009). The Negativicutes have

been identified in various anaerobic environments, such as soil and lake sediments, industrial waste,

and animal digestive tract (Vos et al., 2009). Their best-characterized member is Veillonella, first

described in 1898 by Veillon and Zuber (Veillon and Zuber, 1898). Curiously, the very first observa-

tion and use of the term ’outer membrane’ has been based on studies of Veillonella (Bladen and

Mergenhagen, 1964). Veillonella is one of the most abundant components of the human oral flora

(Tanner et al., 2011), and a common inhabitant of the intestinal microbiome (van den Bogert et al.,

2013). Together with other gut microbes, it has been recently associated with maturation of the

immune system and partial protection of asthma in infants (Arrieta et al., 2015), but can also

develop into an opportunistic pathogen (Hirai et al., 2016). Several other Negativicutes members

such as Dialister, Selenomonas, Mitsuokella, and Anaeroglobus show increased incidence in oral

tract disease linked to biofilm formation (Griffen et al., 2012) and involvement in other infections

(Wang et al., 2015). Very little experimental data is available on the nature of the diderm cell enve-

lope of Negativicutes. In Selenomonas ruminantium the abundant OmpM protein appears to replace

the important function of Braun’s lipoprotein in anchoring the OM to the cell peptidoglycan through

a link with cadaverine (Kojima et al., 2010).

How the OM originated in the Negativicutes represents an evolutionary conundrum. Recently,

Tocheva and colleagues analyzed the sporulation process in the Negativicute Acetonema longum by

cryoelectron microscopy (Tocheva et al., 2011). They showed that, while an outer membrane forms

only transiently during sporulation in classically monoderm Firmicutes such as Bacillus subtilis, it is

eLife digest The cell envelope is one of the evolutionarily oldest parts of a bacterium. This

structure – made up of a cell wall and either one or two cell membranes – surrounds the bacterial

cell, maintaining the cell’s structure and providing an interface through which bacteria can sense

their environment and communicate.

Bacteria can be broadly classed based on the number of cell membranes that their envelope

consists of. Bacteria that have a single cell membrane are known as “monoderm”, whereas those

with two membranes are termed “diderm”. The number of membranes that bacteria have can affect

how well they resist antibacterial compounds. When, how and why bacteria switched between

monoderm and diderm cell envelopes are some of the major unanswered questions in evolutionary

biology.

The textbook example of a monoderm cell envelope can be found in bacteria called Firmicutes.

This group includes some notoriously harmful bacteria such as Staphylococcus, which can cause

conditions ranging from abscesses to pneumonia. However, some Firmicutes possess two cell

membranes. It was unclear how these unusual diderm Firmicutes developed a second membrane,

and how they are related to their monoderm relatives.

Antunes, Poppleton et al. set out to answer these questions by analyzing the information

contained in the thousands of bacterial genomes that have already been described. The results

indicate that Firmicutes originally had diderm envelopes, and that species with monoderm

envelopes arose independently several times through the loss of their outermost membrane.

Future work is needed to investigate the driving forces and the precise mechanism that led most

Firmicutes to lose their outer membrane. Also, further characterization of diderm Firmicutes will

provide key information about the biology of these poorly understood bacteria.

DOI: 10.7554/eLife.14589.002

Antunes et al. eLife 2016;5:e14589. DOI: 10.7554/eLife.14589 2 of 21

Research article Cell Biology Genomics and Evolutionary Biology

http://dx.doi.org/10.7554/eLife.14589.002
http://dx.doi.org/10.7554/eLife.14589


retained in A. longum leading to its diderm phenotype (Tocheva et al., 2011). This study provided

the first experimental support for the hypothesis that the bacterial OM could have initially evolved in

an ancient sporulating monoderm bacterium (Dawes et al., 1980; Errington, 2013; Vollmer, 2012).

Moreover, a phylogenetic tree of the essential Omp85 protein family for proteins insertion in the

outer membrane, although largely unresolved, did not show the Negativicutes as emerging from any

specific diderm phylum (Tocheva et al., 2011). The authors speculated that the OM of Negativicutes

was not acquired by horizontal gene transfer but was already present in the ancestor of Firmicutes

and would have been lost in the other members of this phylum, although it remained unclear when

and how many times this would have occurred (Tocheva et al., 2011). In contrast, a recent analysis

of the genome of the Negativicute Acidaminococcus intestini revealed that as much as 7% of the

BLAST top hits were from Proteobacteria, the majority of which corresponded to functions related

to OM biogenesis, concluding to a possible acquisition of the OM in Negativicutes by horizontal

gene transfer (Campbell et al., 2014).

Interestingly, the Negativicutes are not the only diderm lineage in the Firmicutes. The Halanaero-

biales are a poorly studied group of moderate halophilic, strictly anaerobic Firmicutes that were iso-

lated from saline environments such as lake and lagoon sediments, and oil reservoirs (Oren, 2006;

Roush et al., 2014). Similarly to the Negativicutes, they display a diderm-type cell envelope, with a

thin peptidoglycan and an outer membrane (Cayol et al., 1994; Zeikus et al., 1983; Zhilina et al.,

1992, Zhilina et al., 2012). When analyzing the first sequenced genome of a member of Halanaero-

biales, Halothermothrix orenii, Mavromatis and colleagues identified a number of OM markers, sug-

gesting the presence of an LPS-diderm cell envelope homologous to the one of Negativicutes and

other diderm bacteria (Mavromatis et al., 2009). In contrast to the few analyses on Negativicutes,

no experimental data are available on the characteristics of the OM in the Halanaerobiales.

The existence of two diderm lineages in the Firmicutes provides a fantastic opportunity to clarify

the monoderm/diderm transition in this major bacterial phylum. However, the origins and evolution-

ary relationships between the OM of Halanaerobiales and Negativicutes have been unclear. In fact,

no Halanaerobiales were present in the analysis of Tocheva (Tocheva et al., 2011). Mavromatis et al.

built a tree from the combined analysis of the genes coding for LPS, which showed a clustering of

Halanaerobiales and Negativicutes, leading the authors to propose a horizontal gene transfer of the

OM between these two lineages (Mavromatis et al., 2009). However, the sequenced genome of

only one member of Halanaerobiales and one of Negativicutes were available at the time, and the

LPS tree was largely unresolved (Mavromatis et al., 2009). Moreover, current phylogenies of the Fir-

micutes have been unclear with respect to the relationships between Negativicutes and Halanaero-

biales. The Negativicutes have been alternatively indicated as branching within Clostridia (Yutin and

Galperin, 2013; Mavromatis et al., 2009; Vesth et al., 2013) or at the base of Bacilli (Kuni-

sawa, 2015). The phylogenetic placement of Halanaerobiales remains also uncertain, as they have

been assigned either to Class Clostridia (Cayol et al., 1994), as a deep branch in the Firmicutes

(Mavromatis et al., 2009; Vos et al., 2009; Kunisawa, 2015), or left unresolved (Yutin and Gal-

perin, 2013). Finally, no detailed genomic analysis has been carried out to infer and compare the

characteristics of the cell envelopes of several Halanaerobiales and Negativicutes.

The large number of Negativicutes and Halanaerobiales genomes currently available prompted

us to carry out a global phylogenomic study. This allowed to robustly clarifying the relative place-

ment of Negativicutes and Halanaerobiales within the Firmicutes, to assess the evolutionary relation-

ships of their cell envelopes, and to perform in depth comparative analysis to understand the

characteristics of key OM-related processes in these two lineages. Our results provide robust sup-

port for an emergence of monoderm Firmicutes from diderm ancestors via multiple independent

losses of the OM.

Results

Electron microscopy of the diderm cell envelopes of Halanaerobiales
and Negativicutes
Although the presence of an OM has been previously shown by electron microscopy for members of

Negativicutes (e.g. Tocheva et al., 2011) and Halanaerobiales (e.g. Zhilina et al., 2012), these

images have been obtained separately and with different techniques, making difficult their
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comparison. We therefore obtained electron microscopy images of one representative of Negativi-

cutes (Megamonas rupellensis) and one of Halanaerobiales (Halanaerobium saccharolyticum). We

used transmission electron microscopy (TEM) following high-pressure freezing, freeze substitution,

plastic embedding and ultrathin sectioning of the samples (see Materials and Methods). The applica-

tion of high-pressure freezing in combination with appropriate freeze-substitution protocols facili-

tates the ultrastructural analysis of microorganisms and their membranes and also results in densely

and homogeneously packed cytoplasm (McDonald, 2007; McDonald et al., 2007a; Rachel et al.,

2010).

Ultrathin sections of high-pressure frozen cells of M. rupellensis and H. saccharolyticum confirmed

the presence of clearly diderm-type cell envelope architecture in both strains (Figure 1). In a cross

section from inside to outside, the densely packed cytoplasm of M. rupellensis is surrounded by a

cytoplasmic membrane followed by the periplasm with a thin peptidoglycan layer and an OM

(Figure 1A). Furthermore, pilus-like structures could be detected, as well as another electron dense

layer outside the OM, which might correspond either to the lipopolysaccharide (LPS) or an S-layer.

Thin sections of H. saccharolyticum also revealed a diderm cell envelope with a densely packed cyto-

plasm enclosed by a membrane surrounded by a relatively electron lucent periplasm so that the thin

line representing the peptidoglycan is clearly visible (Figure 1B). For both organisms, in some cases

the periplasm appeared inflated (Figure 1C and D), which was most likely caused by a preparation

artifact due to swelling of the cells in the freeze substitution process. This effect nevertheless

enabled us to observe the peptidoglycan much better as compared to cells without that artifact.

Robust phylum-level phylogeny of the Firmicutes supports distinct
origins of Halanaerobiales and Negativicutes
We gathered homologues of 47 ribosomal proteins from a local database of 205 Firmicutes taxa and

13 bacteria belonging to eight major phyla as outgroup (Materials and methods). We did not include

the Tenericutes in the analysis, because their reduced genomes and fast evolutionary rates are likely

to cause artifacts in deep phylogenies, but it is known that they phylogenetically belong to the Bacilli

(Davis et al., 2013). We assembled the 47 ribosomal proteins into a large concatenated dataset

(5551 amino acid characters) and carried out Bayesian analysis with a sophisticated site-heteroge-

neous model of protein evolution (CAT) that allows each site to evolve under its own substitution

matrix and is robust against tree reconstruction artifacts that frequently affect deep phylogenies

(Lartillot and Philippe, 2004). The Bayesian tree was well resolved at most nodes (Posterior Proba-

bilities (PP) > 0.95, Figure 2). Despite the weak signal and the stochastic errors frequently associated

to small proteins such as ribosomal ones, topology congruence tests on individual markers showed a

largely congruent phylogenetic signal, especially at high rank taxonomy level, justifying their com-

bined analysis (Figure 2—figure supplement 1 and Materials and methods). Maximum Likelihood

(ML) analysis of the same concatenated dataset and the site-homogeneous LG model (Le and Gas-

cuel, 2008) gave a largely consistent topology although it was much less resolved, especially at

deep nodes (Figure 2—figure supplement 2). With respect to previous analyses, the relative place-

ment of Negativicutes and Halanaerobiales in the Firmicutes phylogeny was robustly resolved (Fig-

ure 2). In fact, the Negativicutes branched within Class Clostridia, specifically related to

Peptococcaceae and other incertae-sedis clostridial families (PP = 1, Figure 2). This placement is

consistent with previous analyses, although performed with less taxa (Yutin and Galperin, 2013;

Mavromatis et al., 2009). As opposed to the diderm nature of Negativicutes, the members of Pep-

tococcaceae have monoderm phenotype (Vos et al., 2009) and no homologues of OM markers.

In contrast, the Halanaerobiales emerged as a distinct, well-supported, and deep-branching line-

age of the Firmicutes (PP = 0.99, Figure 2), robustly grouped with the order Natranaerobiales

(PP = 1, Figure 2). This clustering was also observed in a previous analysis performed with only one

member of Halanaerobiales and one of Natranaerobiales, and its position in the Firmicutes phylog-

eny was left unresolved (Yutin and Galperin, 2013). Natranaerobiales are a poorly known group of

moderately halophilic Firmicutes that appear monoderm under the microscope (Mesbah et al.,

2007) and have no homologues of OM markers.

In order to verify the robustness of the distinct branching of the two diderm Firmicutes lineages,

we ran AU tests on 12 topologies alternative to the Bayesian ribosomal protein concatenate tree,

where Negativicutes or Halanaerobiales were moved ’up and down’ the six nodes separating them

(N1-N6 for the topologies involving moving the Negativicutes; H1-H6 for the topologies
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Figure 1. Transmission electron microscopy of a member of Negativicutes and a member of Halanaerobiales. Ultrathin sections of high-pressure frozen

cells of the Negativicutes member Megamonas rupellensis (A,C), and the Halanerobiales member Halanaerobium saccharolyticum (B,D). A Gram-

negative like cell wall architecture is visible for both taxa (A,B): a cytoplasmic membrane (CM) surrounding the cytoplasm (C), a thin peptidoglycan layer

(PG), and an outer membrane (OM). Pili-like structures (P) are also visible in M. rupelllensis. In some cases and due to a preparation artifact caused by

swelling of the cells, the OM detaches from the IM creating an enlarged periplasmic space (PP) between two dividing cells (C,D). In these cases, the

peptidoglycan becomes more apparent as it is also the case for an electron dense surface coat (SC), which might represent lipopolysaccharide (LPS) or

a potential S-layer. Scale bars: 200 nm (A,C) and 100 nm (B,D).

DOI: 10.7554/eLife.14589.003
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Figure 2. Phylum-level phylogeny of the Firmicutes. Bayesian phylogeny of the Firmicutes based on a concatenation of 47 orthologous ribosomal

proteins comprising 5551 amino acid positions and the CAT+GTR+G4 model. Values at nodes represent Bayesian posterior probabilities. The scale bar

represents the average number of substitutions per site. For details on analyses, see Materials and methods.

DOI: 10.7554/eLife.14589.004

The following figure supplements are available for figure 2:

Figure supplement 1. Results of IC congruence test for the 47 ribosomal proteins.

DOI: 10.7554/eLife.14589.005

Figure supplement 2. Maximum likelihood phylogeny of the Firmicutes.

DOI: 10.7554/eLife.14589.006

Figure supplement 3. Results of AU test for 12 alternative topologies.

DOI: 10.7554/eLife.14589.007
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involving moving the Halanaerobiales Figure 2—figure supplement 3, Materials and methods and

Additional Data). Unfortunately, topology testing is currently only available in a Maximum Likelihood

framework with site-homogeneous models. Accordingly, these tests should reflect the poor resolu-

tion of the deep nodes of the maximum likelihood tree (Figure 2—figure supplement 2). Neverthe-

less, the Bayesian topology of Figure 2(H0N0) was the preferred one (Figure 2—figure supplement

3). Two alternative topologies only (N1 and N2) were not rejected by the data, where the Negativi-

cutes branched earlier in the Clostridia. Importantly, the two alternative topologies presenting a

clustering of Halanaerobiales and Negativicutes (H6 and N6) were strongly rejected by the data, as

well as all topologies where the Halanaerobiales were moved away from the root of the Firmicutes

tree (H2-H5) (Figure 2—figure supplement 3 and Additional Data), consistent with the separate ori-

gins of the two diderm lineages.

To sum up, our phylogenetic analysis shows that Halanaerobiales and Negativicutes have distinct

evolutionary origins, and are each related to different monoderm Firmicutes lineages.

The LPS-OM of Negativicutes and Halanaerobiales are homologous
structures with an ancient origin
In contrast to the distinct emergence of Halanaerobiales and Negativicutes in the Firmicutes, the

presence in their genomes of markers related to OM biogenesis and functioning (Campbell et al.,

2014; Mavromatis et al., 2009; Tocheva et al., 2011) clearly indicates that their diderm cell enve-

lopes are homologous structures. However, as discussed in the Introduction section, the specific evo-

lutionary relationships between the OMs of Halanaerobiales and Negativicutes have been unclear.

Interestingly, synteny analyses revealed a large genomic locus that is conserved between Halanaero-

biales and Negativicutes, and is not present in monoderm Firmicutes (Figure 3 and

Supplementary file 1). Other than LPS synthesis and transport (green), the genes belonging to this

genomic locus encode a number of cell envelope systems, such as OMP assembly (blue), motility

(light pink), OM-PG attachment (red), efflux (purple), but also a number of hypothetical proteins

(brown), and proteins not known to be specifically related to the OM (white).

Such clustering is unusual as in E. coli for example these genes are scattered in different regions

of the genome. However, the genes coding for the first four steps of LPS synthesis (lpxABCD) dis-

play a conserved synteny in diderm Bacteria at very large evolutionary distances, suggesting that

they have similar evolutionary histories (Opiyo et al., 2010). Accordingly, synteny is also conserved
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Figure 3. Conserved genomic locus for cell envelope components. Co-localization of the genes coding for LPS synthesis and transport, OMP assembly

and structural OMPs in the Negativicutes and the Halanaerobiales. Representatives of the 2 families of Negativicutes and the 2 families of

Halanaerobiales are shown (for full distribution and accession numbers see Supplementary file 1). Genes are colored according to their functional

class: LPS synthesis and transport (green), OMP assembly (blue), flagellum (light pink), OM-PG attachment (red), hypothetical (brown), efflux (purple)

(see text for discussion). White boxes indicate proteins not known to being related to the OM or non-conserved proteins whose connection with the

OM is unclear. The figure was obtained by EasyFig (Sullivan et al., 2011), where vertical lines represent BLAST hits with a cutoff of 0.0001.
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in Halanaerobiales and Negativicutes (Figure 3 and Supplementary file 1). We therefore searched

for these four core LPS genes (lpxABCD) in a local databank of 121 genomes representative of 30

major bacterial phyla (Materials and methods and Supplementary file 2). As compared to what

could be previously inferred from available genomic data (Sutcliffe, 2010; Opiyo et al., 2010), we

show the presence of homologues of the four core LPS coding genes in 26 major bacterial phyla,

eight of which evidenced for the first time: Thermodesulfobacteria, Fibrobacteres, Ignavibacteria,

Nitrospina, Chrysiogenetes, Cloacimonetes, Atribacteria, and Armatimonadetes

(Supplementary file 2). This suggests that LPS-diderm cell envelopes might be even more wide-

spread in Bacteria than currently thought, leaving only four major phyla that appear to lack the cod-

ing capacity for LPS: Thermotogae, Caldiserica, Chloroflexi/Thermomicrobia, and Actinobacteria

(Supplementary file 2). We assembled the four core LPS protein homologues into a concatenated

dataset (898 amino acid characters) also including Halanaerobiales and Negativicutes, and obtained

a Bayesian tree with the CAT+GTR+G4 evolutionary model (Figure 4, Materials and methods). In

agreement with their conserved synteny, congruence tests showed that these four core LPS genes

have a consistent phylogenetic signal at large evolutionary distances, in particular concerning the

monophyly of major bacterial phyla, justifying their combined analysis (Materials and methods and

Figure 4—figure supplement 1). Consistently with the notorious difficulty in resolving the global

phylogeny of Bacteria, the tree is not completely resolved. However, it is largely in agreement with

bacterial systematics, showing the monophyly of major phyla (Figure 4). This pattern indicates that

the core LPS genes were present in the ancestor of each of these diderm phyla, and that inter-phy-

lum horizontal gene transfers were surprisingly rare during bacterial evolution. Consistently, the

Halanaerobiales and Negativicutes also form a well-supported monophyletic cluster (PP = 1, Fig-

ure 4), with internal branching pattern matching their respective reference species phylogeny shown

in Figure 2.

These results indicate that the LPS-OM of Halanaerobiales and Negativicutes do not have distinct

origins, but rather that, similarly to the other main diderm bacterial phyla, they were inherited from

their common ancestor, which is also the ancestor of all Firmicutes, in agreement with

Tocheva et al., 2011. The inclusion of a second diderm lineage in our analysis allows us to

strengthen and extend this scenario, and to infer that present-day monoderm Firmicutes would have

emerged from diderm ancestors via not less than five independent losses of the OM (Figure 4B).

The two alternative topologies that were not rejected by AU tests do not affect the inference of a

diderm ancestor and imply four and three independent OM losses, respectively (Figure 2—figure

supplement 3 and Additional Data).

Outer membranes in a monoderm context
Our phylogenetic analyses suggest that the diderm cell envelopes of Halanaerobiales and Negativi-

cutes might be the remnants of ancient bacterial structures that were inherited from the Firmicutes

ancestor. In the absence of experimental characterization, exploration of genomic data can guide

inferences on the nature of these atypical diderm cell envelopes. To this aim, we investigated a few

key processes that are related to OM biogenesis and functioning and are shared between Negativi-

cutes and Halanaerobiales. Because OM markers frequently display low sequence conservation or

are part of large membrane-related protein families often preventing the building of robust phyloge-

nies, we helped tentative annotation by merging information obtained from homology to known

OM markers, the presence of specific protein domains, and genomic synteny. In this respect, the

presence of the conserved OM locus helped annotation greatly and provided important insights into

the unique nature of the cell envelopes of Negativicutes and Halanaerobiales, which show both spe-

cific characteristics as well as an intriguing combination of diderm and monoderm features

(Figure 5).

Diderm Firmicutes synthesize and transport LPS to the OM
LPS is a complex glycolipid exclusively present in the outer leaflet of the OM. Although LPS can be

very heterogeneous in bacteria, it has an overall conserved structure composed of a membrane-

anchored hydrophobic domain (lipid A, or endotoxin), an oligosaccharide (inner and outer core),

which can be extended with a distal polysaccharide (O-antigen) (Wang et al., 2010). The Lipid

A-core portion (known as ’rough’ LPS) and the O-antigen have independent pathways for their
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Figure 4. Phylogenetic tree of core LPS components. (A) Bayesian phylogeny based on a concatenation of orthologs of the four core components of

the LPS biosynthesis pathway (lpxABCD), comprising 898 amino acid positions and the CAT+GTR+G4 model. Values at nodes represent Bayesian

posterior probabilities. The scale bar represents the average number of substitutions per site. For details on analyses, see Materials and methods. (B)

Figure 4 continued on next page
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synthesis and transport. If O-antigen is produced, it is ligated to the lipid A-core by an integral

Figure 4 continued

Schematic representation of the Firmicutes phylum-level phylogeny from Figure 2, onto which putative losses of the OM are mapped (red crosses). See

text for discussion.

DOI: 10.7554/eLife.14589.009

The following figure supplement is available for figure 4:

Figure supplement 1. Results of IC congruence test for the 4 LPS core proteins.

DOI: 10.7554/eLife.14589.010
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Figure 5. Sketched diagram of inferred characteristics of the diderm Firmicutes cell envelope. The main processes discussed in the text are shown

schematically. Components that were not detected in the genomes of Negativicutes and Halanaerobiales are indicated with a dashed outline and grey

font.

DOI: 10.7554/eLife.14589.011

The following figure supplements are available for figure 5:

Figure supplement 1. Flagellar gene cluster of Negativicutes and Halanaerobiales.

DOI: 10.7554/eLife.14589.012

Figure supplement 2. Genomic context of the genes coding for flagellar rings in Halanaerobiales and Negativicutes.

DOI: 10.7554/eLife.14589.013

Figure supplement 3. Structure of the main Type IV pilus cluster in Negativicutes and Halanaerobiales.

DOI: 10.7554/eLife.14589.014
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membrane ligase, generating ’smooth’ LPS. Then, the transport of LPS to the OM is carried out by a

dedicated system (the Lpt pathway) and is independent from O-antigen presence (Wang et al.,

2010).

Both Negativicutes and Halanaerobiales have a complete set of genes for the synthesis of the

Lipid A moiety and inner core of LPS (Figure 5). These are clustered on their genomes (lpxACDIBK/

waaM/waaA/kdsABCD) (Figure 3 and Supplementary file 1). The lack of lpxH and the presence of

lpxI suggests that they use a recently-described alternative route for lipid A-core synthesis found in

members of various bacterial lineages (Metzger and Raetz, 2010). Moreover, the lpx gene cluster

also includes a fabZ homologue, which encodes an enzyme involved in a key step of fatty acid syn-

thesis and is also present in monoderm Firmicutes (Parsons and Rock, 2013). Similarly to what is

observed in E. coli, this fabZ homologue shows a conserved position on the chromosome next to

lpxC, which catalyzes the first committed step in lipid A biosynthesis and is subject of tight regula-

tion by the protease FtsH (Führer et al., 2006). Because FabZ acts on a substrate that is shared with

the lipid A pathway, its conserved genomic proximity with LpxC is a strong indication that these two

proteins interact in diderm Firmicutes, likely in a common process that regulates the phospholipid/

LPS balance of the OM as described in E. coli (Klein et al., 2014; Ogura et al., 1999).

Once synthesized, the lipidA-core is translocated through the IM by the flippase MsbA, which is

composed of a typical architecture including an N-terminal ABC-transporter transmembrane domain

and a C-terminal ATP-binding cassette domain (Ruiz et al., 2009). We found homologues with the

same domain arrangement within the LPS synthesis gene cluster (Figure 3 and Supplementary file

1). Although these are part of the very large protein family of ABC transporters that is also present

in monoderm Firmicutes, their genomic location suggests that they are likely bona fide MsbA func-

tional equivalents in diderm Firmicutes (Figure 5).

LPS is then matured and transported across the periplasm to the OM via the Lpt pathway

(Greenfield and Whitfield, 2012; Polissi and Sperandeo, 2014; Ruiz et al., 2009). LPS is extracted

from the IM by LptC and the LptFGB transporter, then mobilized to the OM by the chaperone LptA,

and finally assembled into the OM by LptDE. In all Negativicutes and Hanaerobiales, we identified a

conserved Lpt four-gene cluster next to the LPS synthesis genes (Figure 3 and Supplementary file

1). This includes a homologue of LptB, a single homologue of LptF/G, plus two proteins of ~200aa

containing OstA domains that may represent LptA and LptC (Figure 5). Apart from LptB, which

belongs to the large P-loop-NTPase superfamily, none of the remaining putative components are

present in monoderm Firmicutes. However, we could not find any clear homologues of the OM com-

ponents LptD/E in the gene cluster or elsewhere in the genomes. Either these are too distantly

related to being identified by sequence similarity, or Negativicutes and Halanaerobiales employ a

non-homologous system to address LPS to the OM.

Concerning O-antigen, no obvious homologues of its synthetic pathway, as well as its transport

through the IM and its ligation with the lipidA-core are present in the conserved gene cluster. More-

over, although we could identify some homologues in the genomes of Negativicutes and Halanaero-

biales, these are part of very large protein families and are shared with other pathways, making it

difficult to assess functional homology and infer with confidence if diderm Firmicutes are able to

make smooth LPS.

An ancient bi-functional Bam/Tam machinery?
The genomic locus also encodes homologues of two important components of the E. coli Sec-

dependent OM protein assembly pathway (Selkrig et al., 2014): one copy of the major component

of the Bam system (BamA), which is involved in protein translocation and OM assembly, and three

copies of the periplasmic chaperone Skp (Figure 3 and Supplementary file 1). However, we could

not find any homologues of the associated lipoproteins of the Bam complex (BamBCDE) in the gene

cluster nor elsewhere in the genomes of diderm Firmicutes, though it is known that these are not

well conserved outside Proteobacteria (Webb et al., 2012).

In Proteobacteria, BamA is part of the large Omp85-family with function in protein translocation

and OM assembly (Heinz and Lithgow, 2014; Selkrig et al., 2014). Members of this family have a

conserved C-terminal OM-associated surface antigen domain, and polypeptide transport–associated

(POTRA) domains of variable number that serve to interact with other proteins and accessory factors

(Webb et al., 2012). In Proteobacteria, a close paralogue of BamA was recently discovered, called
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TamA, which has one POTRA domain only, and was shown to be anchored to the OM and to form a

two-pathway system together with the IM protein TamB to promote T5SS autotransporter assembly

and secretion (Selkrig et al., 2012). Based on the large taxonomic distribution of TamB homo-

logues, it has been recently proposed that this protein was present very early in bacterial evolution,

and functioned with BamA, while TamA would have arisen more recently in Proteobacteria through

gene duplication (Heinz et al., 2015).

We found that all analyzed Negativicutes and Halanaerobiales genomes possess a single BamA

homologue, which is part of a gene cluster with a homologue of TamB, and up to three homologues

of the Skp chaperone (Figure 3 and Supplementary file 1). Such conserved synteny may indicate

functional linkage. Interestingly, the same gene arrangement (TamB/BamA/Skp) has been observed

in Spirochaetes (Selkrig et al., 2012), as well as in many other bacterial phyla (Heinz et al., 2015).

The inference of a potential TamB/BamA/Skp system in the ancestor of the Firmicutes strengthens

the hypothesis of an ancestral bi-functional role for BamA in both autotransporter secretion

(together with TamB) and OMP assembly (together with Skp) (Figure 5).

An ancestral system for peptidoglycan anchoring to the OM
The genomic locus also includes multiple homologues of OmpM (Figure 3 and Supplementary file

1), a protein that appears to replace the function of Braun’s lipoprotein in Negativicutes (see Intro-

duction). In S. ruminantium OmpM results from the fusion of a C-terminal porin domain and an

N-terminal S-layer homologous (SLH) domain with an unusual inward orientation towards the peri-

plasm where it drives the correct anchoring of the OM to the peptidoglycan layer via specific interac-

tions with the peptidoglycan-covalently-bound cadaverine (Kalmokoff et al., 2009; Kojima et al.,

2010).

We found that Halanaerobiales also contain in the conserved genomic locus up to three proteins

with an SLH domain (Figure 3 and Supplementary file 1). These likely represent distant homologues

of Negativicutes OmpM and are priority targets for experimental validation to confirm the presence

of an OmpM-dependent system for OM anchoring in this deep-emerging lineage of the Firmicutes.

Interestingly, there have been early reports of distantly related proteins with a domain arrangement

similar to that of diderm Firmicutes OmpM and a proposed similar function in Cyanobacteria

(Hansel et al., 1998) and in Thermotogae (Engel et al., 1992). OmpM-like proteins might therefore

represent a widespread and ancient PG-OM anchoring system (Figure 5), possibly ancestral to the

Braun’s lipoprotein-based system.

Monoderm appendages with diderm features
The monoderm-type flagellum has been mostly studied in B. subtilis (Mukherjee and Kearns, 2014).

It is very similar in overall structure and number of components to the flagellum of diderm bacteria,

to the exception of the absence of the rings P and L, the first spanning the periplasm and the second

spanning the OM, which are coded by flgH, flgI, and flgA and are totally absent in monoderm fla-

gella. Another difference is the absence of the rod cap and flagellar-specific peptidoglycan hydro-

lases, which allow insertion in the PG layer in diderm bacteria, and it is unknown how this process

takes place in the thick PG layer of B. subtilis (Mukherjee and Kearns, 2014).

Most Negativicutes and Halanaerobiales strains analyzed in this study are flagellated (Vos et al.,

2009) and have in fact a complete set of genes coding for the flagellum machinery, most of which

embedded in an operon arrangement that is distinctive of B. subtilis and other monoderm Firmi-

cutes, in particular the presence of the two rod assembly genes flgB and flgC (Figure 5—figure sup-

plement 1) (Mukherjee and Kearns, 2014). This indicates that the flagella of diderm Firmicutes are

closely related to those of their monoderm relatives. However, Negativicutes and Halanaerobiales

also possess homologues of the three genes coding for the P and L rings typical of diderm flagella,

flgH, flgI, and flgA, organized in a second conserved six-genes cluster that also contains the rod

components flgF, flgG, and flgJ (Figure 5—figure supplement 2 and Supplementary file 1). These

data suggest that Negativicutes and Halanaerobiales might possess flagella with chimeric mono-

derm/diderm features (Figure 5). They may represent ancestral motility structures that adapted to

loss of the OM in present-day monoderm Firmicutes lineages, possibly through a single excision of

the flgH, flgI, and flgA gene cluster from the conserved genomic locus. Consistently with this

hypothesis, we observed that representatives of the monoderm Firmicutes lineages that are most
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closely related to Halanaerobiales (i.e. Natranaerobiales: N. thermophilus) and Negativicutes (i.e.

Peptococcaceae: Therminicola potens) still retain an flgJ homologue (Figure 5—figure supplement

1) that may represent a remnant of the ancestral diderm system for rod insertion, which would have

been lost in B. subtilis and other monoderm flagellated Firmicutes.

A similar, although less clear-cut, scenario could be inferred for type IV pili. These have very simi-

lar components in diderm and monoderm bacteria, to the exception of PilQ (also called secretin),

which in diderm bacteria forms a channel that spans the OM and through which the pilus is assem-

bled (Melville and Craig, 2013). In Firmicutes, it is unclear how the pilus passes through the thick

peptidoglycan layer, and if a channel-forming protein is present (Melville and Craig, 2013). Both

Negativicutes and Halanaerobiales have a conserved genomic locus that presumably codes for all

essential components of a type IV pilus (Figure 5—figure supplement 3), consistently with the visu-

alization of a potential pilus structure by microscopy in Figure 1. The gene cluster is similar to those

present in their closely related monoderm relatives, to the exception of the inclusion of a homologue

of PilQ, the secretin, which is present in all Negativicutes and Hanalerobiales (Figure 5—figure sup-

plement 3 and Supplementary file 1). These data suggest that the type IV pili of Negativicutes and

Halanaerobiales may pass through the OM by a secretin-based mechanism similar to that of classical

diderm bacteria (Figure 5).

First suggestion of a Lol system in the Firmicutes
Lipoproteins are a major class of membrane proteins that play important physiological roles and are

widespread in bacteria (Buddelmeijer, 2015; Okuda and Tokuda, 2011; Sutcliffe et al., 2012;

Zückert, 2014). They are assembled via post-translational modifications after translocation through

the inner membrane in both diderm and monoderm bacteria. The lipid modification occurs on a

’lipobox’ signal near the N-terminus at the cytoplasmic membrane where the pre-lipoprotein diagly-

cerol transferase Lgt adds a diacylglycerol moiety. The lipobox signal is then cleaved off by the lipo-

protein signal peptidase LspA, which allows anchoring of the lipoprotein to the outer face of the

plasma membrane. A second lipoprotein N-acetyltransferase, Lnt, can add a third amide fatty acid

onto the N-terminus of lipoproteins. Tri-acylated lipoproteins are preferentially targeted to the OM

in diderm bacteria via the Lol machinery. This is a multiprotein system formed by an IM-spanning

ABC-like transporter component (LolCDE) that captures lipoproteins from the IM and delivers them

to the carrier LolA utilizing ATP hydrolysis. LolA then translocates the lipoprotein to the structurally

related LolB, which inserts it into the OM by an unclear mechanism.

While LolCDE are part of the large protein family of ABC transporters, the presence of LolA

homologues is indicative of a functional Lol system (Sutcliffe et al., 2012). We found no homologues

of LolA nor of LolB in any of the Negativicutes genomes, confirming previous reports

(Campbell et al., 2014). It is possible that Negativicutes do not address lipoproteins to the OM or

that they use a still unknown, non-homologous system. In contrast, we found homologues of LolA in

each of the analyzed Halanaerobiales genomes, which correlate to the presence of Lnt homologues

(Supplementary file 1). By looking at the genomic surroundings of these LolA homologues, we iden-

tified a conserved gene cluster in most Halanaerobiales genomes, which likely code for a complete

Lol system, notably the two ABC transporter permeases (LolC/E) and one ATPase (LolD)

(Supplementary file 1). We could not find any homologues of LolB in the genomic locus or else-

where in the Halanaerobiales genomes, although this protein is not well conserved in bacteria

(Sutcliffe et al., 2012). These analyses suggest that Halanaerobiales may harbor a functional Lol sys-

tem (Figure 5).

New OM-related proteins?
Finally, three genes encoding proteins with unclear annotation display a conserved synteny within

the large conserved genomic cluster (Figure 3 and Supplementary file 1) and are present in all

Negativicutes and Halanaerobiales genomes (Supplementary file 1), while absent from monoderm

Firmicutes. The first one belongs to COG0816, which is annotated as ’Predicted endonuclease

involved in recombination (possible Holliday junction resolvase in Mycoplasmas and B. subtilis)’. The

second one belongs to COG4372, which is annotated as ’Uncharacterized conserved protein, con-

tains DUF3084 domain’. The third one belongs to COG750, which is annotated as “Predicted mem-

brane-associated Zn-dependent proteases 1”, and is predicted to be in the OM by the PSORT
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prediction software (Materials and methods). These proteins might be involved in OM biogenesis

and functioning in diderm Firmicutes and are priority targets for experimental characterization.

Discussion
The origin of the cell envelope has represented one of the most fascinating questions in evolutionary

biology since decades, and has been widely discussed in the literature (Blobel, 1980; Cavalier-

Smith, 1987, 2006; Errington, 2013; Griffiths, 2007; Gupta, 2011; Koch, 2003; Vollmer, 2012).

The main issue mostly revolves around the question of how and when an OM originated in Bacteria,

and whether monoderm cell envelopes predate diderm cell envelopes or instead derived from

them. The complexity of the diderm cell envelope with respect to a perceived more ’rudimentary’

monoderm type, together with its higher resistance toward antibiotics, are arguments usually put

forward to propose that the OM is a relatively late invention in Bacteria (Koch, 2003; Gupta, 2011).

However, it is now evident that diderm phyla outnumber monoderm ones, and span a large fraction

of bacterial diversity, including early emerging lineages (Sutcliffe, 2010; Errington, 2013). Unfortu-

nately, the evolutionary relationships among monoderm and diderm bacterial phyla are presently

unclear, and do not allow to clarify OM origins. In this respect, the existence of a major bacterial

phylum –the Firmicutes- including both diderm and monoderm lineages, and whose evolutionary

relationships can be resolved, provides a unique opportunity to address the issue.

Our results provide support for the hypothesis that the Firmicutes are ancestrally diderm, and

that the monoderm envelope is a derived cell structure that originated through OM loss, at least in

this phylum. Although previously suggested (Tocheva et al., 2011), the inclusion of both Halanaero-

biales and Negativicutes in our analysis strengthens and extends this scenario. Our robust phylogeny

of the Firmicutes indicates that Halanaerobiales and Negativicutes form two distinct lineages, each

related to different monoderm relatives. This allows inferring that the OM was lost from three to five

times independently in the Firmicutes, and is therefore not a unique event in the history of Bacteria

that would have led to all present-day monoderm lineages, as proposed earlier (Cavalier-

Smith, 2006). The deep branching of Halanaerobiales and the still limited genomic coverage for this

group makes them a priority target for further exploration as their cell envelopes may retain ances-

tral characters.

Our results confirm that the LPS-OMs of Negativicutes and Halanaerobiales are homologous

structures that share a common origin and are evolutionarily related with those of other classically

diderm bacteria, therefore excluding convergence. Indeed, we show that the core enzymatic appara-

tus for producing LPS is even more widespread than previously thought, and that the LPS-OM is an

ancient feature that emerged once and was largely inherited vertically during bacterial evolution,

including in Halanaerobiales and Negativicutes. This is unusual for cytosolic enzymes, and underlines

the key importance of maintaining cell-envelope function. Clearly, the availability of genomic data

from an ever-wider sampling of bacterial diversity is sensibly changing perspective on the evolution

of bacterial cell envelopes. For example, by revealing the presence of an LPS-OM in the ancestor of

Deinococcus/Thermus we show that this phylum does not represent a monoderm-to-diderm inter-

mediate (Gupta, 2011), but rather that LPS was lost in some of their members, a process similar to

what likely occurred in Thermotogae (Cavalier-Smith, 2006). This indicates that, although having an

OM is surely advantageous in certain conditions, the diderm cell envelope is a flexible structure that

can be modified/simplified during evolution.

Although the presence of a large cluster coding for key OM functions might be seen as support-

ing the hypothesis of an acquisition of the OM of diderm Firmicutes via genetic transfer from a

diderm bacterium (Mavromatis et al., 2009; Campbell et al., 2014), our data weaken this hypothe-

sis. Given the distinct branching of the two diderm lineages in the Firmicutes phylogeny, and the

pattern of LPS inheritance similar to all other diderm bacterial phyla, the gene transfer hypothesis

would imply a complex scenario consisting of two independent transfers of a very large genomic

region, a first one to the ancestor of Halanaerobiales or to the ancestor of Negativicutes, and a sec-

ond one between these two ancestors, which would have had to coexist at the same time and in the

same environment. The sudden acquisition of an OM has been already discussed as mechanistically

complicated (Cavalier-Smith, 2006). This would have in fact required the dramatic modification of

an originally monoderm cell envelope through the concerted acquisition of several complex systems

at once, not to mention the replacement of the native inner membrane components of these
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systems or their coordination with the newly acquired ones. Moreover, not all OM systems involved

in OM biogenesis and function in Negativicutes and Halanaerobiales are part of the gene cluster,

and their detailed annotation suggests that their cell envelopes share characteristics with deep-

emerging bacterial phyla (e.g. the OmpM porin instead of Braun’s lipoprotein for OM tethering),

and present a peculiar combination of monoderm/diderm features (e.g. flagella, pili). The OM gene

cluster may therefore represent an ancestral genomic locus for OM–related functions, and it

becomes essential to obtain further experimental characterization of the OM of Halanaerobiales and

Negativicutes, as well as many other poorly explored deep emerging bacterial phyla. Nevertheless,

we have analyzed here only a few OM systems shared between Halanaerobiales and Negativicutes

in order to infer the nature of the ancestral diderm cell envelope in the Firmicutes. There are surely

additional components that are lineage-specific and may have been acquired from diderm bacteria

thriving in the same environment. This is an important future area of investigation, as it could inform

on how the presence of an OM in a Firmicutes background may have helped adaptation to specific

niches, including the human environment.

By which process the ancestral OM would have been lost multiple times independently in the

majority of present-day Firmicutes remains to be understood. It has been proposed that a spontane-

ous mutation leading to hypertrophy of the peptidoglycan layer would be sufficient to transform a

diderm into a monoderm, through disruption of the attachment of the OM, leading to its loss (Cava-

lier-Smith, 2006). Alternatively, we speculate that mutations may have affected the ancestral

OmpM, causing a de-regulation of OM-PG attachment. This transition may have been made easier

during the process of sporulation, where an OM is transiently formed and lost when the vegetative

cell matures. Tocheva et al. (2011) proposed indeed that the OM might have been lost in the Firmi-

cutes to increase sporulation and germination efficiency (Tocheva et al., 2011). A link between OM

loss and sporulation may explain why there is no current evidence of monoderm lineages within

other diderm phyla that do not sporulate. Further genomic and experimental data on the closest

monoderm relatives of Negativicutes and Halanaerobiales might provide key information on the pro-

cess of OM loss.

Our results suggest that the cell envelopes of diderm Firmicutes might be the remnants of an

ancient type of cellular structure, adding up to the ones found in the major diderm bacterial phyla.

Moreover, they seem to have ancestral and simpler cell envelope systems with respect to the well-

studied Proteobacteria. Halanaerobiales and Negativicutes are therefore promising new experimen-

tal models that will provide precious insights into the processes that have shaped the diversity not

only of diderm cell envelopes, but also of monoderm ones.

Materials and methods

Ultrastructural analysis
Negativicutes strain Megamonas rupellensis DSM 19944T was grown anaerobically at 37˚C to late

exponential phase on TGY broth (w/v; 3% tryptone, 2% yeast extract, 0.5% glucose, 0.05% L-cyste-

ine hydrochloride) as described previously (Chevrot et al., 2008). Halanaerobiales strain Halanaer-

obium saccharolyticum subsp. saccharolyticum DSM 6643T was grown anaerobically to late

exponential phase at 37˚C on a synthetic medium as described in (Zhilina et al., 2012). The ultra-

structure of the respective bacterial strains was determined via transmission electron microscopy

(TEM) following high-pressure freezing, freeze substitution, plastic embedding and ultrathin section-

ing of the samples. Due to a relatively long transportation time to the high-pressure freezer, cells

were pre-fixed with 2% glutaraldehyde. Afterwards, they were centrifuged for 10 min at 14.000 x g,

the supernatant was discarded and the resulting pellet was resuspended in 50ml growth medium.

From this cell suspension, 2ml were high-pressure frozen and freeze substituted as described in

(Peschke et al., 2013). For substitution, acetone containing 0.2% OsO4, 0.25% uranyl acetate and

5% (vol/vol) H2O was used. Embedding of the cells, sectioning and post-staining was carried out as

described in (Rachel et al., 2010). For negative staining of bacteria, 2% uranyl acetate was used for

contrast enhancement following pre-fixation with 2% glutaraldehyde (Rachel et al., 2010). Finally,

transmission electron microscopy was performed either on a JEOL JEM 2100, operated at 120 kV in

combination with a fast-scan 2k x 2k CCD camera F214 (TVIPS, Gauting, Germany) for negatively
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stained samples or on a Zeiss EM 912 equipped with an integrated OMEGA energy filter and oper-

ated at 80 kV in the zero-loss mode for ultrathin sections.

Phylogenetic analyses
We assembled a local databank of 205 complete genomes from a wide representative sampling of

Firmicutes, including 38 Negativicutes and 7 Halanaerobiales genomes available at the beginning of

this analysis (Supplementary file 1). Exhaustive HMM-based homology searches were carried out on

this genome databank by using the HMMER package (Johnson et al., 2010) and as queries the

HMM profiles of the complete set of 54 bacterial ribosomal proteins from the Pfam 29.0 database

(http://pfam.xfam.org, Finn et al., 2016). Additional searches with tblastn (Altschul et al., 1997)

were used to identify eventually misannotated homologues in some genomes. Because it is unclear

which bacterial phylum is closest to the Firmicutes, we included as outgroup 13 taxa representatives

of eight major bacterial phyla (2 Actinobacteria; 2 Cyanobacteria; 1 Deinococcus; 2 Proteobacteria;

1 Spirochaetes; 3 Flavobacteria/Bacteroidetes/Chlorobi; 2 Plactomyces/Chlamydia). Seven ribosomal

proteins (S2, S4, S14, S21, L25, L30, L33) that were absent from >50% of the considered genomes

or had paralogous copies making difficult the identification of orthologues were discarded from the

analysis. The remaining 47 single protein data sets were aligned with MUSCLE v3.8.31 (Edgar, 2004)

with default parameters, and unambiguously aligned positions were selected with BMGE 1.1

(Criscuolo and Gribaldo, 2010) and the BLOSUM30 substitution matrix.

Trimmed datasets were concatenated by allowing a maximum of 11 missing sequences per taxon

into a large character supermatrix (218 taxa and 5551 amino acid characters). PhyloBayes v3.3b

(Lartillot et al., 2009) was used to perform Bayesian analysis using the evolutionary model CAT

+GTR+G4. Two independent chains were run until convergence, assessed by evaluating the discrep-

ancy of bipartition frequencies between independent runs. The first 25% of trees were discarded as

burn-in and the posterior consensus was computed by selecting one tree out of every two . A Maxi-

mum likelihood (ML) tree was also calculated from the ribosomal protein concatenate with PhyML

v3.0 (Guindon et al., 2010) and the evolutionary model LG+G4 (Le and Gascuel, 2008) as suggested

by the Akaike Information Criterion implemented in ProtTest 3 (Darriba et al., 2011). Branch sup-

ports were estimated by standard nonparametric bootstrap based on 100 replicates.

In order to assess whether the ribosomal proteins carried a congruent phylogenetic signal, we

compared each of the 47 corresponding individual gene trees with the Bayesian ribosomal protein

concatenate tree by using the recently proposed ’Internode Certainty’ (IC) criterion, which measures

the existence of statistically supported conflicting splits between trees (Kobert et al., 2016). ML

phylogenetic trees of individual genes were inferred by IQ-TREE v1.3.12 (Nguyen et al., 2015) with

evolutionary model selected by optimizing the Akaike information criterion. In order to minimize the

negative impact on IC estimation of the large irresolution within most of the single gene trees

caused by the small number of aligned characters, all branches displaying <70% bootstrap support

were collapsed. IC values were then estimated by RAxML 8.2.8 (Stamatakis, 2006) and reported on

the concatenate tree.

Significance of 12 alternative tree topologies was assessed by the approximately unbiased (AU)

test (Shimodaira, 2002). Each alternative topology was obtained by moving specific nodes on the

Bayesian concatenate ribosomal protein tree by using Seaview v4.6 (Gouy et al., 2010). For each

tree topology, log-likelihood per character was estimated by PhyML v3.0 with the evolutionary

model LG+G4. In order to estimate the AU test p-values associated to each topology, the resulting

data were processed with CONSEL v0.20 (Shimodaira and Hasegawa, 2001) with default

parameters.

For the LPS core gene analysis, homologues were searched by using Pfam HMM profiles for

LpxA, LpxB, LpxC, and LpxD. The same approach as the one described above for ribosomal proteins

was used to assemble a 4-gene supermatrix of 898 unambiguously aligned amino acid characters,

which was analysed by PhyloBayes with the evolutionary model CAT+GTR+G4. Congruence among

the four markers was assessed by the IC criterion as described above.

Protein annotation
Given the small number of markers analyzed and their frequently limited conservation at the

sequence level, we followed a semi-manual procedure for annotation based on a combination of
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profile-based homology searches, protein domain identification, and genomic synteny. Profile-based

homology searches of specific OM markers were performed by using the HMMER package

(Johnson et al., 2010). Initial searches were conducted by HMM on the local Firmicute genome

databank by using standard Pfam domain models corresponding to a given protein of interest. The

top-scoring hits were used to build new HMM models and perform a novel search. This process was

iterated until no new hits were found. The resulting homologues were aligned and manually

inspected in order to confirm homology and to eliminate divergent, partial or non-homologous

sequences. Additional searches with tblastn (Altschul et al., 1997) were used to identify eventually

misannotated homologues in some genomes. Protein domains were inspected by querying the Con-

served Domain Database (CDD) at NCBI (Marchler-Bauer et al., 2015). Genomic synteny was inves-

tigated using the interactive web-based visualization tool SyntTax (Oberto, 2013). Local genomic

alignments were generated using EasyFig (Sullivan et al., 2011) with a BLAST cutoff E-value of

0.0001. For localization prediction, we used the PSORT v3.0 server (http://www.psort.org/psortb/,

Yu et al., 2010) with default settings for Gram-negative Bacteria. Protein families were assigned to

Clusters of Orthologous Groups by searching the COG database, which was downloaded from the

NCBI FTP server (ftp://ftp.ncbi.nih.gov/pub/wolf/COGs/) (Tatusov et al., 2000).

Note
While this manuscript was in the last phase of revision, Tocheva et al. published a Perspective paper

(Tocheva, EI, Ortega, DR & G Jensen. 2016. Sporulation, bacterial cell envelopes and the origin of

life. Nature Reviews Microbiology 14, 533-542. doi:10.1038/nrmicro.2016.85). It extends the discus-

sion of their previous hypothesis (Tocheva et al., 2011) by focusing on the origin of the outer mem-

brane, and prompts for further genomic and evolutionary analysis, which is timely addressed in the

present work.
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