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Abstract

Motivation: Recent large-scale omics initiatives have catalogued the somatic alterations of cancer

cell line panels along with their pharmacological response to hundreds of compounds. In this

study, we have explored these data to advance computational approaches that enable more effect-

ive and targeted use of current and future anticancer therapeutics.

Results: We modelled the 50% growth inhibition bioassay end-point (GI50) of 17 142 compounds

screened against 59 cancer cell lines from the NCI60 panel (941 831 data-points, matrix 93.08%

complete) by integrating the chemical and biological (cell line) information. We determine that the

protein, gene transcript and miRNA abundance provide the highest predictive signal when model-

ling the GI50 endpoint, which significantly outperformed the DNA copy-number variation or exome

sequencing data (Tukey’s Honestly Significant Difference, P <0.05). We demonstrate that, within

the limits of the data, our approach exhibits the ability to both interpolate and extrapolate com-

pound bioactivities to new cell lines and tissues and, although to a lesser extent, to dissimilar com-

pounds. Moreover, our approach outperforms previous models generated on the GDSC dataset.

Finally, we determine that in the cases investigated in more detail, the predicted drug-pathway as-

sociations and growth inhibition patterns are mostly consistent with the experimental data, which

also suggests the possibility of identifying genomic markers of drug sensitivity for novel com-

pounds on novel cell lines.

Contact: terez@pasteur.fr; ab454@ac.cam.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Cultured cell lines have, despite their inherent limitations, served as

versatile preclinical disease models for cancer drug discovery

(Weinstein, 2012). Recent large-scale multi-omics initiatives have

catalogued the somatic alterations of cancer cell line panels along

with their pharmacological response to hundreds of compounds

(Barretina et al., 2012; Garnett et al., 2012; Shoemaker, 2006), ena-

bling us to now make links between the compounds’ action and the
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genetic makeup of a cell on a large scale. The US National Cancer

Institute (NCI) pioneered these efforts by assembling the NCI60 tu-

mour cell line panel, which, to date, has been assayed for its sensitiv-

ity to over 130 000 compounds and has been extensively profiled at

the biological level (Shoemaker, 2006). Although these cell line col-

lections have proved valuable to identify genomic markers of drug

sensitivity (Barretina et al., 2012; Garnett et al., 2012) and even led

to the development of new drugs (Adams and Kauffman, 2004), the

question now arises of how these pharmacogenomic dataset can be

meaningfully mined, both to discover cancer subtype-specific drugs,

and ultimately to aid in the design of personalized cancer

treatments.

Previous studies of the NCI60 panel include the identification of

drug mechanism of action (MoA) (Weinstein et al., 1992), visualiza-

tion tools for drug sensitivity data (Paull et al., 1989; Weinstein

et al., 1997) and drug sensitivity predictions based on the cell line

profiling data (Kutalik et al., 2008; Riddick et al., 2011; Staunton

et al., 2001; Szakacs et al., 2004). Beyond algorithmic differences,

the conceptual limitation shared by these models was the unfeasibil-

ity of extrapolating the data to novel compounds and cell lines sim-

ultaneously, as the cell line profiling data and chemical information

were separately used as predictive features and were not integrated

into a single machine learning model. To overcome this limitation,

two recent studies have pioneered the combination of drug and cell

line information [gene expression, gene copy number variations

(CNVs) and mutation profiles] on the data from the Genomics of

Drug Sensitivity in Cancer project (GDSC) for drug sensitivity pre-

diction (Garnett et al., 2012). The first study (Menden et al., 2013)

modelled the sensitivity of 608 cell lines to 131 drugs with Neural

Networks and Random Forests, thereby obtaining a coefficient of

determination (R2) of 0.64 on an external set. The second study

(Ammad-ud-din et al., 2014) applied kernelized Bayesian matrix

factorization to model the sensitivity of 650 cell lines to 116 drugs,

and obtained an R2 value of 0.32 when predicting the activity for

new drugs on a set of cell lines in the training set. The authors

showed that the combination of chemical and cell line information

indeed improved model performance, which permitted the interpol-

ation of drug activities to complete the missing entries in the bio-

activity matrix of 482 cell lines by 116 drugs.

In this study, we now propose the simultaneous modelling of

chemical and cell line information in a single machine learning

model to predict the 50% growth inhibition bioassay end-point

(GI50) of 17 142 compounds screened against 59 cancer cell lines

from the NCI60 panel. Conformal prediction was implemented to

predict the confidence intervals (CI) for individual predictions. The

integration of these different, yet complementary, streams of infor-

mation is often termed proteochemometrics or pharmacogemonic

(PGM) modelling (Cortes-Ciriano et al., 2015b;Wheeler et al.,

2013). In typical PGM models, each compound–cell line interaction

is numerically encoded by the concatenation of the compound,

Uc(cd), and cell line, Ucl(cld), descriptors into a single vector, namely

Upair(cd, cld). Although this encoding approach is widely used, other

approaches exist (Su et al., 2010; Yamanishi et al., 2010). For in-

stance, in the case of kernel methods, each pair Upair(cd, cld) is

encoded by the tensor product of Uc(cd) and Ucl(cld) (Jacob and

Vert, 2008). Subsequently, these descriptors are related in a single

machine-learning model to the specific biological readout of interest

(Cortes-Ciriano et al., 2015b; van Westen et al., 2011). In practical

terms, PGM thereby helps us to understand complex relationships

between the compound structures and cell line features and enables

the estimation of the bioactivity for (novel) compounds on (novel)

cell lines (Fig. 1a).

We curated cell line profiling data consisting of 59 cell lines that

were characterized using various genetic and proteomic profiling

methods. From this, we assembled 14 profiling datasets, denoted

here as dataset views. We benchmarked their predictive signal, and

demonstrated that the simultaneous modelling of the compound and

cell line information improves the prediction of compound potency

across the NCI60 panel compared with models trained on only com-

pound information. Our modelling approach permits us to interpol-

ate and extrapolate compound bioactivities to novel cell lines and

tissues in the NCI60 panel, and, to a lesser extent, to chemically dis-

similar compounds. Finally, we demonstrate that the predicted bio-

activities can be used to estimate growth inhibition patterns across

the NCI60 panel and that the predicted drug-pathway associations

are consistent with the experimental data published in the literature.

2 Methods

2.1 Datasets
The raw pGI50 values (�log10 GI50, M) for 17 142 compounds were

downloaded from CellMiner (database version 1.4) (Reinhold et al.,

2012). The mean pGI50 values were calculated when several meas-

urements were available for the same compound–cell line combin-

ation and the standard deviation of the replicates was considered as

the experimental uncertainty of the measurements. The representa-

tion of the chemical structures (with respect to the aromaticity or

stereochemistry) was normalized with the StandardiseMolecules

function of the R package camb using the default values (Murrell

et al., 2015). The final dataset consisted of 17 142 compounds ver-

sus 59 cell lines (the NCI60 panel, except for ME.MDA_N) and a

total of 941 831 data points, which corresponds to a matrix com-

pleteness of 93.08%. Table 1 summarizes the details of the profiling

datasets used to describe the cell lines.

2.2 Compound descriptors
The compounds were described with circular Morgan fingerprints in

count format, which encode the compound structures via radial

atom neighbourhoods (Bender et al., 2004). The fingerprints were

calculated with the R package camb (Murrell et al., 2015). The size

of the fingerprints was set to 256 bits, and the maximum radius of

the substructures considered was set to 2. We used the circular fin-

gerprints because they have provided high retrieval rates in compar-

able studies (Bender et al., 2009; Koutsoukas et al., 2013).

2.3 Compound clustering
The compounds were clustered using periodic two-dimensional Self-

Organizing Maps (SOMs) (Bouvier et al., 2014). Two dimensions,

here 50�50, determine the map size in a periodic manner, whereas

the third dimension contained the compound fingerprints. Each vec-

tor along the third dimension is called a neuron, v. The same finger-

prints used to train the PGM models served as input vectors to

the SOMs. The SOM values were initialized from a uniform distri-

bution spanning the values present in the input vectors. At

each training step, the most similar neuron to the input vector con-

sidered was updated. The conventional Unified distance matrix (U-

matrix) was calculated to delineate the clusters. The U-matrix value

associated with a given neuron, UheightðvÞ, is defined as the average

Euclidean distance between that neuron and its eight closest neigh-

bours: UheightðvÞ ¼ 1
8

P
l2NðvÞ Edðv;lÞ, where NðvÞ is the set of

neighbours and Ed is the Euclidean distance between neurons. A dis-

tance threshold value was then applied to the U-matrix to define the

contours of the compound clusters (Cortes-Ciriano et al., 2015c).

86 I.Cortés-Ciriano et al.

 at Institut Pasteur M
ediathÃ

¨que Scientifique on M
ay 4, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

,
),
Staunton etal., 2001; 
(
)
,
(PCM) 
; Cortes-Ciriano, Ain, etal., 2015).
-
 2010; Su etal.,
; Cortes-Ciriano, Ain, etal., 2015
ure
data set
to
methodsData sets
(-
,
-
data set
,
,
data sets
C
50x50
,
,
, Bouvier,
2015).
http://bioinformatics.oxfordjournals.org/


2.4 Model training
Random Forest (RF) models (Breiman, 2001) were trained with the

ensemble.RandomForestRegressor module of the python library sci-

kit-learn (Pedregosa et al., 2011) using the following parameters: (i)

number of trees in the forest: 100 (Sheridan, 2013); (ii) criterion to

assess the quality of a split: mean squared error; (iii) minimum

number of data points to split a node: 1; (iv) minimum number of

data points in a leaf to keep a given node split: 1; (v) maximum

number of randomly selected descriptors considered when splitting

a node (mtry): dimensionality of the input space. Radial-kernel

Support Vector Machine (SVM) models were trained using the svm

module of the python library scikit-learn (Pedregosa et al., 2011).

Fig. 1. Pharmacogenomic modelling concept and illustration of the learning strategies explored. (a) The pGI50 values for 17 142 compounds on 59 cancer cell lines

(941 831 data points) were modelled with RF and SVM models and conformal prediction. (b) Illustration of the training data used in the following learning strat-

egies: (b) 10-fold CV PGM models (interpolation); (c) LOCCO; (d) LOCO; and (e) Family QSAR. As can be seen in (b–e), the training data used in each learning strat-

egy differs with respect to (i) the subset of data-points from the whole dataset used for training and (ii) the type and combination of input descriptors, which can

be only compound descriptors, only cell line descriptors, or the combination of both. In all models reported in this article, Morgan fingerprints were used as com-

pound descriptors, whereas the dataset views indicated in Table 1 and four cell line kernels were used to encode the cell lines. Overall, this validation enabled us

to assess the model’s performance in real-world settings, where the extrapolation to novel cell lines and compounds is often a necessary step

Table 1. Description of the dataset views benchmarked for the compound sensitivity prediction using the NCI60 panel

Original profiling dataset Abbreviated data

set view name

Details

Cell line fingerprints (Lorenzi

et al., 2009)

Cell Fingerprints Number of short tandem repeats at 16 genomic loci

DNA copy-number variation

(Varma et al., 2014)

CNV CNV for the 967 genes (Supplementary Table S1) exhibiting at least two mutations in

the NCI60 panel. DNA gain (>3N, log2¼ 0.58) was encoded as 1, DNA losses

(<1N, log2¼�1) as �1, and the rest (2N) as 0

DNA copy-number variation

(Varma et al., 2014)

CNV Onc. & T. Suppre. CNV for oncogenes and tumour suppressors (Supplementary Table S2)

mRNA (Reinhold et al., 2010) G.t.l ABC Transcript levels (log2) of 47 ABC transporters

mRNA (Reinhold et al., 2010) G.t.l Onc. & T. Suppre. Transcript levels (log2) of (i) oncogenes, and (ii) tumour suppressors

mRNA (Reinhold et al., 2010) G.t.l Kin. Transcript levels (log2) of 402 human kinases (Supplementary Table S3)

mRNA (Reinhold et al., 2010) G.t.l 1000 genes Transcript levels (log2) of the 1000 genes displaying the highest variability among the

NCI60 panel (Supplementary Table S4)

mRNA (Reinhold et al., 2010) G.t.l 1000 pathways Average transcript levels (log2) of the 1000 pathways displaying the highest variance

among the NCI60 panel (Supplementary Table S5)

mRNA (Reinhold et al., 2010) G.t.l 1000 genes & Kin.

& Onco. & T. Suppre.

Transcript levels (log2) of (i) the 1000 genes displaying the highest variance among

the NCI60 panel, (ii) the human kinome, (iii) oncogenes, and (iv) tumour

suppressors

mRNA (Reinhold et al., 2010) G.t.l Kin. & Onco. & T.

Suppre.

Transcript levels (log2) of (i) the human kinome, (ii) oncogenes, and (iii) tumour

suppressors

miRNA (Reinhold et al., 2010) miRNA Expression (log2) of 627 miRNAs

Reverse-phase lysate arrays

(Nishizuka et al., 2003)

RPLA Normalized protein abundance levels (log2) for 89 proteins (Supplementary Table S6)

Whole exome sequencing (Abaan

et al., 2013)

Exome Mutation status (1: mutated, 0: non mutated) of 112 Type II variants (Supplementary

Table S7) predicted to be deleterious (polyphen score> 0.85)

Whole exome sequencing &

DNA copy-number variation

Exome & CNV Concatenation of dataset views Exome seq. and CNV

The abbreviated names used in Fig. 3 are indicated in the second column. Prior biological knowledge, such as pathway information, was included in some data-

set views, whereas the gene transcript levels and mutational status for genes implicated in cancer, kinases and ABC transporters were gathered independently and

combined in the dataset views to assess the redundancy of their predictive signal
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The parameter values were optimized with a 10-fold cross-valid-

ation (CV) and a grid search. The parameter grid was composed of

the following values: (i) C: {2�8, 2�6, . . . , 22, 101, 102, 103} and (ii)

r: {2�8, 2�6, . . . , 22}. All calculations were performed on 16 Intel

Xeon E5-2670 processors and a total memory of 256 GB. The train-

ing times on the complete dataset ranged between 6 and 8 h.

2.5 Learning strategies
2.5.1. PGM models

In the following, we define ‘PGM models’ as those models simultan-

eously trained on (i) compound descriptors and on (ii) one cell line

profiling data set view.

• Assessment of the interpolation power with a 10-fold CV (10-

fold CV PGM) model: a given dataset was randomly divided into

(i) a training set comprising 90% of the data points and (ii) a test

set comprising the remaining 10% of the data (Fig. 1b). This pro-

cess was repeated 10 times, each time leaving out a random sub-

set of the data, which enabled the generation of predicted values

for all data points. Thus, although the test set is comprised of

compounds and cell lines that are also present in the training

data, the training and test sets are comprised of different com-

pound–cell line pairs. The interpolation power of these 10 mod-

els was evaluated on a per cell line and on a per compound

cluster basis. To this end, the RMSE and R2
0 values were calcu-

lated on subsets of the test set grouped by cell line (cell line-aver-

aged performance) or by the compound cluster (compound

cluster-averaged performance).
• Leave-One-Compound-Cluster-Out (LOCCO) models (Fig. 1c):

all data points annotated on a given chemical cluster were left out

as a test set; a PGM model was trained on the training set, and the

values for the test set were predicted. These steps were repeated

for each compound cluster. This scenario reflects the practical situ-

ation where a model predicts pGI50 values for chemically novel

compounds, and thus permits the assessment of the extrapolation

capabilities of a PGM model in chemical space.
• Leave-One-Cell-Line-Out (LOCO) models (Fig. 1d): this valid-

ation scenario is similar to LOCCO, except that the data left out

for the test set are now all of the data obtained for a particular cell

line. This scenario intends to mimic the situation where the PGM

model is employed to extrapolate the data to novel cell lines.
• Leave-One-Tissue-Out (LOTO) models: The performance of the

PGM models was further evaluated by extrapolating to cell lines

whose tissue of origin was not present in the training set. This

scheme is similar to LOCO, except for the fact that all of the can-

cer cell lines originating from the same tissue were left out from

the training set each time. It was employed because cell lines

from the same tissue, despite their genetic differences, often still

share commonalities with regard to compound activity.

To quantify the improvement of the PGM models over models ex-

clusively trained on compound fingerprints (compound-only mod-

els), the following one-space learning strategies were explored

(Brown et al., 2014).

2.5.2 Compound-only (QSAR) models

• Family Quantitative Structure-Activity Relationship (QSAR F):

the models were exclusively trained using the compound finger-

prints as the input features (Fig. 1e). A QSAR F model serves to

assess whether the explicit inclusion of the cell line information

improves the prediction of compound activity; if the PGM model

displays a performance very similar to the QSAR F model, the in-

clusion of cell line information would add little benefit to the

modelling of compound activity.
• Individual QSAR models per cell line: one QSAR model per cell

line was exclusively trained on compound descriptors, which is,

therefore, not able to include information from the biological side

or measurements against other cell lines. In this case, the compari-

son was made with the compound cluster-averaged interpolation

power of the PGM models to evaluate whether the integration of

the compound and cell line information leads to higher predictive

ability with respect to the per cell line QSAR models.

2.5.3 Cell line kernels

To assess whether the explicit inclusion of the cell line profiling data

as input variables provides a higher predictive signal than the cell

line kernels (Jacob et al., 2008), which encode cell lines with a vec-

tor quantifying the similarity among cell lines in a given space (e.g.

gene expression), we trained models with two sources of informa-

tion, namely: (i) compound descriptors and (ii) one of the following

cell line kernels:

• Dirac kernel (Jacob et al., 2008) or cell line identity fingerprints

(CLIFP) (Brown et al., 2014). CLIFP are binary descriptors of

length equal to the number of different cell lines considered,

where each bit position corresponds to one cell line. Formally,

CLIFP are defined as CLIFPði; jÞ ¼ dði� jÞði; j 2 1; :::;

NcellsÞ, where d is the Kronecker delta function and Ncells is the

number of distinct cell lines. These descriptors are simply cell

line indicator variables, and, therefore, no information on com-

pound activity across different cell lines is shared during model

training (Jacob et al., 2008).
• Multitask (MLT) kernel (Jacob et al., 2008). This kernel encodes

the cell lines in the following form: MLTði; jÞ ¼ ð1þ dði� jÞ
ði; j 2 1; :::; NcellsÞÞ=2. When coupled to SVM, this kernel de-

composes the model as a sum of two linear functions. The first

function, common to all cell lines, learns the shared patterns of

compound activity against all cell lines (e.g. substructures en-

riched for compound activity). The second function describes the

aspects of compounds specific to each cell line. The cell lines are

located at an equal distance, and information across cell lines

can be shared during the learning phase (though their biological

similarities and differences are not explicitly taken into account).
• Cor. Transcriptome kernel. This kernel encodes cell lines by

defining a Ncells�Ncells matrix where each i, j entry corresponds

to the Spearman’s Rank Correlation coefficient (rs) of the tran-

script levels (log2) of 19 965 genes (Reinhold et al., 2010) be-

tween cell lines i and j.
• Cor. Proteome kernel. This case is similar to the previous kernel,

with the difference that it considers the correlation of the protein

levels of 8113 distinct proteins (Gholami et al., 2014) for all cell

line pairs.

2.6 Model validation
The predictive power of the models was assessed on the test set accord-

ing to the RMSEtest and R2
0 test values (Golbraikh and Tropsha, 2002):

R2
0 test ¼ 1�

XN

i¼1
ðyi � ŷr0

i Þ
2XN

i¼1
ðyi � yÞ2

;

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy� ŷÞ2

N

s
;
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where N represents the size of the test set; yi the observed, ŷi the

predicted, and y the average pGI50 values of those data points

included in the test set; and ŷr0
i ¼ sŷ, with s ¼

P
yiŷi=

P
ŷ2

i .

2.7 Assessment of the maximum and minimum

achievable model performance
To assess the maximum and the minimum achievable RMSEtest and

R2
0 test values based on the experimental uncertainty of the pGI50

values, we generated the simulated data as follows:

• Maximum performance. A sample, A, of the same size as the test

set was randomly extracted from the vector containing the whole

set of pGI50 values. Subsequently, the experimental uncertainty

(multiplied by �1 in half of the cases) was added to each data

point in A, thus defining the sample B. We define experimental

uncertainty as the standard deviation of replicate pGI50 measure-

ments. In cases where no experimental uncertainty was available

for a data point, the mean of the available replicate-averaged ex-

perimental uncertainties, namely 0.27 pGI50 units, was used.

Next, the RMSEtest and R2
0 test values were calculated for A with

respect to B. These steps were repeated 1000 times, which led to

the distributions of the maximum achievable RMSEtest and

R2
0 test values.

• Minimum performance. The procedure was the same as in the

previous case, except that sample A was randomized before cal-

culating the RMSEtest and R2
0 test values.

2.8 Conformal prediction
Conformal prediction builds upon past experience, i.e. the data

points in the training set, to define the confidence intervals (CI) for

individual predictions, ŷ, with an error of 1� e, where e is the toler-

ated error. The non-conformity score, anew, for a new data point,

xnew, quantifies how distant it is with respect to the data points from

the training set, X ¼ fxign
i¼i. Here, the non-conformity scores were

calculated as: anew ¼ jynew�ŷnew j
q̂ynew

, where q̂ynew
is the predicted error for

xnew with an error model. The main advantage of conformal predic-

tion is that the CI are always valid, i.e. a confidence of 0.8 means

that the predicted confidence regions will contain the observed value

in at least 80% of the cases (Norinder et al., 2014).

To calculate and validate the predicted CI, the following protocol

(Norinder et al., 2014) was implemented. First, the entire dataset was

randomly divided into an external set (20% of the data) and a train-

ing set (80%). The latter was subsequently split into a calibration set

(30%) and a proper training set (70%). Thus, these three sets include

data from the entire sets of cell lines and compounds. Two models

were trained on the proper training set, the first of which predicted

the pGI50 values (point prediction model), whereas the second pre-

dicted the errors in the prediction (error model), q̂. Both models were

trained with the compound fingerprints and the ‘G.t.l 1000 genes’

dataset view as input features using the complete dataset. The point

prediction model was generated by training an RF model on the

proper training set with a 10-fold CV and with pGI50 values as the de-

pendent variable. The generated CV predictions served to calculate

the residuals (i.e. prediction errors) for the data points in the proper

training set. Subsequently, the error model was generated by training

an RF model on the proper training set using these residuals as the de-

pendent variable. The pGI50 values and prediction errors were subse-

quently predicted for the calibration set and employed to calculate the

vector of non-conformity scores for this set, which, after being sorted

in increasing order, led to: acalib ¼ facalibj
gNcalib

j¼1
, where Ncalib corres-

ponds to the number of data points in the calibration set. The a value

for a given confidence level, namely a1�e, was calculated as follows:

a1�e ¼ acalibj
if j � bNcalib� ð1� eÞc; where � indicates identity.

This corresponds to traversing the set acalib at its a1�e element, namely

1� e. Finally, the prediction errors (q̂y) and the pGI50 values (ŷ)

were predicted for the test set. The CI was calculated as:

ŷ6 a1�e � q̂y.

2.9 Pathway–drug associations
The average log2 gene transcript level for the genes in each pathway

of the MSigSB C2 Canonical Pathways gene set (Liberzon et al.,

2011) was defined as the expression level of each pathway. To assess

the association between the drug response (pGI50) and the expres-

sion of a given pathway, we fitted a linear model considering the tis-

sue type, T, as a blocking factor (Haibe-Kains et al., 2013), which

was defined as: pGI50 ¼ bpPi þ bTTi þ e; where Pi corresponds

to the average expression of pathway i in a given cell line, Ti to the

tissue of origin of that cell line, and e to the error term. The

bp values determined the strength of the associations, whereas their

significance was estimated by the statistical significance of bp (two-

sided t-test, a¼0.05).

3 Results

3.1 Summary of the cell line profiling dataset views
We collected seven profiling datasets for 59 cell lines from the

NCI60 panel, excluding ME.MDA-N due to the lack of gene tran-

script microarrays (Table 1). These molecular/phenotype datasets

were combined in a variety of ways, which we termed dataset views

in analogy to database views (Costello et al., 2014). The dataset

views may consist of (i) a profiling dataset, (ii) a subset thereof, e.g.

gene transcript levels of gene sets or (iii) a modification of the

dataset to which prior knowledge is added, e.g. the calculation of

pathway expression levels based on knowledge of the cell signalling

networks. A total of 14 dataset views were defined, which are sum-

marized in Table 1 and provided in the Supplementary Material.

In addition to the complete dataset, comprising all available data

and including 17 142 distinct compounds (Supplementary Table S8)

and 941 831 data points, we assembled three additional datasets: (i)

the uncorrelated bioactivities 0.5 dataset, comprising 3641 distinct

compounds (199 940 data points) whose bioactivity distributions on

the 59 cell lines exhibit standard deviations higher than 0.5 pGI50

units (Supplementary Table S9); (ii) the uncorrelated bioactivities 1

dataset, comprising 165 distinct compounds (9376 data points)

whose bioactivity distributions on the 59 cell lines exhibit standard

deviations higher than 1 pGI50 unit (Supplementary Table S10); and

(iii) the high confidence dataset, exclusively comprising data points

averaged over at least two experiments (304 212 data points and

5302 distinct compounds). The uncorrelated bioactivities 0.5 and 1

datasets served to assess the models’ performance on compounds

displaying a dynamic range of bioactivities across the cell line panel,

while the latter dataset served to evaluate whether the models’ per-

formance improves when using replicate-averaged cell line sensitiv-

ity data (Supplementary Table S11 for details).

3.2 Chemical space characterization
To assess the chemical diversity in the data, we clustered the 17 142

compounds with SOMs (Supplementary Figure S1 and Section 2.3),

which resulted in the definition of 31 distinct chemical clusters.

Several clusters, e.g. 4 and 18, are highly homogeneous, as high-

lighted by the high inter-neuron similarity (blue areas in

Supplementary Fig. S1). In contrast, other clusters are comprised of
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more diverse compounds (shown in red in Supplementary Fig. S1).

For instance, cluster 2 (Supplementary Table S8) is composed of

polycyclic aromatic compounds with diverse halogen substituents

and topologies. The definition of structural clusters will be em-

ployed later to examine the extrapolation power of the PGM models

to chemically dissimilar structures.

3.3 Comparison between RF and SVM
Although the statistical robustness of RF to model the chemical and

biological data simultaneously has been empirically shown (Menden

et al., 2013), the mathematical notions by which information is

shared across compounds and cell lines are poorly understood.

Given that a comparison between the multi-task learning capabil-

ities of RF and SVM in the field of pharmacogenomics is lacking, we

first compared their performance in 10-fold CV when trained on the

uncorrelated bioactivities 1 dataset using (i) compound fingerprints

and (ii) either gene expression data or a cell line kernels as the input

features (Fig. 2a). We did not find statistically significant differences

in the performance between the RF and SVM 10-fold CV PGM

models trained on compound fingerprints and the dataset view

‘G.t.l. 1000 genes’ (P<0.05). The performance of these models was

comparable to that of the 10-fold CV PGM models encoding cell

lines with the cor. GE and MLT kernels trained with RF and SVM,

respectively (P<0.05, labelled with ‘a’ in Fig. 2). Hence, in this

dataset, encoding cell lines with kernels that are naı̈ve with respect

to the nature of the genomic makeup of the cell lines, in this case the

MTL kernel, provides virtually the same predictive signal as the

gene expression data, i.e. the ‘G.t.l. 1000 genes’ dataset view.

Interestingly, the performance of SVM and RF across the cell line

kernels explored was not constant, as the RF models outperformed

SVM when using the cor. Proteome and Dirac kernels to encode cell

lines, whereas the SVM models outperformed RF in the case of the

MLT kernel, thus highlighting that information across compounds

and cell lines is not shared in a similar way across RF and SVM.

Based on the comparable predictive power of RF and SVM, we used

RF to train all of the models presented in the following sections be-

cause RF (i) requires smaller training times than the kernel methods

and (ii) are robust with respect to the value of their parameters

(Supplementary Fig. S2 and Sheridan, 2013).

3.4 PGM model validation
The PGM models trained on the complete dataset with 10-fold CV

using compound fingerprints and the dataset view ‘G.t.l 1000 genes’

as input features exhibited mean RMSEtest and R2
0 test values of

0.40 6 0.00 pGI50 units and 0.83 6 0.00 (n¼10), respectively.

These values were consistent with the theoretical maximum and

minimum achievable performance, which were 1.42 and 0.35 pGI50

units, respectively, for the RMSEtest and 0.96 and�0.96, respect-

ively, for the R2
0 test (Supplementary Fig. S3). Moreover, the model

performance did not stem from chance correlations, as R2
0 test values

became negative when 75% of the pGI50 values were randomized

(Clark and Fox, 2004) (Supplementary Fig. S4). Modelling the high

confidence dataset led to a similar performance, with an RMSEtest

of 0.45 pGI50 units and an R2
0 test value of 0.84. This indicates that

the predictive power of RF does not decrease when we included the

data points measured in only one experiment, which is in agreement

with a recent benchmarking study on the noise sensitivity of ma-

chine learning algorithms in bioactivity modelling (Cortes-Ciriano

et al., 2015a). The 10-fold CV PGM models were further evaluated

on the uncorrelated bioactivities 0.5 dataset, where RMSEtest and

R2
0 test values of 0.58 pGI50 units and 0.79, respectively, were

observed. These RMSEtest and R2
0 test values were also in agreement

with the maximum achievable performance estimated for the uncor-

related bioactivities 0.5 dataset (Supplementary Fig. S5).

3.5 Comparisons between the PGM and QSAR models
To test whether the PGM models display higher predictive power

than per cell line QSAR models, we trained (i) the individual QSAR

10-fold CV RF models with increasingly larger training sets, whose

performance was assessed on the held-out data (orange in Fig. 2), on

the uncorrelated bioactivities 1 dataset and (ii) the 10-fold CV PGM
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Fig. 2. Comparison between (i) RF and SVM and (ii) the cell line kernel and

PGM models. (a) The predictive power of the 10-fold CV RF and SVM models

was compared on the uncorrelated bioactivities 1 dataset across the cell line

kernels explored and the data set view ‘G.t.l. 1000 genes’ (Table 1). The CV

RMSEtest values on the left out sets in CV were used as a proxy to monitor the

predictive power of the models. RF and SVM trained on the ‘G.t.l. 1000 genes’

dataset view displayed comparable predictive power, whereas RF and SVM

exhibited diverse performance across the cell line kernels used in this study.

Models sharing a letter label performed at the same level of statistical signifi-

cance (Tukey’s HSD, a¼ 0.05). The blue points indicate the median and the

interquartile range (25th–75th percentile), whereas the red points indicate the

mean RMSEtest value. (b) Comparison between the individual QSAR and

PGM models. The 10-fold CV Ind. QSAR models were trained on increasingly

larger training sets and their performance was assessed on the left out data

(orange). Thus, each point in the figure corresponds to the average 10-fold

CV RMSEtest value across 59 models (one per cell line). The 10-fold CV PGM

models were trained jointly on the compound and cell line descriptors (‘G.t.l.

1000 genes’ dataset view). For each model, the training set comprised a frac-

tion of the data annotated on a given cell line (x-axis) and a percentage of the

data annotated on the remaining cell lines (indicated in the legend). Overall,

lower RMSEtest values are obtained when integrating information from sev-

eral cell lines, indicating that the PGM models enable us to share information

across cell lines and compounds, thereby outperforming the individual QSAR

models
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RF models on the compound and cell line descriptors (‘G.t.l. 1000

genes’ dataset view). In the latter case, the training set comprised an

increasingly larger percentage of the data annotated on a given cell

line (x-axis in Fig. 2) and an increasingly larger percentage of the

data annotated on the remaining cell lines (indicated in the legend of

Fig. 2). We consistently obtained lower RMSEtest values with the

PGM models than with the individual QSAR models, indicating that

PGM modelling enables the sharing of information in the biological

and chemical space. Likewise, the RMSEtest values systematically

decreased as more data were added to the training set in the PGM

models. The biggest RMSEtest difference between the individual

QSAR and the PGM models were obtained when the least amount

of data (5 or 10%) was assigned to the training set, whereas the low-

est difference was found when almost all of the data available on a

given cell line was used for training. This indicates that integrating

data across different cell lines seems more beneficial when the data

are relatively scarce.

On the complete dataset, the 10-fold CV PGM models slightly

outperformed models trained exclusively on compound descriptors,

namely QSAR F, with RMSEtest and R2
0 test values of 0.45 pGI50

units and 0.78, respectively. These results indicate (compared to an

RMSEtest value of 0.40 pGI50 units and R2
0 test¼0.83 for the 10-

fold CV PGM model) that the pGI50 values of the compounds are

largely correlated across the cell line panel. However, the 10-fold

CV PGM models increased the relative performance over the QSAR

F models on the uncorrelated bioactivities 0.5 dataset, with respect-

ive RMSEtest values of 0.58 versus 0.69 pGI50 units, respectively,

highlighting the finding that the PGM models appear to be more

suitable for modelling compounds exhibiting an uncorrelated pGI50

value on a cell line panel. Moreover, the 10-fold CV PGM models

significantly outperformed individual cell line models, i.e., QSAR

(two-sided t-test, a¼0.05, P<0.05), trained on the data points cor-

responding to a given cell line that exclusively used the compound

descriptors as the input features. These individual models dis-

played an average RMSEtest value of 0.73 6 0.05 pGI50 units

(Supplementary Table S12). Therefore, integrating the biological in-

formation from different cell lines in a single PGM model improves

the compound sensitivity prediction on the NCI60 panel over the

QSAR models, and even more so in cases where activities across cell

lines show less of a correlation.

3.6 Benchmarking the cell line profiling datasets
To benchmark the predictive signal across the 14 dataset views, we

used the uncorrelated bioactivities 0.5 dataset, as it contains the

compounds displaying the least correlated pGI50 values on the cell

line panel and thus is more challenging to model. For each dataset

view, we trained a 10-fold CV PGM model using that dataset view

and the compound fingerprints as the input features, which resulted

in a total of 140 models (14 data set views�10 CV folds). An ana-

lysis of variance (ANOVA) on the RMSEtest values (Fig. 3a) yielded

significant differences between the models (P<1�10�17). Similar

to previous reports (Costello et al., 2014; Jang et al., 2014), we have

also observed that the gene transcript levels led to the highest pre-

dictive power, with median RMSEtest values in the 0.56–0.58 pGI50

units range (Fig. 3a). However, the combination of transcript levels

from different gene sets, e.g. kinases and ABC transporters (Fig. 3a),

did not translate into increased performance, suggesting that these

dataset views might contain redundant predictive signal. In addition,

there were no significant differences in performance between the

models trained on the gene transcript levels and those trained on the

miRNA abundance or RPLA data [Tukey’s Honestly Significance

Difference (HSD), P value<0.05]. Interestingly, the performance of

the models trained on the CNV or exome sequencing data was sig-

nificantly worse (Fig. 3a), with RMSEtest values in the 0.63–0.68

pGI50 units range. This poorer performance could possibly be ex-

pected given the sparseness of these data, as the percentage of non-

zero entries in the CNV and exome-seq matrices is 2.66 and 0.03%,

respectively.

3.7 Bioactivity interpolation to the cell lines and

compound clusters present in the training set
The interpolation power of the 10-fold CV PGM models was eval-

uated by calculating the RMSEtest values on subsets of the test set
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Fig. 3. Benchmarking the cell line profiling dataset views for the cell line sensitivity prediction. (a) The predictive power of the 14 dataset views (Table 1) and two

cell line kernels, namely cor. Proteome and cor. Transcriptome, was quantified by the RMSE values on the test set. For each dataset view, we trained the 10-fold

CV PGM models on the uncorrelated bioactivities 0.5 dataset. We found significant differences among the dataset views (ANOVA, P< 0.01). Post-hoc analyses

(Tukey’s HSD, a¼ 0.05) were used to cluster the dataset views according to their predictive power. Dataset views sharing a letter label performed at the same

level of statistical significance. We consistently found that the gene transcript levels and the abundance of proteins and miRNA led to the most predictive models

(labelled with ‘a’). (b) The evaluation of both interpolation and extrapolation power was evaluated on the complete dataset. After finding significant differences

across groups (ANOVA, P<0.01), we found that the PGM models interpolate and extrapolate to new cell lines and tissues at the same level of statistical signifi-

cance (Tukey’s HSD, a¼0.05). In contrast, we found statistically significant differences in the performance between extrapolation and interpolation to new chem-

ical clusters. The blue points indicate the median and the interquartile range (25th–75th percentile), whereas the red points indicate the mean RMSE value

Improved large-scale prediction of growth inhibition patterns 91

 at Institut Pasteur M
ediathÃ

¨que Scientifique on M
ay 4, 2016

http://bioinform
atics.oxfordjournals.org/

D
ow

nloaded from
 

(``
1,000 genes'' data set
ure
ure
data set
&equals;
data set
 < 
 &plus;/- 
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btv529/-/DC1
data sets 
data set
data set
data set
data set
 x 
ure
p < 
 x 
-
-
Figure
.,
ure
data set
(
 < 
).
Copy Number Variation (
)
Figure
-
&percnt;
http://bioinformatics.oxfordjournals.org/


grouped by the cell line, cell line-averaged (Supplementary Fig. S6a),

or compound cluster, compound cluster-averaged performance

(Supplementary Fig. 6b). Thus, one average RMSEtest value across

the 10-fold models was calculated for each cell line and compound

cluster. If not otherwise indicated, the results presented in the fol-

lowing sections correspond to models trained on the uncorrelated

bioactivities 0.5 dataset with (i) compound fingerprints and (ii) the

‘G.t.l. 1000 genes’ dataset view as the input features. The cell line-

averaged RMSEtest values ranged from 0.41 6 0.01 (U251) to

0.86 6 0.01 pGI50 units (HOP-92). We found significant differences

for the tissue-averaged performance (Tukey’s HSD, P<1�10�16),

with RMSEtest values ranging from 0.48 6 0.01 (prostate, displayed

in cyan) to 0.70 6 0.01 (leukaemia, displayed in green) pGI50 units

(Supplementary Fig. 6a). In addition, the learning curves showed

that the RMSEtest values of approximately twice the replicate-aver-

aged experimental uncertainty (0.27 pGI50 units) and the maximum

achievable performance (0.35 pGI50 units) can be obtained when

<10% of the data is used as a training set (Supplementary Fig. S7).

In contrast, an ANOVA analysis did not yield significant (P>0.05)

differences among the 31 chemical clusters (Supplementary Fig.

S6b), with observed median RMSEtest values in the 0.48–0.65 pGI50

units range. Hence, overall, it has been found that the interpolation

power is constant across the 31 chemical clusters, but not across

tissues.

3.8 Extrapolation in the cell line and tissue space
We further evaluated the extrapolation power to novel cell lines and

tissues with the LOCO and LOTO models using the complete

dataset. The LOCO models exhibited mean RMSEtest values of

0.43 6 0.08 pGI50 units (Fig. 3b and Supplementary Table S12),

with the lowest and highest RMSEtest values of 0.31 and 0.61

observed for cell lines U251 and OVCAR-5, respectively. Notably,

we found that the LOCO and cell line-averaged predictions are

highly correlated (rs¼0.92), indicating that interpolation and ex-

trapolation to novel cell lines are correlated. The RMSEtest values

for the LOTO models ranged between 0.35 (prostate) and 0.63

pGI50 units (leukaemia). Remarkably, the prediction errors were

similar across the entire bioactivity range (Supplementary Fig. S8).

Overall, we did not observe significant differences in performance

among the LOCO, LOTO (Fig. 3b), cell line-averaged

(Supplementary Fig. S6a), and compound cluster-averaged

(Supplementary Fig. S6b) results (Tukey’s HSD, P<0.05). We

found that the RMSE values between the observed and predicted

pGI50 values calculated using the LOCO and LOTO models for 47

out of 81 drugs, such as Imiquimod (NSC 369100) and

Bendamustine (NSC 138783), were below 0.5 pGI50 units

(Supplementary Fig. S9a and b). High RMSE values, between 1 and

1.5 pGI50 units, were observed for 11 drugs, such as the folate anti-

metabolite pemetrexed (NSC 698037) and Irinotecan (NSC

728073). Together, these data indicate that the PGM models ex-

trapolate compound bioactivities to novel cell lines and tissues at the

same level of statistical significance as for interpolation within a

given cell line or tissue.

3.9 Extrapolation in the chemical space
A markedly different trend was observed for the ability of the PGM

models to generalize across the chemical space, as assessed by the

LOCCO models using the complete dataset. The LOCCO models

exhibited mean RMSEtest values of 0.83 6 0.17 pGI50 units (Fig. 3b

and Supplementary Table S12), which differed significantly from the

LOCO and LOTO results (Fig. 3b) (Tukey’s HSD, P<0.01), and

from the compound cluster-averaged interpolation performance

(Supplementary Fig. S6b). Notably, the chemical diversity within

the compound clusters was not correlated with model performance,

as low RMSEtest values were consistently obtained for the heteroge-

neous and homogeneous clusters (Fig. S1 and Supplementary Table

S13). The lowest RMSEtest value of 0.53 pGI50 units was obtained

for cluster 24, which contains 485 compounds with polycyclic ring

systems, generally with no more than three fused rings, as well as

ring assemblies linked by sulphide, sulfinyl, secondary amine, car-

bonyl and alkyl groups (Supplementary Table S13). Cluster 16,

which was modelled with the highest RMSEtest value of 1.23 pGI50

units, contains tri- and tetracyclic systems with hydroxybenzene,

methoxybenzene and quinone functionalities. We obtained errors in

prediction values below 0.5 pGI50 units for 15 out of 81 drugs in the

complete dataset, and below 1 pGI50 units for 43 compounds. The

worst predicted drugs were depsipeptide (NSC 630176) and the hal-

ichondrin B analogue NSC 707389, with respective errors in predic-

tion of 4.29 and 4.35 pGI50 units (Supplementary Fig. S9c). Taken

together, these results indicate that the range of errors is consider-

ably large (>4 pGI50 units), and, hence, extrapolations in the chem-

ical space remain a challenging task, and certainly on this particular

dataset.

3.10 Conformal prediction provides informative CI
Conformal prediction was included in the modelling framework to

provide CI for the individual predictions. The percentage of data

points for which the predicted value lay within the calculated CI,

which were calculated with an increasing confidence level, is highly

correlated with the confidence level (Spearman’s rs>0.99,

Supplementary Fig. S10). Therefore, the combination of the

Random Forest and conformal prediction estimates the compound

activity as a pGI50 region associated to a user-defined confidence

level, which represents an easily interpretable estimate of the reli-

ability of individual predictions.

3.11 Consistency of pathway–drug associations with

predicted bioactivities
To investigate whether the bioactivities predicted by the PGM mod-

els make it possible to identify genomic markers of drug sensitivity,

we evaluated the consistency between the pathway–drug associ-

ations inferred from the experimental and predicted bioactivities for

the 37 FDA-approved drugs and the 19 compounds in the clinical

trials (Supplementary Table S14) present in the uncorrelated bioac-

tivities 0.5 dataset. For each pathway, we fitted a linear model con-

trolled by the tissue source, where the average pathway expression

was considered as the predictor of drug sensitivity. Overall, no sig-

nificant differences (Tukey’s HSD, P<0.05) were observed between

the pathway–drug associations calculated with the most predictive

10-fold CV PGM (Supplementary Fig. S11a) and LOCO models, as

the median Spearman’s rs values between the bp coefficients esti-

mated with (i) the experimental cell-line sensitivity data and (ii) the

CV and LOCO predictions were in the 0.75–0.91 range

(Supplementary Fig. S11b). These results indicate that the 10-fold

CV and LOCO predictions reflect the association between gene ex-

pression summarized at the pathway level and the cell line sensitiv-

ity. However, significant differences were found among these groups

and the LOCCO and LOTO models, for which the median

Spearman’s rs values were 0.63 and 0.03, respectively. We obtained

similar results when considering only the pathways significantly

associated to drug response [false discovery rate (FDR)<20%]

(Supplementary Fig. S11c and d).
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Next, we analysed whether the pathway–drug associations are

consistently predicted for drugs exhibiting diverse MoAs. Out of the

56 drugs considered, 26 exhibited median Spearman’s rs values be-

tween the bp coefficients estimated with the experimental cell line

sensitivity data and the 10-fold CV predictions in the 0.5–0.75

range, and 18 were above 0.75 (Supplementary Fig. S10b). High

Spearman’s rs values were obtained across the 22 distinct drug

MoAs, indicating that no specific MoA is favoured. Notably, most

Spearman’s rs values increased (Supplementary Fig. S11d) when the

calculation of the pathway–drug associations was restricted to the

pathways significantly associated to drug response (FDR<20%).

Together, we can conclude that the identification of genomic

markers of drug sensitivity is significantly dependent on the presence

of cell lines originating from the same tissue and structurally similar

compounds in the training set.

3.12 Prediction of the growth inhibition patterns using

the NCI60 panel
The experimental and predicted growth inhibition patterns obtained

by the most predictive models were highly correlated

(Supplementary Fig. S11e), with median Spearman’s rs values in the

0.53–0.58 range, and 32 out of the 56 drugs from the uncorrelated

bioactivities 0.5 dataset had values higher than 0.5 for

(Supplementary Fig. S11f). Nevertheless, the LOCO, LOTO and

LOCCO models (Tukey’s HSD, P value<0.001) displayed a

marked decrease in the rs values (Supplementary Fig. S11e) with re-

spect to the most predictive 10-fold CV PGM models.

The relative growth inhibition values using the NCI60 panel can

be depicted in a bar plot with the pGI50 values transformed into z-

scores. Figure 4 depicts the observed and predicted growth inhib-

ition patterns for methotrexate (MTX) via the 10-fold CV PGM

model. MTX was chosen for illustration, given its complex growth

inhibition pattern. (Bar plots for the 56 drugs calculated with the

predictions obtained with the 10-fold CV PGM, LOCO, LOTO and

LOCCO models are provided in the Supplementary material.) The

predictions accounted for 55 out of 59 cases for the relative sensitiv-

ity of the cell line. For instance, the six leukaemia cell lines (green

turquoise) were predicted to be sensitive to MTX. Moreover, com-

plex inhibition patterns for renal-derived cell lines (light magenta)

were accounted for by the predictions, as the TK-10, RXF-393 and

A498 cell lines were predicted to be highly resistant to MTX,

whereas the effect of MTX on sensitive cell lines, namely UO-31,

SN12C, CAKI-1 and ACHN, was also correctly predicted (Fig. 4b).

Taken together, these data indicate that the drug sensitivity predic-

tions were able to account for the complex patterns of cell line

growth inhibition for this particular drug.

3.13 Comparisons to previous methods
We compared our results with previous studies (Ammad-ud-din

et al., 2014; Menden et al., 2013) by applying our modelling proced-

ure to the GDSC and CCLE datasets using the Morgan fingerprints

as the compound descriptors, and the gene transcript levels for the

1000 genes displaying the highest variance across the cell line panel

to describe the cell lines (Supplementary Text and Table S15). For

the GDSC dataset, we obtained lower mean RMSEtest and higher

R2
test values, namely 0.75 6 0.01 and 0.74 6 0.01 pGI50 units, re-

spectively, with the 10-fold CV models compared with Menden

et al. (2013), who obtained an RMSEtest of 0.83 and an R2
test of

0.72 pGI50 units, and Ammad-ud-din et al. (2014), who obtained an

RMSEtest of 0.83 6 1.00 and an R2
test of 0.32 6 0.37 pGI50 units.

The same trend was observed for the LOTO models, with mean

RMSEtest and R2
test values of 0.81 6 0.16 and 0.72 6 0.08 pGI50

units, respectively, compared with Menden et al. (2013), with

RMSEtest and R2
test values of 0.99 and 0.61 pGI50 units, respect-

ively. The results obtained here, with RMSEtest values of

1.40 6 0.80 pGI50 units, are comparable to those of Ammad-ud-din

et al. (2014), with RMSEtest values of 0.85 6 0.41 pGI50 units, when

extrapolating to new compounds. However, it is important to men-

tion that Ammad-ud-din et al. (2014) grouped compounds into sets

at random and not based on chemical similarity, which likely made

their extrapolation easier.

4 Discussion

The primary goal of this study was to capitalize on the increasing

amount of in vitro cell line sensitivity and molecular profiling data of

cancer cells to predict the growth inhibition patterns of compounds

on the NCI60 panel. Although the principles of pharmacogenomic

(a) (b)

Fig. 4. Evaluation of the predicted growth inhibition patterns for MTX on the

NCI60 panel. (a) The relative growth inhibition pattern (z-scores) on the NCI60

panel was calculated from the experimental pGI50 values together with the

experimental uncertainty of the measurements. (b) Predicted relative growth

inhibition pattern of growth inhibition in the 10-fold CV model (i.e. interpol-

ation) along with the 75% CI calculated using conformal prediction. Complex,

and overall matching, inhibition patterns are reflected by the predictions. For

instance, the TK-10, RXF-393 and A498 renal cell lines (marked with an aster-

isk) were predicted to be highly resistant to MTX, whereas the effect of MTX

on sensitive cell lines, namely UO-31, SN12C, CAKI-1 and ACHN, was also

correctly predicted. Cell lines originating from the same tissue are in the

same colour (breast: red, central nervous system: orange, colon: olive green,

lung cancer: dark green, leukaemia: turquoise, melanoma: blue, ovarian:

blue, prostate: purple, renal: magenta)
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modelling are not new, this study represents novelty in the field, as, to

our knowledge, it is the first effort to combine large-scale NCI anti-

cancer screening data using the NCI60 panel with the available cell

line profiling information, including error bars. Unlike previous mod-

elling studies on the NCI60 panel (Abaan et al., 2013; Paull et al.,

1989; Staunton et al., 2001; Szakacs et al., 2004; Wan and Pal, 2014),

we simultaneously integrated the chemical information and cell line

profiling data, which enables us to predict the growth inhibition pat-

terns and to inter- and extrapolate on the chemical and cell line do-

mains. In addition, coupling conformal prediction to the Random

Forest enabled the definition of CI for the individual predictions.

We consistently found the highest predictive signals in the gene ex-

pression, miRNA and protein abundance data. The incorporation of

prior biological knowledge by summarizing the gene expression data

at the pathway level did not provide an additional predictive signal.

Interestingly, high predictive power was attained with models trained

on gene expression data from the genes displaying the most variable

transcript levels across the cell line panel. Encoding cell lines with cell

line kernels led, in some cases, to models with comparable predictive

power to those trained explicitly on the cell line profiling data.

Although encoding cell lines with cell line kernels may be sufficient to

model the compound pGI50 values from the NCI60 panel, in our view

this would not be the case on datasets comprising highly dissimilar

cell lines. In addition, we note, in particular, that the Dirac and MLT

kernels do not permit us to extrapolate in the cell line space, likely

rendering them less useful in those cases. The sparseness of the CNV

and exome sequencing data may be the reason for the poor model per-

formance, and, therefore, it remains to be seen whether the modelling

of cell line panels with more comprehensive mutational data leads to

better predictions (Costello et al., 2014).

A major challenge to the cell line sensitivity prediction is the ex-

trapolation of compound bioactivities to novel cell lines and to

structurally distinct compounds. We did not find significant differ-

ences in performance between the interpolation and the extrapola-

tion to new cell lines (LOCO) and tissues (LOTO), with mean

RMSEtest values in all cases smaller than twice the mean uncer-

tainty value of the bioactivity measurements. This observation en-

ables the prediction of compound activities on cancer cell lines for

which little bioactivity data are currently available; however, ex-

trapolation is still improved by the presence of cell lines from the

same tissue/ontogeny in the training set. Given that similar com-

pounds exhibit similar growth inhibition profiles (Shivakumar and

Krauthammer, 2009), it was expected that the model performance

would considerably decrease when predicting the activity of struc-

turally dissimilar compounds. This was indeed the case because

mean RMSEtest values of approximately three times the average ex-

perimental uncertainty were obtained when extrapolating in the

chemical space (LOCCO). Although the error in prediction should

ideally be close to the experimental uncertainty, this performance

may still be useful for compound prioritization. Previous studies

have shown that adding physicochemical descriptors or increasing

the bit-string length of the Morgan fingerprints (set to 256 here)

leads to higher predictive power when modelling a highly diverse set

of molecules (De Bruyn et al., 2013). Here, we did not obtain higher

predictive power when increasing the bit-string length, when adding

physicochemical descriptors to the compound fingerprints, or when

using Morgan fingerprints in binary format (Cortes-Ciriano et al.,

2014). Our approach displays a higher predictive ability (10% de-

crease of CV RMSE) than the methods previously applied to the

GDSC dataset (Supplementary Text and Supplementary Table S15).

Moreover, the application of our approach to the Cancer Cell

line Encyclopedia (CCLE) (Barretina et al., 2012) dataset led to

statistically validated models, displaying R2
0 test values of�0.74,

which were comparable to those obtained on the GDSC and NCI60

datasets. Given that gene expression profiles for the 44 cell lines

comprised in the CCLE and the NCI60 panel are highly correlated

(Spearman’s rs¼0.88) (Supplementary Fig. S12), we suggest that

PGM models trained on the NCI60 panel could be applied to the

CCLE cell line panel, which could identify new purposes for the

17 142 compounds considered here (Weinstein, 2012).

It is also important to consider how the cell line sensitivity is

quantified for the application of the type of model presented here.

Fallahi-Sichani et al. (2013) applied a multi-parametric analysis to a

dataset comprising the activity of 64 anticancer drugs on 53 breast

cancer cell lines. The results of this study indicate that the param-

eters of the dose–response curve vary systematically and depend on

both the cell line as well as the drug class. For instance, the MoA of

a drug has a strong influence on drug efficacy (Emax), potency (IC50)

and on the steepness of the drug response curve. Overall, this study

indicates that parameters other than the potency of the drug re-

sponse curve should be considered in studies comparing drug activ-

ity, as they are likely to provide crucial insights into the biology of

the cell line’s response to drug treatment and into the drugs’ MoA.

An additional key aspect is the consistency of the in vitro cell

line sensitivity data. A previous study (Haibe-Kains et al., 2013) re-

ported a rather low correlation of the cell line sensitivity data from

the CCLE and GDSC datasets. We found low concordance between

the NCI60 and the CCLE sensitivity data (Supplementary Fig. S13),

and we did not obtain a high correlation between the predictions

calculated with a model trained on the NCI60 data for eight drugs

on 44 cell lines shared by the CCLE and the subset of the NCI60 cell

lines considered here. Actually, the RMSE values for these predic-

tions against the experimental data from the CCLE and, the pIC50

values from the CCLE and the pGI50 from the NCI60 dataset for

these eight drugs and 44 cell-lines was comparable, namely 0.87

log10 units, indicating that high predictive power cannot be attained

given the low concordance of the sensitivity data from these two

datasets. These results come as no surprise, given the different surro-

gates of cytotoxicity exploited by the assays used to screen the

CCLE and NCI60 panels, namely metabolic activity and protein

abundance, respectively. Therefore, we conclude, in accord with

Haibe-Kains et al. (2013), that models trained on the NCI60 data

set are likely to fail on sensitivity data measured with a different ex-

perimental procedure, e.g. the CCLE or GDSC datasets.

Finally, although cultured cell lines and primary tumours differ

genetically (Borrell, 2010) and 2D cell lines cultures do not recapitu-

late the complex tumour microenvironment, investigating the extent

to which gene expression (and other cell line profiling) data can be

used to model in vitro cell line sensitivity can help researchers to de-

velop approaches for the prediction of clinical drug responses using

the genomic data of tumour samples (Geeleher et al., 2014).
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