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ABSTRACT 

An infant botulism clinical course was characterized by several relapses despite therapy 

with amoxicillin and metronidazole. Botulism was confirmed by identification of 

botulinum toxin and C. botulinum in stools. A C. botulinum A2 strain resistant to 

penicillins and with heterogeneous resistance to metronidazole was isolated from stool 

samples up to 110 days after onset. Antibiotic susceptibility was tested by disk agar 

diffusion and minimum inhibitory concentrations were determined by Etest. Whole 

genome sequencing allowed detection of a gene cluster composed of blaCBP for a novel 

penicillinase, blaI for a regulator, and blaR1 for a membrane bound penicillin receptor in 

the chromosome of the C. botulinum isolate. The purified recombinant penicillinase was 

assayed. Resistance to β-lactams was in agreement with the kinetic parameters of the 

enzyme. In addition, the β-lactamase gene cluster was found in three C. botulinum 

genomes in databanks and in two out of 62 genomes of our collection, all the strains 

belonging to group I C. botulinum. This is the first report of a C. botulinum isolate 

resistant to penicillins. This stresses the importance of antibiotic susceptibility testing 

for adequate therapy of botulism. 
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INTRODUCTION 

Botulinum neurotoxins (BoNTs) are the most potent toxins known and are responsible 

for severe neurological disorder in man and animals. Botulism is acquired by ingestion 

of preformed BoNT in food (foodborne botulism), or after intestinal (infant botulism, 

adult intestinal toxemia botulism) or wound (wound botulism) colonization and in situ 

BoNT production [1]. Infant botulism occurs between two weeks and one year of age 

and results from ingestion of Clostridium botulinum spores or bacteria, subsequent 

clostridial growth and toxin production in the intestine, and finally passage of BoNT 

through the intestinal mucosa to motornerve endings. Infant botulism is common in 

some countries and certain states of the USA [1-3] but is rarely reported in Europe [4]. 

In France, foodborne botulism is the main form of the disease whereas only a few cases 

of infant botulism have been identified [5]. 

 BoNTs are divided into seven toxinotypes (A to G) according to their 

immunological properties and in numerous subtypes based on amino acid sequence 

variations [6]. A new BoNT type called H has been reported but was characterized as an 

A/F hybrid [7, 8]. BoNTs are produced by heterogeneous groups of Clostridium including 

C. botulinum and atypical strains of other species such as Clostridium baratii and 

Clostridium butyricum [6]. Like other Clostridium species and anaerobes, C. botulinum is 

intrinsically resistant to aminoglycosides, to sulfamethoxazole and trimethoprim but 

remains susceptible to other drug classes [9, 10]. However, only a small number of 

strains have been tested for susceptibility to antibiotics [9, 10]. Antibiotics are 

frequently used for presumed sepsis [11, 12]. but might exacerbate botulinum 

symptoms [4, 11]. When indicated, β-lactams are the antibiotics of choice for clostridial 

infections [12]. We report the characterization, to the best of our knowledge, of the first 

C. botulinum strain resistant to β-lactams and responsible for an infant botulism case, 
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albeit other C. botulinum strains isolated before contained uncharacterized β-lactamase 

gene (see below). The isolate also displayed diminished susceptibility to metronidazole. 

 

MATERIALS AND METHODS 

Ethics Statement 

All experiments were performed in accordance with the French and European 

Community guidelines for laboratory animal handling (agreement of laboratory animal 

use n° 2013-0116).  

DNA Preparation, Recombinant DNA Techniques, Protein Preparation 

Total DNA was isolated from C. botulinum as described [13]. DNA extraction from stool 

samples was performed with DNA stool kit (Qiagen) according to the manufacturer's 

recommendations. Detection of C. botulinum in biological samples was performed by 

SYBR-green real-time PCR with specific primers as previously described [13]. The blaCBP 

gene was amplified with primers P2251 (GGATCCATGAAAAAAATAGTAAACTC) and 

P2252 (GTCGACTATTTCCTGGTGTTAATAAA) adding BamHI and SalI sites (underlined), 

and cloned into pET28a. The resulting plasmid introduced into E. coli BL21(DE3) was 

verified by DNA sequencing. The C. botulinum penicillinase (CBP) with a N-terminal 6-

His tag was produced and purified as described [14]. 

Toxin Detection 

Toxin detection and titration in biological samples or in culture supernatants were 

performed by the mouse bioassay with specific neutralizing antibodies [15]. Half ml of 

ten-fold serial dilutions of samples in 50 mM phosphate buffer (pH 6.5) containing 1% 

gelatin were injected intraperitoneally into Swiss mice weighing 20-22 g (Charles River).  

Whole Genome Sequencing (WGS) 
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The WGS libraries performed using the NEBNext Ultra DNA Library Prep kit for Illumina 

(New England Biolabs) were sequenced on MiSeq or HiSeq2000 machines (Illumina). 

Sequence files were generated using Illumina Analysis Pipeline version 1.8 (CASAVA). 

After quality filtering, reads were assembled using CLC software version 4 (CLC Bio). 

 

RESULTS 

Case Report 

On February 21st 2013, a 2-month-old girl was hospitalized after 24 h of progressive 

floppiness and feeding difficulties. She rapidly developed a profound hypotonia with 

absent suckling reflex, lethargy, and required mechanical ventilation. Ionogram, 

cerebrospinal fluid, electroencephalography, and encephalic magnetic resonance 

imaging were normal. Three Hz repetitive stimulation did not show decremental muscle 

response and there was no clinical improvement with anticholinesterasics, ruling out a 

post-synaptic myasthenic disorder. Myopathy was suggested by initial electromyogram 

(EMG) findings but a muscle biopsy was normal. The symptoms persisted and a second 

EMG 17 days later revealed spontaneous activity and early nerve regeneration 

potentials suggesting a disorder associated with acute nerve denervation and 

regeneration, but intravenous immunoglobulins had no obvious effect. Although no 

facilitation was observed on high frequency repetitive stimulation under sedation (20 

and 50 Hz), botulism was investigated due to the descendent progressive tetraplegia 

with predominance of facial, ocular and bulbar paralysis, mydriasis and persistent 

constipation. The first stool and serum samples were taken 25 and 28 days after the 

onset of clinical signs (Figure and Table S1 in the Supplementary Appendix). The baby 

received amoxicillin (50 mg/Kg, 3 times per day intravenously) and metronidazole (40 

mg/Kg in 3 intravenous administrations per day) during 10 days. After 34 days of 
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hospitalization she improved and was discharged. Eleven days later she was re-

hospitalized for hypotonia, absence of suckling, respiratory distress, closed eyes and 

was treated with 10 mL of trivalent (anti ABE) equine antitoxin (Behring) associated 

with amoxicillin and metronidazole at the same posology for eight days by intravenous 

route and two additional days by oral route. A rapid improvement was observed two 

days after the anti-toxin and antibiotic administration. The baby was fed with women 

milk and received probiotics (Biogaïa® 5 drops a day, Lactéol® 2 bulbs a day) during 15 

days. Constipation and suckling difficulties persisted 74 days after the onset but her 

global clinical status clearly improved. Nevertheless, she was again hospitalized due to 

the persistence of BoNT and C. botulinum in stool samples (see below). The baby 

received vancomycin (15 mg/Kg in 3 oral administrations per day) during 10 days, and 

recovered gradually of her generalized weakness. The main steps of the clinical course, 

chronology of the biological samples and BoNT/A titration and PCR detection of C. 

botulinum A in stool samples are summarized in Figure and Table S1 in the 

Supplementary Appendix. BoNT/A was detected in stools at variable concentrations 

according to the clinical phases with high levels during the two relapses but not in 

serum. C. botulinum A was found in stools up to 114 days after the onset of the 

symptoms (Figure and Table S1 in the Supplementary Appendix) 

Antibiotic Susceptibility of C. botulinum Strains 

The six C. botulinum strains isolated from stool samples (Figure and Table S1 in the 

Supplementary Appendix) produced BoNT/A. Whole genome sequencing of these 

strains indicated that they were identical. The strains were assigned to subtype A2 

based on the deduced amino acid sequences of bont/A genes and to the multi locus 

sequence typing (MLST) profile 22 [16]. Strain 224-13 was selected for further studies. 
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 In addition to C. botulinum intrinsic resistance to trimethoprim/sulfamethoxazole 

and aminoglycosides [17] the strain 224-13 was resistant to penicillin G, amoxicillin, 

ticarcillin, mezlocillin, and cephalothin but remained susceptible to other antibiotics 

including vancomycin (Table 1). The MICs against strain 224-13 confirmed high-level 

resistance (MIC >256 µg/mL) to penicillins and to cephalothin. Moreover, inducible, 

heterogeneous, and reversible resistance to metronidazole was observed in strain 224-

13 as already described for C. difficile [18]. Colonies grew inside the inhibition zone after 

48 h of incubation with MICs ranging from 1 to >256 µg/mL. It is noteworthy that albeit 

the agar disk diffusion method is not recommended by the CLSI (Clinical & Laboratory 

Standards Institute), the diffusion method with metronidazole disk (5 µg disk) allowed 

the detection of metronidazole heterogeneous resistance in C. difficile [18] as well as in 

C. botulinum (this study). A nim nitroimidazole reductase gene was found in the genome 

of 224-13 as in most C. botulinum group I strains which remain susceptible to the drug. 

However, this gene, when expressed, is responsible for high-level resistance to 

metronidazole and no typical promoter was found upstream indicating that it was not 

involved in heterogeneous resistance. Indeed, nim-independent metronidazole 

resistance has already been observed in other bacteria such as Bacteroides and C. 

difficile [18, 19]. Heterogeneous resistance to metronidazole might lead to recurrence or 

clinical failure as observed in C. difficile infections [20]. 

C. botulinum 224-13 Contains a Functional β-lactamase Gene Cluster 

Blast analysis of strain 224-13 genome revealed the presence of a gene for a putative β-

lactamase related to that of Bacillus cereus (54% identity), Bacillus licheniformis (48%), 

and Staphylococcus aureus (40%) which was assigned to a novel family of class A 

enzymes designated CBP for C. botulinum penicillinase. Two genes related to the 

regulatory genes blaI and blaR1 in B. cereus and S. aureus [21] were found downstream 
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from blaP. In contrast to the cluster organization in these two species, in which the β-

lactamase gene is transcribed in opposite direction to that of blaI and blaR1, the genes 

from strain 224-13 were in the same orientation. The base composition of the gene 

cluster was 27.5% similar to those of the chromosome of C. botulinum (mol% G+C 28%) 

and C. butyricum (29%). 

 The blaCBP gene cloned into E. coli conferred resistance to penicillins and 

susceptibility was restored by addition of β-lactamase inhibitors clavulanic acid and 

sulbactam (Table 2). Benzylpenicillin was the best substrate for the enzyme with a high 

catalytic efficiency (kcat/Km, 2907 mM−1 s−1). CBP also hydrolyzed cephalothin with a 

catalytic efficiency 2.4-fold lower than that of benzylpenicillin, but was not active on 

ceftazidime and cefoxitin even at a high enzyme concentration (1 μM). Aztreonam was 

very weakly hydrolyzed and no activity was observed against imipenem (Table 3). 

These data confirmed that blaCBP was responsible for β-lactam resistance in C. botulinum 

and were in agreement with the resistance phenotype.   

The β-lactamase Gene Cluster is Present in Various C. botulinum Strains 

In strain 224-13, the β-lactamase gene cluster was located in a 433 kb contig that also 

carried genes for ribosomal protein S5, and for RNA polymerase sigma factor indicating a 

chromosomal location. We did not find any known insertion sequence nor any prophage in 

the 200 kb vicinity of the cluster. Blast analysis of twenty complete genomes of C. 

botulinum in GenBank (last access, September 2015) with the blaCBP, blaI, and blaR1 

sequences from 224-13 showed that C. botulinum Kyoto F [22] and H04402 065 [23] 

contained identical or closely related clusters (Table 4 and Figure S1 in the 

Supplementary Appendix). The cluster was also found in one additional strain with 

partially sequenced genome, C. botulinum F CDC54085. In addition, screening of a total 

of 62 genomes in our strain collection revealed that C. botulinum 301-13 responsible for 
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foodborne botulism and 126-07 isolated from wound botulism also harbored the 

chromosomal cluster, and both isolates were resistant to penicillins (Table S2 in the 

Supplementary Appendix). 

The genomic environment of the cluster was studied by comparing the flanking 

regions from greA to nifE of C. botulinum 224-13 with those of strains of various toxin 

types (Figure S2 in the Supplementary Appendix). The ca. 20 kb region was identical in 

224-13 and Kyoto F, and had 99.8% identity between 125-07 and H004402 065. All the 

strains had two conserved regions (CR): CR left (CRL) from greA to ORF1, and CR right 

(CRR) between araC and nifE. While Loch Maree only possessed these two regions, other 

strains had insertion of a Type I DNA restriction modification system composed of hsdM, 

S, and R genes between the two CRs. Subsequent insertions likely occurred in two loci: i) 

of various ORFs of unknown function between hsdS and R and ii) between restriction 

modification system and the CRR, the β-lactamase cluster and two upstream genes tfoX for 

the C-terminal portion of competence protein TfoX and gyrI for a DNA gyrase inhibitor, and 

downstream a gene for part of a transposase. In strain Hall the gene cluster was replaced by 

pcrA for a putative ATP-dependent DNA helicase, and the same sequence was present in C. 

botulinum ATCC 19397 and ATCC 3502, also of A1 subtype.  

 

DISCUSSION 

Infant botulism is characterized by intestinal colonization of infants less than 12 months 

of age by C. botulinum and in situ toxin production. Excretion of BoNT and C. botulinum in 

the feces and, more rarely, the presence of BoNT in the serum are common features of 

the disease. The persistence of C. botulinum in stool samples usually varies from 2 to 4 

months [24, 25]. Prolonged fecal excretion of C. botulinum type A up to 5 months after 

the onset of clinical symptoms has been reported [26]. In the present case, C. botulinum 
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was detected in the stools up to 110 days (Figure and Table S1 in the Supplementary 

Appendix). BoNT/A was present in the stool samples concomitantly with C. botulinum 

but at varying levels which might reflect phases of clostridial growth and toxin 

production. The BoNT levels in stools could be related to the various clinical phases 

accompanied by constipation.  

 The origin of this infant botulism case has not been identified. The baby did not 

receive any food known to be at risk for botulism, such as honey [25], but lived close 

(about 200 m)  to a thermal power station that intermittently releases sprays of vapour 

and smoke/dust. The environment seems to be the likely source of contamination by 

dispersion of C. botulinum spores in the environment of the baby, as previously reported 

in Finland where C. botulinum was recovered in household dust [26] . 

The most striking feature was resistance of the C. botulinum A2 isolates to 

penicillins and metronidazole which accounts for the failure of intestinal elimination of 

C. botulinum by the first two treatments with a combination of both drugs. After 

vancomycin treatment from day 76 to 84, C. botulinum and BoNT/A were still detected 

up to day 114 in the stool samples (Figure and Table S1 in the Supplementary 

Appendix). To the best of our knowledge, this is the first report of β-lactam resistance in 

C. botulinum. A previous study showed that, like all other Clostridium species, C. botulinum 

strains from infant botulism or wound botulism are as susceptible as environmental 

strains to all the antibiotics tested except sulfamethoxazole/trimethoprim and 

aminoglycosides [10]. In contrast, penicillin resistance has been reported in C. butyricum 

from neonatal necrotizing enterocolitis [27, 28] and up to 15% of the strains are 

resistant [29]. The MICs of penicillin G and piperacillin against C. butyricum have been 

reported to raise up to 64 µg/mL [29], whereas a much higher level of resistance (>256 

µg/mL) was observed for the C. botulinum strains in this study. Other clostridia may 
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produce ß-lactamase  including Clostridium clostridioforme, Clostridium ramosum, and  

Clostridium innocuum but the action of ß-lactamase inhibitor and substrate profile of 

hydrolysis were different [30, 31]. 

 Whole genome sequencing of the C. botulinum isolates from the infant botulism 

case indicated the persistence of a single isolate and showed the presence of novel β-

lactamase gene blaCBP and of downstream genes blaI, and blaR1 homologous to those of 

Bacillus spp. and S. aureus [21, 29]. Cloning of blaCBP from strain 224-13 into E. coli and 

kinetic of CBP (Table 3) confirmed that the gene is responsible for resistance to 

penicillins and that CBP belongs to a novel class A β-lactamase. Overall, kinetic 

parameters were in agreement with the resistance phenotype of the hosts indicating 

that, as with class A enzymes, penicillin G was the best substrate. However, the 

penicillinase activity was approximately 30-fold lower than that of TEM-1 class A β-

lactamase, but similar to that of Streptomyces albus G serine β-lactamase [32] 

The deduced sequences of blaCBP, blaI, and blaR1 were more closely related to 

those of the orthologues in C. butyricum than to those in B. cereus and to a lower extent 

in S. aureus (Table 4). This suggests that the genes could derive from a common ancestor 

with a distinct evolution in Clostridium and in other Gram-positive bacteria. This is 

further supported by the base composition of the C. botulinum bla gene cluster which is 

similar to that of Clostridium genomes and distinct from those of Bacillus and 

Staphylococcus. In neurotoxigenic C. butyricum, the β-lactamase gene was found to be 

located on a linear megaplasmid (>610 kb) [33] a localization which might support its 

wide distribution in this species although transfer of the plasmid has not yet been 

documented. In contrast, the penicillinase gene cluster was located in the chromosome 

of strain 224-13 and of the other penicillin resistant C. botulinum A strains.  
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Interestingly, the β-lactamase cluster was found in C. botulinum strains of various 

BoNT type and subtypes that all belong to group I. The most likely evolution is 

acquisition by Loch Maree of the DNA restriction modification system leading to strains 

429-13, 1430-11, and 1141-11 followed by acquisition of the penicillinase gene cluster by 

Kyoto F, 224-13, 301-13, H04402 065, and 126-07 while Hall acquired pcrA. Insertion of the 

cluster or of pcrA occurred upstream from araC which could constitute a hot spot for 

integration in C. botulinum group I strains which encompasses C. botulinum A and proteolytic 

C. botulinum B and F strains [6]. The cluster is flanked downstream by a truncated 

transposase gene and upstream by genes tfoX and gyrI which encode putative proteins 

involved in DNA transformation and rearrangement, respectively. It can thus be hypothesized 

that the gene cluster was part of a mobile DNA element. This evolution scheme is only 

speculative, more complex DNA rearrangements could have occure. For example, acquisition 

of the penicillinase gene cluster could be an older event and this cluster could have been 

replaced by pcrA such as in Hall strain. 

In conclusion, we report an infant botulism case with prolonged excretion of a C. 

botulinum A2 strain resistant to penicillins and to low levels of metronidazole. 

Antibiotics could be useful to eradicate C. botulinum from the intestine but are 

considered to be responsible for exacerbation of the symptoms [4, 11]. This observation 

stresses that, when antibiotics are indicated, susceptibility of C. botulinum should be 

investigated for appropriate therapy of patients with botulism.  
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Table 1. Antibiotic resistance of C. botulinum strain 224-13. 

Antibiotic 
Clinical categorization MIC (µg/mL) 

by disk diffusion* by Etest† 

Penicillin G  R >256 

Amoxicillin  R >256 

Amoxicillin/clavulanic acid  S       1.5 

Ticarcillin   R   ND 

Mezlocillin  R   ND 

Piperacillin ND >256 

Piperacillin/Tazobactam ND       3 

Cephalothin  R >256 

Cefoxitin  S    ND 

Cefotaxime  S        1.5 

Imipenem  S   ND 

Moxalactam  S   ND 

Clindamycin  I   ND 

Erythromycin  S   ND 

Rifampicin  I   ND 

Vancomycin  S   ND 

Chloramphenicol  I   ND 

Moxifloxacin  S   ND 

Kanamycin   R   ND 

Trimethoprim/sulfamethoxazole  R   ND 

Metronidazole HR   ND 
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HR, heterogeneous resistance; I, intermediate; ND, not determined; R, resistant; S, 

susceptible. 

*Antibiotic susceptibility was tested by disk (Bio-Rad) diffusion on Wilkins-Chalgren agar 

according to the standards of the Comité de l'Antibiogramme de la Société Française de 

Microbiologie (http://www.sfm-microbiologie.org).  

†The minimal inhibitory concentrations (MICs) of antibiotics were determined by Etest 

(bioMérieux) according to the manufacturer's recommendations. 
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Table 2. MICs of β-lactams against E. coli. 

Antibiotic 

MIC ( µg/mL)* against : 

E. coli BL21 (DE3) harboring 

pET28 pET28ΩblaCBP 

Amoxicillin   2   16  

Amoxicillin/clavulanic acid   2     2 

Ampicillin    0.5   32  

Ampicillin/sulbactam   1     2  

Piperacillin   1     8 

Piperacillin/tazobactam   1     1 

Ticarcillin   1 128  

Ticarcillin/clavulanic acid   1     1 

Cephalothin   1     2 

Cefotaxime   0.015     0.015 

*MICs were determined by microdilution according to the CLSI guidelines [34] 
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Table 3. Kinetic parameters of purified CBP β-lactamase for hydrolysis of β-lactams.* 

Substrate KM (µM) kcat (s
-1) 

kcat/KM 

(s-1 mM -1) ����103 

Relative 

kcat/KM 

Penicillin G 160 ±   50 465.2 ±   42.2 2.9 ± 1.2     100.0 

Ticarcillin 140 ±   30 256.4 ±   34 1.8 ± 0.6       62.9 

Ampicillin 530 ± 170 1 326.4 ± 317.3 2.5 ± 1.4       86.0 

Amoxicillin 810 ± 150 215.8 ±   60.3 0.3 ± 0.1         9.2 

Cephalothin 140 ±   20 169.7 ±   17.1 1.2 ± 0.3       41.6 

Cefoxitin NA ND NA NA 

Ceftazidime NA ND NA NA 

Aztreonam† NA >18.2 ±     2.7 NA NA 

Imipenem NA ND NA NA 

NA, not applicable; ND, not determined. 

*Data are the means of three independent determinations. Relative values were calculated 

according to that obtained for benzylpenicillin which was set at 100.  

†kcat was estimated at high aztreonam concentration (1.4 mM) and did not enable to determine 

the KM.  

  



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 

 

 

Table 4. Percent identity between Bla proteins versus those from strain 224-13. 

Strain CBP BlaI BlaR1 

C. botulinum A2 Kyoto F 100 100 100 

C. botulinum A2 301-13 98 98 96 

C. botulinum A5 H04402 065 98 98 98a 

C. botulinum A5 126-07 98 98 96 

C. butyricum 60 E.3 71 67 67 

B. cereus VD078/VDM022/CD160 54 48 29* 

B. licheniformis ATCC 14580 48 43 33 

S. aureus DAR3892 40 42 34 

CBP, Clostridium botulinum penicillinase  

The accession numbers of the sequences of strain 224-13 are KP718480 (blaCBP), 

KP718481 (blaR1) and KP718482 (blaI). The CBP sequence has been submitted to 

http://www.ncbi.nlm.nih.gov/projects/pathogens/submit_beta_lactamase/. 

*Identity of partial amino acid sequences. 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT
 
 
 
 

 

 

 

LEGEND TO THE FIGURE 

Figure. Patient’s samples and therapy.  

Grey box, hospitalization; red line, antibiotic treatment. Antibiotics: AMX, amoxicillin; 

MTR, metronidazole; VA, vancomycin. MLD, mouse lethal dose. 
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