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AUTOPHAGY IS A DEFENSE MECHANISM AGAINST  
INVADING PATHOGENS

Cellular homeostasis requires the balanced regulation of anabolic and catabolic processes. While 
anabolic metabolism consumes energy to build up cellular components, catabolic processes break 
down organic matters in order to provide energy for the cell and its anabolic processes. Autophagy is a 
highly conserved and regulated catabolic process by which the eukaryotic cell degrades unnecessary, 
undesirable, or dysfunctional cellular components, including organelles (1–3). Autophagy is induced 
by a variety of extra- and intracellular stress stimuli, such as nutrient starvation, oxidative stress, or 
accumulation of damaged organelles or toxic protein aggregates. Initiation of autophagy first leads to 
the formation of cup-shaped structures known as phagophores that engulf the undesirable or dam-
aged cellular components. Subsequent elongation of phagophores form double-membrane vesicles 
called autophagosomes, which deliver their cargo to lysosomes where the content is degraded and 
recycled (1–3). Autophagy plays a central role in quality control of organelles and proteins, and 
additionally is a key mechanism to maintain cellular energy levels and nutrient homeostasis dur-
ing starvation, promoting the recycling and salvage of cellular nutrients. Furthermore, the cellular 
autophagic machinery is also used to remove invading intracellular pathogens, a process called 
xenophagy (1, 2). In this case, phagophores engulf invading microbes forming autophagosomes and 
steering them toward lysosomal degradation. Thus, xenophagy is an innate immune mechanism 
against bacterial infection that has been shown to be essential to restrict intracellular growth of many 
bacteria such as Salmonella enterica serovar Typhimurium (4), Mycobacterium tuberculosis (5, 6), 
Listeria monocytogenes (7), or Group A Streptococcus (8).

Detection of bacterial components in the cytoplasm of mammalian cells induces autophagy via 
the activation of toll-like receptor 4 (TLR4) by bacterial lipopolysaccharide (LPS) and recognition of 
bacterial peptidoglycan by NOD1 and NOD2 (9, 10). TLR- and NOD-like receptor (NLR)-induced 
autophagy can be initiated during entry, uptake, or phagocytosis of bacteria by the host cell (10, 11), 
but bacteria can also be sensed by the Sequestosome-1-like receptors (SLRs) when they are already in 
the cytosol (1) (Figure 1A). In both cases, recruitment of autophagy proteins to the phagosome, such 
as the ULK1 complex, Beclin1, and ATG16L1, initiates membrane nucleation of the phagophore that 
will engulf the intracellular bacteria (10–12) (Figure 1B). ATG5–ATG12 associates with ATG16L1 
and the ATG5–ATG12–ATG16L1 complex facilitates the addition of a phosphatidylethanolamine 
(PE) group to the carboxyl terminus of LC3, which function together with other factors to assemble, 
elongate, and allow the closure of nascent autophagosomes (1) (Figure 1C). In addition to this canoni-
cal mechanism of autophagy, phagosomes containing bacteria can recruit directly LC3, a process 
called LC3-associated phagocytosis (LAP). Upon delivery to phagosomes, LC3 promotes phagosome 
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FIGURE 1 | Modulation of autophagy by drugs or intracellular bacteria. The different steps of the autophagic response during bacterial invasion are shown. 
The host factors known to participate in each step are depicted in white boxes. (A) Invading bacteria are sensed by immune receptors; (B) vesicle nucleation 
induced by specialized autophagy proteins; (C) phagophore elongation; (D) autophagophore completion; (E) autophagosome maturation by fusion with lysosomes, 
forming autolysosomes. Drugs (underlined) or intracellular bacteria (cursiva) inducing autophagy are displayed in green, while those inhibiting autophagy are 
displayed in red. The different steps where bacteria or drugs act are pointed with green arrows (activation) or red T-bars (inhibition). Blue arrows indicate nutrient 
flow, while doubled-headed arrows indicate the possibility that the content of cellular autophagosomes and autolysosomes can be diverted to the phagosome and 
used by pathogenic bacteria as a source of nutrients.
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maturation and degradation of the content. Therefore, both LAP 
and canonical autophagy involve the enclosure of bacteria in an 
LC3-decorated compartment that is targeted for degradation by 
fusion with the lysosome (2). Membranes from the ER, the Golgi 
apparatus, the ER–mitochondria contact sites, or the plasma 
membrane contribute to the elongation of the double membrane 
of the phagophore in order to form the autophagosome (1) 
(Figure 1D). The attachment of syntaxin 17 to the autophagoso-
mal membrane enables the fusion with lysosomes and represents 
the final maturation step of autophagosomes into autolysosomes 
(13) (Figure 1E), which normally leads to bacterial degradation 
in case of infection-induced autophagy (2).

PATHOGENIC INTRACELLULAR 
BACTERIA SUBVERT AND EXPLOIT THE 
AUTOPHAGY MACHINERY OF THE HOST

Xenophagy is a defense mechanism of the infected cell against 
invading bacteria, but intracellular pathogens have evolved 
mechanisms to inhibit or modulate the autophagy response of the 
host. For example, M. tuberculosis and Salmonella Typhimurium 

inhibit autophagy initiation signaling upstream autophagosome 
formation (14, 15), whereas Shigella flexneri evades autophagy 
recognition by masking the bacterial surface (16) (Figure  1, 
cursive, red).

In contrast to inhibition of autophagy, certain pathogenic 
intracellular bacteria induce autophagy and take advantage of it 
(17) (Figure 1, cursive, green). These bacteria show defective rep-
lication in autophagy-deficient cells, and treatment of host cells 
with autophagy activators promotes bacterial replication. This 
observation raises the question, why a pathogen would increase 
a host defense mechanism like autophagy? In uninfected cells, 
augmentation of the autophagy rate is used to increase the intra-
cellular pool of basic nutrients, to build new cellular structures. 
During infection, some intracellular bacteria have developed 
mechanisms to hijack the autophagosomes and redirect the by-
products of the autophagic degradation toward microbial replica-
tion rather than for the use by the host cell (18). In most cases, 
these bacteria actively induce autophagy but, at the same time, 
block autophagosome maturation and fusion with the lysosome. 
In this case, augmentation of autophagy, rather than promoting 
bacterial clearance, promotes the acquisition of nutrients by the 
invading bacteria (18). Thus, certain bacteria may sabotage the 
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host defense mechanism elicited by autophagosomes to use the 
autophagic vesicles as nutrient source for microbial growth.

An example is Anaplasma phagocytophilum that uses a 
secreted effector, Ats-1, to promote autophagosome nucleation 
and stimulates its own growth by using the nutrients contained 
in the autophagosomes (19). Indeed, autophagy induction using 
rapamycin favors bacterial infection, while autophagy inhibition 
decreases A. phagocytophilum replication (20). Another example 
is Yersinia pseudotuberculosis, a Gram-negative bacterium that 
replicates intracellularly by establishing a specialized compart-
ment, the Yersinia-containing vacuole (YCVs), which accumu-
lates autophagy markers (21). The stimulation of autophagy with 
rapamycin increases the size of the YCVs and the numbers of 
replicative bacteria in the YCVs, whereas autophagy inhibition 
restricts bacterial survival, suggesting that autophagy promotes 
Y.  pseudotuberculosis replication (21). Yersinia pestis also repli-
cates within YCVs decorated with autophagosome markers (22). 
The authors suggested that autophagosomes may provide a source 
of membrane, along with late endosomes, for the expansion of the 
YCV into a spacious compartment (22). The same mechanism 
was described for Coxiella burnetii, the causative agent of Q 
fever. Coxiella-replicative vacuoles (CRVs) are decorated with the 
autophagy proteins LC3, Beclin1, and Rab24, and overexpression 
of LC3 or Beclin1 increases the number and size of the CRVs 
(23, 24). Similar to A. phagocytophilum and Y. pseudotuberculo-
sis, autophagy induction increases C. burnetii replication, while 
inhibition of autophagy blocks Coxiella vacuole formation (23, 
25). Also, Francisella tularensis, a highly virulent Gram-negative 
bacterium responsible for tularemia, avoids xenophagy while 
inducing autophagy (26). It was shown that autophagy-derived 
radiolabeled amino acids are transferred from host proteins to 
F.  tularensis, a process that was reduced when host cells were 
treated with autophagy inhibitors (26).

Other bacteria also co-opt the autophagic machinery for 
their benefit, although a direct relationship of host autophagy 
and pathogen nutrition has not been shown. Brucella abortus 
that causes brucellosis in humans replicates in ER-derived 
Brucella-containing vacuoles (BCVs). BCVs hijack autophago-
some initiation factors, such as ULK1 or Beclin1, and become 
autophagosome-like compartments (27). Depletion of ULK1 
and Beclin1, as well as pharmacological inhibition of autophagy, 
readily reduced BCV formation, suggesting that autophagy pro-
motes B. abortus infection (27). Staphylococcus aureus was also 
reported to be sequestered in LC3-positive autophagosomes that 
evade the fusion with lysosomes (28). S. aureus uses α-toxin to 
induce autophagy by an ATG5-dependent mechanism that also 
involves reduction of cellular cAMP levels (29). Infection of cells 
depleted of ATG5 show decreased bacterial replication, showing 
that autophagy is necessary for S. aureus replication in vitro (28).

Thus, different pathogenic bacteria seem to employ a common 
strategy to subvert the autophagy machinery as they not only 
target autophagy proteins to block xenophagy set up by the cell to 
resist infection but also exploit autophagy to promote their own 
replication. One well studied example for this dual strategy is the 
Gram-negative intracellular bacterium Legionella pneumophila. 
After phagocytosis, the causative agent of Legionnaires’ disease, 
forms a Legionella-containing vacuole (LCV) that recruits vesicles 

emerging from the endoplasmic reticulum (ER) and acquires 
autophagy markers like LC3, showing that LCVs rapidly become 
autophagosomes (30, 31). This process seems to be dependent 
on the T4SS bacterial effector LegA9, which promotes the rec-
ognition of the LCV by autophagy (32). Interestingly, inhibition 
of autophagy in permissive A/J mouse macrophages reduces 
Legionella survival at 2 h postinfection (30, 33), suggesting that 
routing the LCV to the autophagy pathway is beneficial for the 
bacteria. However, later, it has been shown that L. pneumophila 
is also restraining autophagy by secreting the specialized effec-
tors, LpSPL and RavZ, that inhibit, autophagosome formation 
and maturation, respectively (34, 35). The paradoxical existence 
in Legionella of bacterial effectors having opposite roles, on one 
hand, targeting the LCV to autophagy and, on the other hand, 
inhibiting autophagy may reflect the necessity for the bacteria to 
fine-tune host autophagy in a very balanced way. Legionella may 
need to target the LCV to autophagosomes, avoiding immediate 
killing (33), and at the same time, it needs to delay the maturation 
of the LCV-containing autophagosome into autolysosomes, gain-
ing precious time for pathogen replication (30, 36).

AUTOPHAGY MODULATORS IN 
INFECTIOUS AND NON-INFECTIOUS 
DISEASES: SOME CONSIDERATIONS

Autophagy modulators are of great interest for medical purposes 
(37), as it was suggested that metabolic, neurodegenerative, 
infectious, and oncology diseases can benefit from autophagy 
modulation (3).

One can hypothesize that drugs inducing autophagy could 
increase bacterial clearance in infected cells. This hypothesis 
is supported by the fact that antibiotics widely and extensively 
used against the intracellular bacterium M. tuberculosis, iso-
niazid (INH), and pyrazinamide (PZA), although able to kill 
the bacteria directly in vitro (38, 39), have been recently shown 
to induce autophagy in the host cell promoting mycobacterial 
clearance (40). Moreover, autophagy is required for effective 
antimycobacterial drug action in vivo, suggesting that pharma-
cological modulation of autophagy could be a successful strategy 
against infections by intracellular bacteria (40, 41). This point 
of view was corroborated by another recent report showing that 
treatment of cystic fibrosis patients with the antibiotic azithro-
mycin (AZI) was associated with opportunistic mycobacterial 
infections. AZI was shown to prevent lysosomal acidification 
and thereby impaired autophagic degradation of mycobacteria 
(42), suggesting that chronic use of the drug may predispose to 
mycobacterial disease. Thus, these reports suggest that induction 
of autophagy with drugs, such as INH or PZA, could successfully 
treat mycobacterial infections, while inhibition of autophagy 
with drugs, such as AZI, may in turn facilitate mycobacterial 
infections.

Similar to mycobacteria, several molecules inducing 
autophagy have been recently shown to reduce Salmonella 
Typhimurium replication in HeLa cells (43, 44). This direct rela-
tionship between drugs, modulating autophagy and the outcome 
of bacterial infection, emphasizes the essential role of autophagy 
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in the host response to intracellular bacteria and seems to support 
pharmacological modulation of host autophagy during infection. 
Unfortunately, as shown above, the situation seems more com-
plex than the conclusion “increase of cellular autophagy favors 
bacterial clearance.”

The fact that autophagy inducers seem to be helpful in the 
treatment of Mycobacteria or Salmonella infections, but in turn 
might facilitate infections by Anaplasma, Coxiella, Yersinia, 
or Francisella, requires not only to be highly cautious in the 
use of autophagy modulators to treat infectious diseases but 
also to monitor the infectious risk during the use of autophagy 
modulators. Some autophagy modulators are already in use 
(Figure 1, underlined). Rapamycin, metformin, and rilmenidine, 
all autophagy inducers, are drugs approved and prescribed to 
prevent rejection of kidney transplants, to treat type 2 diabetes, 
and to treat hypertension, respectively (3, 37). In contrast, chlo-
roquine and hydroxychloroquine, which are now under clinical 
trials as autophagy inhibitors for the treatment of certain resistant 
cancers, are drugs prescribed to treat malaria (3, 37). Moreover, 
hydroxychloroquine combined with doxycycline is currently 
used to treat Coxiella-induced chronic Q fever endocarditis (45). 
Some of these approved drugs might thus show a therapeutical 
benefit in case of infection.

In summary, the study of autophagy regulation during 
bacterial infection certainly shows the existence of a critical 
balance between a host-protective “immune-related” induction 
of autophagy (xenophagy) and a host-deleterious “metabolic-
related” induction of autophagy by invading bacteria for nutri-
tional theft of host energy resources. Results of clinical trials using 
autophagy modulators and a more profound understanding of the 
role of autophagy during infection are thus needed to correctly 
use autophagy modulators in the fight against infectious diseases.
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