V. Deretic, T. Saitoh, and S. Akira, Autophagy in infection, inflammation and immunity, Nature Reviews Immunology, vol.7, issue.10, pp.722-759, 2013.
DOI : 10.1038/nri3532

J. Huang and J. Brumell, Bacteria???autophagy interplay: a battle for survival, Nature Reviews Microbiology, vol.3, issue.2, pp.101-115, 2014.
DOI : 10.1038/nrmicro3160

D. Rubinsztein, P. Codogno, and B. Levine, Autophagy modulation as a potential therapeutic target for diverse diseases, Nature Reviews Drug Discovery, vol.48, issue.9, pp.709-739, 2012.
DOI : 10.1038/nrd3802

C. Birmingham, A. Smith, M. Bakowski, T. Yoshimori, and J. Brumell, Autophagy Controls Salmonella Infection in Response to Damage to the Salmonella-containing Vacuole, Journal of Biological Chemistry, vol.281, issue.16, pp.11374-83, 2006.
DOI : 10.1074/jbc.M509157200

M. Gutierrez, S. Master, S. Singh, G. Taylor, M. Colombo et al., Autophagy Is a Defense Mechanism Inhibiting BCG and Mycobacterium tuberculosis Survival in Infected Macrophages, Cell, vol.119, issue.6, pp.753-66, 2004.
DOI : 10.1016/j.cell.2004.11.038

Z. Zhao, B. Fux, M. Goodwin, I. Dunay, D. Strong et al., Autophagosome-Independent Essential Function for the Autophagy Protein Atg5 in Cellular Immunity to Intracellular Pathogens, Cell Host & Microbe, vol.4, issue.5, pp.458-69, 2008.
DOI : 10.1016/j.chom.2008.10.003

B. Py, M. Lipinski, and J. Yuan, Intracellular Growth in the Early Phase of Primary Infection, Autophagy, vol.3, issue.2, pp.117-142, 2007.
DOI : 10.4161/auto.3618

I. Nakagawa, A. Amano, N. Mizushima, A. Yamamoto, H. Yamaguchi et al., Autophagy Defends Cells Against Invading Group A Streptococcus, Science, vol.306, issue.5698, pp.1037-1077, 2004.
DOI : 10.1126/science.1103966

Y. Xu, C. Jagannath, X. Liu, A. Sharafkhaneh, K. Kolodziejska et al., Toll-like Receptor 4 Is a Sensor for Autophagy Associated with Innate Immunity, Immunity, vol.27, issue.1, pp.135-179, 2007.
DOI : 10.1016/j.immuni.2007.05.022

L. Travassos, L. Carneiro, M. Ramjeet, S. Hussey, Y. Kim et al., Nod1 and Nod2 direct autophagy by recruiting ATG16L1 to the plasma membrane at the site of bacterial entry, Nature Immunology, vol.104, issue.1, pp.55-62, 2010.
DOI : 10.1038/ni.1823

M. Sanjuan, C. Dillon, S. Tait, S. Moshiach, F. Dorsey et al., Toll-like receptor signalling in macrophages links the autophagy pathway to phagocytosis, Nature, vol.114, issue.7173, pp.1253-1260, 2007.
DOI : 10.1038/ni0307-217a

S. Kageyama, H. Omori, T. Saitoh, T. Sone, J. Guan et al., The LC3 recruitment mechanism is separate from Atg9L1-dependent membrane formation in the autophagic response against Salmonella, Molecular Biology of the Cell, vol.22, issue.13, pp.2290-300, 2011.
DOI : 10.1091/mbc.E10-11-0893

E. Itakura, C. Kishi-itakura, and N. Mizushima, The Hairpin-type Tail-Anchored SNARE Syntaxin 17 Targets to Autophagosomes for Fusion with Endosomes/Lysosomes, Cell, vol.151, issue.6, pp.1256-69, 2012.
DOI : 10.1016/j.cell.2012.11.001

D. Shin, B. Jeon, H. Lee, H. Jin, J. Yuk et al., Mycobacterium tuberculosis Eis Regulates Autophagy, Inflammation, and Cell Death through Redox-dependent Signaling, PLoS Pathogens, vol.2, issue.12, 2010.
DOI : 10.1371/journal.ppat.1001230.s005

I. Tattoli, M. Sorbara, D. Vuckovic, A. Ling, F. Soares et al., Amino Acid Starvation Induced by Invasive Bacterial Pathogens Triggers an Innate Host Defense Program, Cell Host & Microbe, vol.11, issue.6, 2012.
DOI : 10.1016/j.chom.2012.04.012

M. Ogawa, T. Yoshimori, T. Suzuki, H. Sagara, N. Mizushima et al., Escape of Intracellular Shigella from Autophagy, Science, vol.307, issue.5710, pp.727-758, 2005.
DOI : 10.1126/science.1106036

S. Mostowy and P. Cossart, Bacterial autophagy: restriction or promotion of bacterial replication?, Trends in Cell Biology, vol.22, issue.6, pp.283-91, 2012.
DOI : 10.1016/j.tcb.2012.03.006

S. Steele, J. Brunton, and T. Kawula, The role of autophagy in intracellular pathogen nutrient acquisition, Frontiers in Cellular and Infection Microbiology, vol.5, 2015.
DOI : 10.4161/auto.5.3.7406

H. Niu, Q. Xiong, A. Yamamoto, M. Hayashi-nishino, and Y. Rikihisa, Autophagosomes induced by a bacterial Beclin 1 binding protein facilitate obligatory intracellular infection, Proceedings of the National Academy of Sciences, vol.109, issue.51, pp.20800-20807, 2012.
DOI : 10.1073/pnas.1218674109

H. Niu, M. Yamaguchi, and Y. Rikihisa, Subversion of cellular autophagy by Anaplasma phagocytophilum, Cellular Microbiology, vol.101, issue.3, pp.593-605, 2008.
DOI : 10.1242/jcs.02735

K. Moreau, S. Lacas-gervais, N. Fujita, F. Sebbane, T. Yoshimori et al., Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages, Cellular Microbiology, vol.23, issue.2, pp.1108-1131, 2010.
DOI : 10.1111/j.1462-5822.2010.01456.x

C. Pujol, K. Klein, G. Romanov, L. Palmer, C. Cirota et al., Yersinia pestis Can Reside in Autophagosomes and Avoid Xenophagy in Murine Macrophages by Preventing Vacuole Acidification, Infection and Immunity, vol.77, issue.6, pp.2251-6100068, 2009.
DOI : 10.1128/IAI.00068-09

M. Gutierrez, C. Vázquez, D. Munafó, F. Zoppino, W. Berón et al., Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles, Cellular Microbiology, vol.71, issue.7, pp.981-93, 2005.
DOI : 10.1111/j.1462-5822.2005.00527.x

C. Vázquez and M. Colombo, Coxiella burnetii modulates Beclin 1 and Bcl-2, preventing host cell apoptosis to generate a persistent bacterial infection, Cell Death and Differentiation, vol.70, issue.3, pp.421-459, 2009.
DOI : 10.1038/cdd.2009.129

W. Berón, M. Gutierrez, M. Rabinovitch, and M. Colombo, Coxiella burnetii Localizes in a Rab7-Labeled Compartment with Autophagic Characteristics, Infection and Immunity, vol.70, issue.10, pp.5816-5837, 2002.
DOI : 10.1128/IAI.70.10.5816-5821.2002

S. Steele, J. Brunton, B. Ziehr, S. Taft-benz, N. Moorman et al., Francisella tularensis Harvests Nutrients Derived via ATG5-Independent Autophagy to Support Intracellular Growth, PLoS Pathogens, vol.452, issue.(2), 2013.
DOI : 10.1371/journal.ppat.1003562.s007

T. Starr, R. Child, T. Wehrly, B. Hansen, S. Hwang et al., Selective Subversion of Autophagy Complexes Facilitates Completion of the Brucella Intracellular Cycle, Cell Host & Microbe, vol.11, issue.1, 2012.
DOI : 10.1016/j.chom.2011.12.002

M. Mestre, C. Fader, C. Sola, and M. Colombo, infected cells, Autophagy, vol.6, issue.1, pp.110-135, 2010.
DOI : 10.4161/auto.6.1.10698

M. Mestre and M. Colombo, cAMP and EPAC Are Key Players in the Regulation of the Signal Transduction Pathway Involved in the ??-Hemolysin Autophagic Response, PLoS Pathogens, vol.137, issue.5, 2012.
DOI : 10.1371/journal.ppat.1002664.s006

A. Amer and M. Swanson, Autophagy is an immediate macrophage response to Legionella pneumophila, Cellular Microbiology, vol.266, issue.6, pp.765-78, 2005.
DOI : 10.1126/science.1096645

J. Kagan and C. Roy, Legionella phagosomes intercept vesicular traffic from endoplasmic reticulum exit sites, Nature Cell Biology, vol.4, issue.12, pp.945-54, 2002.
DOI : 10.1038/ncb883

A. Khweek, K. Caution, A. Akhter, B. Abdulrahman, M. Tazi et al., vacuole by autophagy, European Journal of Immunology, vol.182, issue.5, pp.1333-1377, 2013.
DOI : 10.1002/eji.201242835

A. Amer, B. Byrne, and M. Swanson, Macrophages Rapidly Transfer Pathogens from Lipid Raft Vacuoles to Autophagosomes, Autophagy, vol.1, issue.1, pp.53-61, 2005.
DOI : 10.4161/auto.1.1.1589

A. Choy, J. Dancourt, B. Mugo, O. Connor, T. Isberg et al., The Legionella Effector RavZ Inhibits Host Autophagy Through Irreversible Atg8 Deconjugation, Science, vol.338, issue.6110, pp.1072-1078, 2012.
DOI : 10.1126/science.1227026

M. Rolando, P. Escoll, T. Nora, J. Botti, V. Boitez et al., S1P-lyase targets host sphingolipid metabolism and restrains autophagy, Proceedings of the National Academy of Sciences, vol.113, issue.7, pp.1901-1907, 2016.
DOI : 10.1073/pnas.1522067113

URL : https://hal.archives-ouvertes.fr/hal-01376135

A. Joshi and M. Swanson, Secrets of a Successful Pathogen: Legionella Resistance to Progression Along the Autophagic Pathway, Frontiers in Microbiology, vol.2, 2011.
DOI : 10.3389/fmicb.2011.00138

H. Vakifahmetoglu-norberg, H. Xia, and J. Yuan, Pharmacologic agents targeting autophagy, Journal of Clinical Investigation, vol.125, issue.1, pp.5-13, 2015.
DOI : 10.1172/JCI73937

S. Siddiqi, J. Hawkins, and A. Laszlo, Interlaboratory drug susceptibility testing of Mycobacterium tuberculosis by a radiometric procedure and two conventional methods, J Clin Microbiol, vol.22, pp.919-942, 1985.

K. Stottmeier, R. Beam, and G. Kubica, Determination of drug susceptibility of mycobacteria to pyrazinamide in 7H10 agar, Am Rev Respir Dis, vol.96, pp.1072-1077, 1967.

J. Kim, H. Lee, D. Shin, W. Kim, J. Yuk et al., Host Cell Autophagy Activated by Antibiotics Is Required for Their Effective Antimycobacterial Drug Action, Cell Host & Microbe, vol.11, issue.5, 2012.
DOI : 10.1016/j.chom.2012.03.008

A. Zullo and S. Lee, Old Antibiotics Target TB with a New Trick, Cell Host & Microbe, vol.11, issue.5, 2012.
DOI : 10.1016/j.chom.2012.05.002

M. Renna, C. Schaffner, K. Brown, S. Shang, M. Tamayo et al., Azithromycin blocks autophagy and may predispose cystic fibrosis patients to mycobacterial infection, Journal of Clinical Investigation, vol.121, issue.9, pp.3554-63, 2011.
DOI : 10.1172/JCI46095DS1

K. Conway, P. Kuballa, J. Song, K. Patel, A. Castoreno et al., Atg16l1 is Required for Autophagy in Intestinal Epithelial Cells and Protection of Mice From Salmonella Infection, Gastroenterology, vol.145, issue.6, pp.1347-57, 2013.
DOI : 10.1053/j.gastro.2013.08.035

S. Kuo, A. Castoreno, L. Aldrich, K. Lassen, G. Goel et al., Small-molecule enhancers of autophagy modulate cellular disease phenotypes suggested by human genetics, Proceedings of the National Academy of Sciences, vol.112, issue.31, pp.4281-4288, 2015.
DOI : 10.1073/pnas.1512289112

D. Raoult, P. Houpikian, T. Dupont, H. Riss, J. Arditi-djiane et al., Treatment of Q Fever Endocarditis, Archives of Internal Medicine, vol.159, issue.2, pp.167-73, 1999.
DOI : 10.1001/archinte.159.2.167