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Abstract 

Background: In eukaryotic genomes, deletion or amplification rates have been estimated to be a thousand more 
frequent than single nucleotide variation. In Plasmodium falciparum, relatively few transcription factors have been 
identified, and the regulation of transcription is seemingly largely influenced by gene amplification events. Thus copy 
number variation (CNV) is a major mechanism enabling parasite genomes to adapt to new environmental changes.

Methods: Currently, the detection of CNVs is based on quantitative PCR (qPCR), which is significantly limited by the 
relatively small number of genes that can be analysed at any one time. Technological advances that facilitate whole‑
genome sequencing, such as next generation sequencing (NGS) enable deeper analyses of the genomic variation to 
be performed. Because the characteristics of Plasmodium CNVs need special consideration in algorithms and strate‑
gies for which classical CNV detection programs are not suited a dedicated algorithm to detect CNVs across the entire 
exome of P. falciparum was developed. This algorithm is based on a custom read depth strategy through NGS data 
and called PlasmoCNVScan.

Results: The analysis of CNV identification on three genes known to have different levels of amplification and which 
are located either in the nuclear, apicoplast or mitochondrial genomes is presented. The results are correlated with 
the qPCR experiments, usually used for identification of locus specific amplification/deletion.

Conclusions: This tool will facilitate the study of P. falciparum genomic adaptation in response to ecological changes: 
drug pressure, decreased transmission, reduction of the parasite population size (transition to pre‑elimination 
endemic area).
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Background
The burden of malaria has decreased by half over the 
last decade. This is a direct consequence of effectives 
strategies mainly focused on vector control (long-lasting 
impregnated bed nets) and the management of suspect 
malaria cases (early diagnosis by rapid diagnostic tests 
and effective and prompt treatment with artemisinin-
based combination therapy). As a consequence, a drastic 

decrease in Plasmodium falciparum population biomass 
in many countries has been observed [1]. This new epi-
demiological situation has led to a change in the environ-
ment within which the parasite finds itself and will thus 
alter the selective pressures on parasite populations.

Natural evolution of malaria parasites generates an 
enormous amount of genetic diversity either linked with 
copy number variations (CNVs), or acquisition of new 
single nucleotide variations (SNVs) and their accumula-
tion over time [2]. This allows parasites to acquire a high 
capacity of adaptation to the environmental shifts and 
develop anti-malarial drug resistance. Indeed, SNVs are 
known to be at the origin of resistance to anti-malarial 
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drugs, such as chloroquine, sulfadoxine, pyrimethamine, 
atovaquone, artemisinin, and mdr1 gene amplification is 
known to be at the origin of mefloquine resistance [3–5].

In eukaryotic genomes, SNP mutation rates occur at 
a rate of ~10−8 per generation and deletion or ampli-
fication rates have been estimated to be in the order 
of ~10−4 per generation [6, 7]. The number of P. falcipa-
rum parasites infecting an adult can be estimated from 
5 to 50 billion parasites (103–104 parasites per μL of 
blood with a total of 5 l of blood). Because asexual rep-
lication occurs every 48  h, the erythrocytic stage of P. 
falciparum, therefore, appears to be a breeding ground 
for any selection pressure to act on parasite popula-
tion. Although the regulation of gene expression in P. 
falciparum is still incompletely understood, relatively 
few transcription factors have been identified [8, 9] 
and the regulation of transcription is seemingly largely 
influenced by gene amplification events. Thus CNV is a 
major mechanism enabling parasite genomes to adapt 
to new environmental changes.

Currently, the detection of CNVs is based on quanti-
tative PCR (qPCR), which is significantly limited by the 
relatively small number of genes that can be analyzed at 
any one time, and the fact that endogenous controls (e.g., 
housekeeping genes) can introduce bias into the results 
if not properly chosen [10]. Technological advances that 
facilitate whole-genome sequencing such as Next Gen-
eration Sequencing (NGS) enable deeper analyses of the 
genomic variation to be performed. Because the charac-
teristics of Plasmodium CNVs need special considera-
tion in algorithms and strategies for which classical CNV 
detection programs are not suited, a dedicated algo-
rithm to detect CNVs across the entire exome of P. fal-
ciparum based on a custom read depth strategy through 
NGS data was developed. This algorithm was named 
PlasmoCNVScan.

This study analysed CNV on three genes known 
to have different level of amplification and which are 
located either in the nuclear, apicoplast or mitochon-
drial genomes. The results showed a correlation between 
PlasmoCNVscan and the qPCR experiments, usually 
used for identification of locus specific amplification/
deletion. The use of such a tool for the exploration of 
adaptive phenomena based on whole genome data is 
then discussed.

Methods
DNA
Real time PCR and whole genome analysis were carried 
out on the same DNA extracted from samples of P. fal-
ciparum collected in Cambodia between 2010 and 2014 
and adapted to culture. DNA extraction was performed 
using QIAamp DNA Blood Kit (Qiagen ©).

qPCR
The protocol for qPCR copy number evaluation used in 
this study was based on the WWARN (MOL-05) proce-
dure: “Copy number estimation of P. falciparum pfmdr1 
v1.1’’. Relative quantification was performed by using 
“PCR Applied Biosystem ViiA 7®” and the Taqman® 
technologies (Thermo Fisher©).

An evaluation of the pfmdr1, clcp (PFC10_API0060) 
and cytochrome b genes was performed because they are 
all known to have CNV and belong to the three genomes 
(respectively from nuclear, apicoplast and mitochondrial 
genomes). The reference gene selected was the nuclear 
beta-tubulin-encoding gene (PF10_0084). The primers 
and probe used for the qPCR are described in the Table 1.

All samples were analysed in triplicate. The confidence 
intervals on measures must be superior to 95 % for one 
triplicate and the Z-score, designating the deviation from 
a normal distribution, must be inferior to 1.75 (Life Tech-
nologies Corporation, 2011). All the samples results that 
did not meet these criteria were removed from the final 
results.

Whole genome
Whole-genome sequencing was performed on parasite 
DNA from Cambodian parasite isolates, using an Illu-
mina paired-reads sequencing technology, as previously 
described [11].

PlasmoCNVScan
Read depth-based methods have recently become a major 
approach for estimating copy number [12]. The underly-
ing concept of RD-based methods is that the depth of 
coverage in a genomic region is correlated with the copy 
number of the region; e.g., a lower than expected depth 
of coverage intensity indicates deletion and a higher than 
expected depth of coverage intensity indicates amplifica-
tion [13]. The algorithm in classical RD-based methods 
relies heavily on the assumption that the sequencing pro-
cess is uniform, i.e., the number of reads mapped to a 
region is assumed to follow a Poisson distribution and is 
proportional to the number of copies [12]. However, due 
to the GC content and “mapability”, this assumption is for 
the most part unrealistic. Moreover, the uneven repre-
sentation of genomic regions in library preparation due 
to variability in DNA fragmentation may induce a bias 
[14].

In PlasmoCNVScan this assumption is by-passed using 
sequence pattern coverage across the overall exome. 
The reads must be correctly mapped onto a well-anno-
tated reference genome. The main hypothesis is that 
the depth of coverage for each motif in the exome only 
depends on the sequence and thus has the same inten-
sity. Here, a motif represents a subset of a fixed number 
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of nucleotides in the genome. The motif ’s coverage is the 
average coverage of this subset (see Fig. 1).

Firstly, the average frequency for each motif found 
across the whole exome was computed: this is the theo-
retical coverage for a motif. The observed coverage is the 
local coverage for a motif for each position (extracted 
from pileup file). Then, for each gene, using a sliding win-
dow, the ratio between observed coverage and theoreti-
cal coverage for each gene/position was computed. This 
ratio gives the estimated copy number variation for this 
region.

The algorithm was implemented in homemade soft-
ware in C language called PlasmoCNVScan. PlasmoC-
NVScan use the external libraries gbfp [15] under GNU 
GPL v2 licence and utash.under the revised BSD licence.

Optimising the size of the sequence length used for the 
motif
The length of the motif is arbitrary, but clearly a motif 
of size 1 nucleotide will completely cover the genome 
but will yield no information on intra-genomic varia-
tion, whereas a size of hundred nucleotides will lead to 
little coverage and huge variation in the coverage across 
the genome. The motif size was increased from 1 until 
the variance in the coverage among intra-genomic region 
increased. Using the reference genome, P. falciparum 
clone 3D7, the optimal number of nucleotides for the 
motif was assessed. As can clearly be seen in Fig. 2, the 
variance increases significantly after a motif length of 6 
nucleotides. The optimal motif size appears to be 5 or 6 
nucleotides. The size of the motif was set to 6.

PlasmoCNVScan versus benchmark softwares
The dataset was tested for pfmdr1 gene with two pro-
grams for detecting copy number variation using next 

generation sequencing data. CNV-seq [16], which 
is widely used software in case–control studies, and 
CNVnator [17], which uses a similar approach to calcu-
late RD signal and correct the GC-bias.

Statistical analysis
The qPCR results were considered as reference and the 
Pearson test was used to calculate the measure of the lin-
ear correlation (dependence) between the two variables 
qPCR and PlasmoCNVScan or CNVnator software, giv-
ing a value between +1 and −1 inclusive, where 1 is total 
positive correlation.

Results
According to the results of the copy number obtained 
for 19 isolates (cytochrome b gene, mitochondrial 
genome), 21 isolates (clcp gene, apicoplast genome) and 
42 isolates (pfmdr1 gene, nuclear genome) with real-
time PCR, a correlation line was established with the 
results from PlasmoCNVScan tool on illumina FASTq 
files. As can be seen in Fig.  3, R2 values for the two 
types of extra nuclear genome and for nuclear genome 
are greater than 0.8. Moreover, the equation obtained 
type y = ax + b has a factor “a” close to 1 with a very 
low b value, tending towards the type y = x; thus both 
methods are proportional to each other and tend to be 
similar.

PlasmoCNVScan vs CNV‑seq and CNVnator
CNV‑seq
As CNV-seq method is conceptually derived from array 
comparative genomic hybridization (aCGH), two sets of 
reads mapped onto the same reference genome from the 
same flow cell is needed. CNV-seq fails to detect CNV 
on all isolates, because 3D7, used as a reference, has been 

Table 1 The primers and probe used for copy number quantification

Name Sequence Gene amplification Location

CytbF 5′GCACGCAACAGGTGCTTCTC 3′ Cytochrome b Mitochondira

CytbR 5′GACCCCATGGTAAGACATAACC 3′

CytBP 5′(FAM)‑CCATGATAATGGTAAATACATATATGAGTAATTT‑(TAMRA) 3′

CLCPF 5′GGGCCTAGTGGTACTGGTAA 3′ clcp Apicoplast

CLCPR 5′CCAACATAACCAGGAGGTGAACC 3′

CLCPP 5′(FAM)‑CATATCAAATCTAATTAGTTCTTTTTCAGAACC‑(TAMRA) 3′

Mdr1F 5′ TGCATCTATAAAACGATCAGACAAA 3′ pfmdr1 Nuclear

Mdr1R 5′ TCGTGTGTTCCATGTGACTGT 3′

Mdr1P 5′ (FAM)‑TTTAATAACCCTGATCGAAATGGAACCTTTG‑(TAMRA) 3′

TubF 5′AAAAATATGATGTGCGCAAGTGA 3′ Pftubulin

TubR 5′AACTTCCTTTGTGGACATTCTTCCT 3′

TubP 5′ (TET)‑TAGCACATGCCGTTAAATATCTTCCATGTCT‑(TAMRA) 3′
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sequenced on a different flow cell to the other isolates. To 
avoid this problem, there is a need to include a reference 
isolate in each of the flow cells used, which becomes pro-
hibitively expensive.

CNVnator
CNVnator is able to discover CNVs in a vast range of 
sizes, from a few hundred bases to megabases in length 
for a single genome. The correction of GC-bias is based 
under the observation that the RD signal and GC content 
are correlated. Strikingly, CNVnator had a lower cor-
relation with qPCR than PlasmoCNVScan (R2  =  0.65, 
N = 42 Fig. 3).

Discussion
The overall (A + T) composition is 80.6 % in the P. falcipa-
rum genome and increases to ~90 % in introns and inter-
genic regions [18], resulting in very high similarity among 
non-coding regions. This introduces an important bias for 
CNV identification using NGS data. In coding regions, 
the GC content is higher and the coverage is likely to be 
higher and more specific. This heterogeneity in the GC 
content between coding and non-coding sequences led us 
to compute the average coverage for exons only.

For computing the CNV on a single sample using Plas-
moCNVScan, only a BAM file (which is converted in 
pileup file) is necessary, along with the reference genome 

Fig. 1 PlasmoCNVScan algorithm

Fig. 2 Motif size, mean and variance relation. Mean coverage of the 
genome is represented as filled squares and variance coverage of the 
genome is represented as open squares. Variance is divided by 100 for 
clarity
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(fasta file) and a gff file. Given mapped reads, the effi-
cient implementation of PlasmoCNVScan allowed a non 
IT specialist to perform whole-exome analysis of P. fal-
ciparum within a few minutes on a single 3.3-GHz Intel 
Core 3 Duo CPU. The RD signal is normalized with the 
genome itself. PlasmoCNVScan is thus able to compare 
different CNV exomes from different experiments. The 
results show very good correlation with the qPCR results, 
with R2 value above 0.8 for all the three genes explored 
irrespective of the CNV range (from 1 to 30 in the case of 
cytochrome b mitochondrial gene).

The main limitation of the algorithm is that when fac-
ing multigene families biases could appear for gene 
amplification detection or for the precise identification 
of the gene really amplified. Figure 4 shows an example 

in the case of a multigene family. The three genes share 
a common sequence (A) and a variable sequence (B1, 
B2, B3). The reality is shown in Fig.  4a: genes A1 and 
A3 are not amplified, gene A2 harbors four copies, thus 
the ratio given by PlasmoCNVScan should be four. The 
observed computed ratio is shown in Fig. 4b. Because of 
the A common sequence, reads are equally distributed 
among the multigene family and the computed ratio is 2 
: (4+1+1)/3 = 2. The computed ratio for specific regions 
(B1, B2, B3) are correct. In the case presented in this 
paper the clcp, cytochrome b and pfmdr1 genes showed 
no significant common nucleotide sequences with other 
genes to scramble information. Confirmation by qPCR 
targeting specific areas of the studied genes would cir-
cumvent this problem.

Fig. 3 Correation coefficient between qPCR and PlasmoCNVScan results for mdr1 (a), cytochrome b (b) and clcp (c). Correlation coefficient between 
qPCR and CNVnator was added in red for mdr1 (a)

Fig. 4 Expected coverage ratio (a) and observed coverage ratio (b) in a multigene family
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However when working with polyclonal infections, 
which is a very common situation in Africa, the same 
problem may arise in the case of mixed infections with 
different parasites that do not possess the same CNV 
profile. In this case the qPCR will be of no help.

Conclusions
The aim of this study was to test the ability of the algo-
rithm to calculate the CNVs based on a whole genome 
sequencing with small reads (FASTQ). Thus the authors 
chose to work on clonal isolates directly isolated from the 
field (not reference strains). The Cambodian isolates were 
previously culture adapted (only for several cycles) before 
DNA extraction, likely leading to the removal of minor 
clones. The exome approach generates even more accu-
rate data because of the higher GC content of the cod-
ing regions than in the intergenic regions, and, of course, 
expressed genes have much less similarity among them.

The strong correlation found between classical qPCR 
and PlasmoCNVScan opens the way for a systematic 
screening of CNVs changes on whole exomes. The global 
analysis of changes in the P. falciparum exome CNVs is 
beyond the scope of this article, but it is hoped that Plas-
moCNVScan can be a useful tool to explore P. falciparum 
genomic adaptation in the face of ecological changes: 
drug pressure, decreased transmission, reduction of the 
parasite population size (transition to pre-elimination 
endemic area).
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