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SUMMARY

Neurogenesis underlies plastic changes in defined
neuronal circuits in the postnatal and adult brain.
Here we identify connective tissue growth factor
(CTGF) as a critical factor in the mouse olfactory
bulb (OB) in determining the efficiency of incorpora-
tion of postnatally born inhibitory neurons, thus
gating the output of glomeruli, the first relay station
of olfactory processing in the brain. In the OB,
CTGF expression was restricted to prenatally born
external tufted cells. CTGF enhanced the proapopto-
tic activity of glial-derived TGF-b2, decreasing the
survival of periglomerular inhibitory neurons.
Changes in CTGF expression levels in the OB led to
modifications in local neuronal circuitry and olfactory
behaviors. We show that the odorant-specific re-
cruitment of distinct glomeruli resulted in enhanced
local CTGF expression levels in the activated
glomeruli. Collectively our data reveal a molecular
mechanism controlling the survival of defined post-
natally born neurons, thus adapting neuronal integra-
tion to the sensory experiences.

INTRODUCTION

In many mammals, including rodents, olfaction is a key sensory

modality governing vital behavior such as food seeking, spatial

orientation, and sexual and maternal behavior. Olfactory stimuli

are conveyed by the olfactory epithelium to the olfactory bulb

(OB), the first central relay station of the olfactory system that

sends processed information to the cortex (Mombaerts, 2006;

Shipley and Ennis, 1996). The two main excitatory neuronal cell

types in the OB, namely mitral and tufted cells, are born embry-

onically (Hinds, 1968; Imamura et al., 2011). In sharp contrast,
1136 Neuron 79, 1136–1151, September 18, 2013 ª2013 Elsevier Inc
the vast majority of OB interneurons are born postnatally. Inter-

estingly, the generation of OB interneurons is not restricted to

early postnatal stages but persists in the adult (Lledo et al.,

2006). Thus, the postnatal OB continues to be invaded by

thousands of new neurons daily. Postnatally generated OB

interneurons originate in the subventricular zone (SVZ) of the

lateral ventricles and migrate via the rostral migratory stream

(RMS) to the OB. There, the majority matures into distinct inter-

neuron subtypes, namely granule and periglomerular cells (Lledo

et al., 2008).

The life-long addition of postnatally generated OB interneu-

rons into pre-existing local circuits contributes to olfactory infor-

mation processing and olfactory learning (Kageyama et al., 2012;

Lazarini and Lledo, 2011). The survival of neuroblasts that are

integrating into the pre-existing circuitry depends not only on

bottom-up and top-down inputs to the OB (Yokoyama et al.,

2011), but also on intrinsic cellular programs, including

regulation of pro-apoptotic gene expression (Kim et al., 2007).

Importantly, at the site of their destination, the survival of OB

interneurons is activity-dependent (Petreanu and Alvarez-Buylla,

2002; Saghatelyan et al., 2005), and can bemodulated by factors

provided by neighboring cells (Lin et al., 2010).

In microarray studies we identified connective tissue growth

factor (CTGF) whose expression is high in the OB but not

detectable in the SVZ, the site of origin for neuroblasts, and

the migratory pathway (Khodosevich et al., 2007, 2009). CTGF

is a small extracellular protein (38 kDa) encoded by an early

response gene (Bradham et al., 1991). Both Ctgf mRNA and pro-

tein have a short half-life (Kroening et al., 2009). The various

modes of CTGF action have been mapped to distinct functional

domains. For instance, CTGF binds andmodulates the activity of

other growth factors, including IGF, TGF, and BMP (Abreu et al.,

2002; Kim et al., 1997), and also interacts with cell receptors,

e.g., integrins (Schober et al., 2002). CTGF was shown to have

a pleiotropic action during pre- and postnatal development (Frie-

drichsen et al., 2005; Ivkovic et al., 2003; Stritt et al., 2009). In the

adult, CTGF is expressed in some cell types of cardiovascular

and reproductive tissues, and in the brain its expression is
.
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restricted to layer VI of the cortex and the mitral cell and

glomerular layers of the OB (Friedrichsen et al., 2005; Williams

et al., 2007).

In contrast to the wealth of information regarding the involve-

ment of CTGF in a number of pathogenic processes, e.g.,

fibrosis, wound healing, or cancer (de Winter et al., 2008;

Shi-Wen et al., 2008), little is known so far about its function

under physiological conditions in the postnatal and adult organ-

ism. The lack of studies is not surprising, given the scarce

expression of CTGF postnatally and the perinatal lethality of

Ctgf knockout mice (Ivkovic et al., 2003).

In this study we overcame the drawback of the global

knockout by using virus-mediated overexpression and knock-

down approaches in vivo, and demonstrated activity-dependent

regulation of CTGF expression in prenatally born external tufted

cells. Furthermore, we provided evidence that, in conjunction

with glial-derived TGF-b2, CTGF controls the survival of newly

generated neurons, thus modifying local network activity and

olfactory behavior.

RESULTS

CTGF Expression in the Postnatal Brain
To determine the regional expression pattern of CTGF in the

postnatal brain, we performed in situ hybridization experiments

on sagittal brain sections from 2-month-old wild-type mice using

38 nt oligoprobes complementary to Ctgf mRNA. As previously

shown (Stritt et al., 2009; Williams et al., 2007), Ctgf mRNA

was detected in layer VI of the cortex as well as in the mitral

cell and glomerular layers of the main and accessory OB (Fig-

ure 1A). At the immunohistochemical level, cortical CTGF

expression was confined to a thin layer just above the corpus

callosum, most likely comprising layer VIb neurons, also known

as layer VII or subplate neurons (Figure 1B). In the OB, CTGF

immunolabeling was restricted to the glomerular layer (Fig-

ure 1C). In the somata of individual cells, CTGF expression

was more intense in the vicinity of the major process (Figure 1D).

CTGF was barely detectable in the mitral cell layer (Figure 1C).

Since the glomerular layer of the OB comprises different excit-

atory and inhibitory neuronal subtypes (Batista-Brito et al., 2008;

Kiyokage et al., 2010), we analyzed the cell-type-specific

expression of CTGF. CTGF-positive cells were colabeled exclu-

sively by cholecystokinin (CCK) antibodies (Figure 1E), but not

interneuron- (calretinin, calbindin, tyrosine hydroxylase, GAD)

or glia (Olig2 and GFAP)-specific antibodies (see Figures S1A–

S1D online, or data not shown, respectively). Since it was

previously shown that in the OB CCK positivity can be detected

by and large only in the external tufted cells (Liu and Shipley,

1994; Shipley and Ennis, 1996), it can be inferred from our

colabeling experiments that CTGF expression is restricted to

this cell type.

Next, we analyzed the time of birth for CTGF-positive cells by

taking recourse to labeling with 5-bromo-20-deoxyuridine (BrdU),
a marker of dividing cells, and injected BrdU at several time

points before and after birth of the animals. We found that

CTGF-positive neurons were generated mainly around E16-18

(37% of CTGF-positive cells were labeled by BrdU at E16.5

and 42% at E17.5) (see Figure 1F for E17.5). The production of
Neu
CTGF-positive neurons was completed by the time of birth

(none of the analyzed neurons generated at P0 (n > 500) and

P7 (n > 500) coexpressed CTGF) (Figures S1E and S1F, respec-

tively). This profile corresponds to the one reported for external

tufted cells (Hinds, 1968).

Finally, to further confirm the glutamatergic nature of CTGF-

positive cells, we injected adeno-associated virus (AAV) ex-

pressing tdTomato into the OB (to visualize cell processes) and

analyzed 1 week later the expression of CTGF and of the vesic-

ular glutamate transporter 1 (vGluT1), known to be expressed in

tufted cells (Ohmomo et al., 2009). All virus-labeled CTGF-

positive cells (26/26) coexpressed vGluT1 (Figure S1G).

Together these data provide evidence that CTGF-positive cells

in the glomerular layer are prenatally born excitatory external

tufted cells.

The postnatal developmental expression profile revealed that

CTGF began to be detectable around P3 and was expressed in

the glomerular and mitral cell layers by P5 (Figure 1G). While

CTGF expression in the mitral cell layer gradually decreased

and was barely detectable by P12, expression in the glomerular

layer remained stable throughout postnatal development and

persisted in the adult (Figure 1G).

CTGF Regulates Neuronal Survival in the Glomerular
Layer of the OB
Given the postnatal lethality ofCtgf�/�mice around birth (Ivkovic

et al., 2003), we used an alternative approach and knocked down

CTGF expression in the OB (Figure 2A). We produced AAVs ex-

pressing tdTomato together with control shRNA or any of two

shRNAs against CTGF and infected the entire OB of P3-old

wild-type mice (Figure 2A1). Simultaneously, we injected a retro-

virus expressing EGFP into the SVZ to label newborn neurons

around P3, and analyzed the survival of labeled neurons in the

OB at P31 and P59. Retroviruses infect only fast-dividing cells,

the majority of which migrate from the SVZ into the OB within

7 days (Khodosevich et al., 2011). This approach allows the

labeling of SVZ-generated neuroblasts that are born around

the same time and will thus have approximately the same

‘‘age’’ whenmaturing in theOB.We confirmed efficient OB infec-

tion by AAVs 4 weeks postinjection (Figure 2B; note the high

intensity of red fluorescence visible even in normal daylight). At

the same time, we were able to track EGFP-positive infected

cells that had migrated from the SVZ into the OB and had inte-

grated into local circuits. CTGF expression knockdown was

confirmed by western blot (Figure 2C) and immunohistochem-

istry in the OB (Figure 2D).

Injection with any of the two CTGF knockdown viruses led to

an increase in the number of infected EGFP-positive cells

located in the glomerular layer (Figures 2E and 2F). The effect

of CTGF knockdown mediated by shRNA Ctgf-2 AAV was

completely rescued when coinjecting another AAV expressing

a modified CTGF that was resistant to shRNA Ctgf-2 (see Fig-

ure 2A2 for the rationale and Figure 2F for the results). Similar re-

sults were obtained when AAV infections were restricted to the

glomerular layer (data not shown).

Since the SVZ produces granule and periglomerular cells, an

increase in the number of periglomerular cells might result from

one of two causes. (1) CTGF knockdown resulted in mistargeted
ron 79, 1136–1151, September 18, 2013 ª2013 Elsevier Inc. 1137



Figure 1. CTGF Is Expressed in a Cell-Type-Specific Fashion in the Mouse OB

(A) Ctgf mRNA is detectable by in situ hybridization in layer VI of the cortex and in the OB (lateral 0.8 mm).

(B and C) Corresponding protein expression in the two brain regions, i.e., cortical layer VI and OB. Most CTGF-labeled cells are located in the deeper part of the

glomerular layer.

(D) In the somata of individual cells, CTGF expression is more intense in the vicinity of the major process (arrowheads).

(E) CTGF-positive cells coexpress CCK. Indicated cells are shown at higher magnification in (E1).

(F) Representative image from birth-dating experiments showing colabeling of CTGF-positive cells that are born at E17.5 with the cell-proliferation marker BrdU.

Arrowheads point to double-labeled cells. Indicated cell is shown at higher magnification in (F1).

(G) Postnatal expression profile of CTGF in the OB. CTGF expression in the OB becomes detectable around P3 and reaches its maximum at P5. Notably,

expression in mitral cells disappears at later stages, in contrast to CTGF expression in the glomerular layer, where it continues to be expressed in the adult.

Abbreviations are as follows: AOB, accessory OB; BrdU, 5-bromo-20-deoxyuridine; CB, cerebellum; cc, corpus callosum; CCK, cholecystokinin; cx, cortex; epl,

external plexiform layer; GCL, granule cell layer; GL, glomerular layer; lv, lateral ventricle; ml, mitral cell layer; MOB, main OB. Scale bars in (B) and (C), 100 mm; (E)

and (G), 50 mm; (D) and (F), 20 mm. See also Figure S1.
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Figure 2. CTGF Regulates the Survival of Postnatally Generated Cells in the OB
(A) Overview of the experimental procedure. (A1) P3-old wild-typemice were injected into the OB by AAVs expressing tdTomato and control shRNA or one of two

shRNAs against CTGF. The SVZ was coinjected with a retrovirus expressing EGFP to label newborn cells produced at the time of injection. Mice were analyzed 4

and 8 weeks postinjection. (A2) In rescue experiments, OBs of P3-old wild-type mice were injected by two AAVs: one expressing tdTomato and shRNA against

CTGF and another expressing copGFP and shRNA-resistant CTGF.

(B) OB 4 weeks postinjection under normal daylight demonstrating high efficiency of infection.

(C) Confirmation of CTGF knockdown by western blot analysis in HEK cells after infection with CTGF shRNA-expressing viruses.

(D) Immunohistochemical evidence of CTGF knockdown in the OB after infection with CTGF shRNA-expressing viruses.

(E) CTGF knockdown results in an increase in the number of postnatally generated cells (visualized by EGFP) in the glomerular layer.

(F) Quantification showing the increase in glomerular layer cell number at 4 weeks after CTGF knockdown (bars in red) versus control (green bar) and ‘‘rescue’’

(blue bar). ‘‘n’’ indicates the number of analyzed OBs; one-way ANOVA, post hoc Tukey-Kramer (mean ± SD).

(G) CTGF knockdown decreases the number of activated caspase-3-positive cells in the glomerular layer.

(H) Quantitative evaluation demonstrating that CTGF knockdown decreases the number of apoptotic cells (bars in red) when compared to control (bars in green)

or ‘‘rescue’’ (bar in blue) conditions 4 and 8 weeks postinjection. ‘‘n’’ indicates the number of analyzed OBs; one-way ANOVA, post hoc Tukey-Kramer

(mean ± SD).

Abbreviations are as follows: casp3, activated caspase-3; epl, external plexiform layer; GCL, granule cell layer; GL, glomerular layer. Scale bars in (D) and (E),

100 mm; (G), 50 mm. See also Figure S2.
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granule cells; i.e., granule cells migrate beyond their correct

location into the glomerular layer. Although we cannot

completely exclude this scenario, we believe that it is highly

unlikely for the following reason. Since cell fate of neuroblasts

is determined by the SVZ subarea where they are born (Merkle
Neu
et al., 2007), it would be expected that mistargeted ‘‘granule

cell layer-fated’’ neuroblasts keep the morphology and marker

expression of granule cells. This was not the case in CTGF

knockdownmice.We did not detect cells with the typical granule

cell-like morphology, i.e., long apical dendrite and short basal
ron 79, 1136–1151, September 18, 2013 ª2013 Elsevier Inc. 1139



Figure 3. TGF-b2 and Its Receptors Are Expressed in the Glomerular Layer and Act Downstream of CTGF In Vitro

(A) Two scenarios depicting possible mechanisms bywhich CTGFmay regulate neuronal survival: (A1) CTGF binds to its cell surface receptor—this would require

the receptor expression in maturing neuroblasts; (A2) CTGF interacts with another growth factor, modulating the activity of the latter—this would require the

expression of the respective growth factor in the glomerular layer and the expression of the growth factor receptor in maturing neuroblasts.

(B) In the glomerular layer, TGF-b2 expression is restricted to GFAP-positive astrocytes.

(C and D) TGF-bRI and TGF-bRII expression in the glomerular layer is restricted to GAD-positive interneurons.

(E) Quantification of GAD-positive interneurons that coexpress TGF-bRI or TGF-bRII. ‘‘n’’ indicates the number of analyzed OBs.

Abbreviations are as follows: gl, glomerulus. Scale bars in (B) and (D), 20 mm; in (C), 10 mm. See also Figure S3.
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dendrites, in the glomerular layer (for typical morphology of peri-

glomerular and granule cells, see Figures S2A and S2B, respec-

tively). (2) Alternatively, the increase in periglomerular cells

following CTGF knockdown resulted from altered apoptosis.

Since approximately half of the newborn neurons undergo

apoptotic cell death during the first few weeks after their arrival

in the OB (Alonso et al., 2006; Mouret et al., 2008), we analyzed

whether CTGF expression was linked to apoptosis. Indeed there

was a significant decrease in the number of activated caspase-

3-positive cells (apoptotic marker) in the glomerular layer

following CTGF knockdown (Figures 2G and 2H), while in the

granule cell layer there was no effect (Figure S2C). Furthermore,

coinjection of AAV expressing shRNA-resistant CTGF mRNA did

not only rescue the CTGF knockdown effect but even increased

the number of apoptotic cells (Figure 2H). Reduction in the num-

ber of apoptotic cells following CTGF knockdown was still

significant 8 weeks postinjection (Figure 2H). An increase in

periglomerular neurons following CTGF knockdown was also

reflected in the augmented number of calretinin (CR)-positive

interneurons (Figures S2D and S2E) that constitute a subpopula-

tion of postnatally generated interneurons residing in the glomer-

ular layer (Batista-Brito et al., 2008).
1140 Neuron 79, 1136–1151, September 18, 2013 ª2013 Elsevier Inc
Finally, to confirm that CTGF affects newborn interneurons

only during critical period of their maturationwhen they are prone

to cell death, around 10–25 days after birth (Mouret et al., 2008),

but not when these neurons become mature, we extended

our analysis of newborn cell survival after CTGF knockdown

to 6 weeks postinjection and compared the data with those

obtained at 4 weeks postinjection (Figure S2F). There were no

differences in the number of survived periglomerular cells at 4

and6weekspostinjection (FigureS2F). Thus,mature periglomer-

ular neurons were not responsive to the CTGF expression levels.
CTGF Regulates Neuronal Survival via TGF-b2 Signaling
Subsequently, we investigated downstream signaling mediating

CTGF-dependent neuronal survival. Since CTGF can bind to its

own receptor, and can also interact with other growth factors,

the following scenarios can be envisaged (see Figure 3A):

(1) CTGF binds to its cell-surface receptor—if this were

the case, the receptor should be expressed in maturing

neuroblasts (Figure 3A1).

(2) CTGF interacts with another growth factor X, modulating

the activity of the latter—if this were the case, the growth
.



Neuron

CTGF Regulates Interneuron Survival
factor X should be expressed in the glomerular layer and

the corresponding receptor in maturing neuroblasts (Fig-

ure 3A2).

To identify potential candidates that are expressed in the

glomerular layer, we took recourse to published data and the

Allen Mouse Brain In Situ Atlas (http://www.brain-map.org).

The expression of several genes was analyzed in the glomerular

layer by western blot analysis and immunohistochemistry. The

first hypothesis could be refuted, since cell receptors mediating

direct interaction with CTGF (i.e., TrkA, integrins aMb2, avb3,

a6b1, and a5b1) were not expressed in maturing neuroblasts

(data not shown).

Pursuing the second hypothesis (Figure 3A2), we identified

insulin-like growth factor 1 (IGF1) expression in a subpopulation

of TH-positive interneurons and in CCK-positive external tufted

cells. However, we could not detect IGF1 receptor expression

in glomerular layer interneurons (data not shown).

Another potential candidate that might be involved in CTGF

downstream signaling is the transforming growth factor b

(TGF-b). CTGF was shown to interact via its N-terminal domain

with both TGF-b1 and TGF-b2, enhancing their binding to

TGF-b receptors and thus augmenting their activity (Abreu

et al., 2002; Khankan et al., 2011). Furthermore, TGF-b signaling

was demonstrated to activate apoptosis via a caspase-3-depen-

dent pathway (Jang et al., 2002). We did not detect TGF-b1

expression in the glomerular layer of the OB by western blot or

immunohistochemistry (data not shown). In contrast, TGF-b2

and its receptors TGF-bRI and TGF-bRII were all expressed in

the glomerular layer (Figure S3A). Interestingly, TGF-b2 was

expressed exclusively in GFAP-positive astrocytes in the

glomerular layer (Figure 3B). TGF-bRs, on the other hand, were

found in a subpopulation of GAD-positive interneurons of the

glomerular layer (Figures 3C–3E). Furthermore, TGF-bRI-

expressing cells colocalized 100% with TGF-bRII-expressing

cells (Figure S3B). Thus, at least at the expression level, the

TGF-b signaling components fulfill the requirements to mediate

CTGF-dependent responses in the newly born glomerular layer

neurons: CTGF and TGF-b2 are expressed in the glomerular

layer, whereas TGF-bRI and TGF-bRII can be detected in newly

born neurons (see scheme in Figure 3A2).

To further substantiate the hypothesis of CTGF-TGF-b2

coupling, we quantified activated caspase-3-positive cells in

the glomerular layer of organotypic cultures obtained from

coronal OB sections of 1-month-old wild-type mice that were

cultured for 16 hr (Figure S3C). Addition of neutralizing anti-

CTGF antibody decreased apoptosis in the glomerular layer,

whereas recombinant CTGF increased it (Figure S3D). Anti-

TGF-b2, but not anti-TGF-b1, neutralizing antibody abolished

the effect of recombinant CTGF. Furthermore, both recombinant

TGF-bRI-Fc and TGF-bRII-Fc (fusions of TGF-bRs with the Fc

immunoglobulin domain that bind to TGF-b and block its activity)

abolished the CTGF effect. Likewise, neutralizing antibody to

TGF-b2, but not to TGF-b1, reduced glomerular layer apoptosis,

and recombinant TGF-b2 enhanced it. When CTGF and TGF-b2

were both added to the medium, there was a dramatic increase

in the number of apoptotic cells in the glomerular layer. Blocking

TGF-b signaling by TGF-bRI-Fc or TGF-bRII-Fc did not decrease
Neu
apoptosis in the granule cell layer (Figure S3E). The intracellular

apoptotic effect of TGF-b is mediated by SMADproteins (Shi and

Massagué, 2003). SMAD3 inhibitor completely abrogated the

enhanced apoptosis resulting from treatment with recombinant

CTGF or with CTGF+TGF-b2 (Figure S3D). Thus, CTGF potenti-

ates TGF-b2 activity in the glomerular layer and regulates

apoptosis of newly generated cells via the TGF-bR-SMAD

pathway.

To obtain in vivo evidence that CTGF acts via the TGF-b

pathway, we knocked down TGF-bRI expression in postnatally

generated neuroblasts (Figure 4A). For these knockdown exper-

iments, we employed microRNAs (miRNAs) rather than shRNAs,

since they enable the use of RNA-polymerase II-specific

promoters (e.g., synapsin promoter). P3-old wild-type mice

were injected into the SVZ with retroviruses expressing EmGFP

(Emerald GFP) and control miRNA or any of two miRNAs against

TGF-bRI and were analyzed 4 weeks postinjection (Figure 4A1).

The synapsin promoter assured the onset of miRNA expression

only during neuroblast maturation in the OB, thus leading to

restricted EmGFP fluorescence in the postnatally born OB inter-

neurons. TGF-bRI expression knockdown was confirmed by

western blot (Figure 4A3). Knockdown of TGF-bRI in maturing

neurons of the OB increased the number of infected cells in

the glomerular layer, mimicking the effect of CTGF knockdown

in the OB (Figures 4B and 4C). Together these results demon-

strated that the effects observed in vitro in organotypic cultures

could be replicated in vivo.

To show that CTGF activity is TGF-b dependent in vivo, P3-old

wild-type mice were injected into the SVZ with retroviruses ex-

pressing EmGFP and control miRNA or any of two miRNAs

against TGF-bRI. Simultaneously, we injected AAV to knock

down CTGF in the OB (Figure 4A2). If CTGF acted via a different

receptor than TGF-bRI, then TGF-bRI-knockdown cells should

continue to be responsive to changed CTGF levels in the glomer-

ular layer. However, CTGF knockdown did not affect the survival

of TGF-bRI-knockdown neurons (Figure 4C), demonstrating that

CTGF regulates neuronal survival via TGF-b signaling.

To substantiate our finding that TGF-bRs act downstream of

CTGF, we employed P5-old Tgfbr2 fl/fl mice that were injected

into the SVZ with two retroviruses: one expressing tdTomato

and another expressing Cre recombinase together with EGFP

(Figure 4D, D1). This ensures that Tgfbr2 knockout cells in the

OB are EGFP positive, whereas control cells are tdTomato pos-

itive. To increase CTGF-dependent apoptosis in maturing neuro-

blasts, OBs were simultaneously injected with AAV that ex-

pressed CTGF and copGFP (since EGFP and copGFP are

unrelated proteins, they can be distinguished by immunohisto-

chemistry). As yet another control, we used the same injection

protocol in wild-type mice. Mice were analyzed 7, 14, 28, and

40 days postinjection. Up to 14 days postinjection, the ratio

between EGFP (= knockout) and tdTomato (= control) cells

was around 1 for both granule cell and glomerular layers of the

Tgfbr2 fl/fl and wild-type mice (Figure 4F). However, at 28 days

postinjection and later, the EGFP:tdTomato cell ratio increased

in the glomerular layer of Tgfbr2 fl/fl mice in comparison to

wild-type mice (Figures 4E and 4F), indicating that Tgfbr2

knockout led to enhanced cell survival. Furthermore, this effect

was observed only in the glomerular layer, but not in the granule
ron 79, 1136–1151, September 18, 2013 ª2013 Elsevier Inc. 1141
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Figure 4. CTGF Regulates Neuronal Survival via TGF-b Signaling In Vivo

(A) Overview of the experimental procedure testing that TGF-bRI acts downstream of CTGF in vivo. (A1) To knock down TGF-bRI in postnatally generated

neurons, P3-old wild-type mice were injected into the SVZ with a retrovirus expressing EmGFP and control miRNA or one of two miRNAs against TGF-bRI under

the synapsin promoter. Mice were analyzed 4 weeks postinjection. If TGF-bRI acts downstream of CTGF, knockdown of TGF-bRI in postnatally generated

neurons should mimic the phenotype obtained subsequent to CTGF knockdown in the OB. (A2) P3-old wild-type mice were injected into the SVZ with the same

retroviruses as in (A1). However, this time OBs were coinjected with AAV expressing tdTomato and shRNA against CTGF. If TGF-bRI acts downstream of CTGF,

TGF-bRI knockdown cells should not be responsive to CTGF knockdown. (A3) Confirmation of TGF-bRI knockdown by western blot analysis.

(B) Knockdown of TGF-bRI in maturing neurons in the OB resulted in an increase in the number of postnatally generated cells in the glomerular layer.

(C) Quantification showing the increase in glomerular layer cell number at 4 weeks after TGF-bRI knockdown (bars in red) versus control (green bar). Furthermore,

TGF-bRI knockdown neuroblasts were not responsive to CTGF knockdown in the OB (blue bars). ‘‘n’’ indicates the number of analyzed OBs; one-way ANOVA,

post hoc Tukey-Kramer (mean ± SD).

(D) Overview of the experimental procedure testing that TGF-bRII acts downstream of CTGF in vivo. (D1) To knock out TGF-bRII in postnatally generated neurons,

Tgfbr2 fl/fl P5-old mice were injected into the SVZ with two retroviruses: one expressing tdTomato and another coexpressing Cre recombinase together with

EGFP. OBs were coinjected with an AAV expressing copGFP and CTGF. Mice were analyzed 7, 14, 28, and 40 days postinjection. If TGF-bRII indeed acts

downstream of CTGF, Tgfbr2 knockout neuroblasts should exhibit enhanced survival.

(E) Knockout of Tgfbr2 in postnatally born neuroblasts (green cells) resulted in an increase in neuroblast survival in the glomerular layer in comparison to control

neuroblasts (red cells).

(F) Quantification showing the increase in neuroblast survival following Tgfbr2 knockout in the glomerular layer, but not in the granule cell layer.

Injections into wild-type mice had no effect. ‘‘n’’ indicates the number of analyzed OBs; one-way ANOVA, post hoc Dunnett’s (mean ± SD).

Abbreviations are as follows: epl, external plexiform layer; GCL, granule cell layer; GL, glomerular layer. Scale bars are 50 mm. See also Figure S4.
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cell layer (Figure 4F, Figure S4A). Notably, enhanced cell survival

following Tgfbr2 knockout was also observed when CTGF-

dependent apoptosis was not boosted by CTGF overexpression

(Figure S4B). Together, these experiments imply TGF-bRII as the

downstream effector of CTGF in postnatally generated periglo-

merular cells.

Next, we sought direct proof that astrocytes are the source of

TGF-b2 that mediates CTGF signaling in vivo (Figure S4C). Wild-

type P3-old mice were injected into the SVZ with retrovirus

expressing tdTomato to label newborn neurons around P3 (Fig-

ure S4C1). Simultaneously, OBs were injected with a mix of two

AAVs: one AAV overexpressing CTGF (to increase CTGF-

dependent apoptosis) and another AAV to selectively knock-

down TGF-b2 expression in astrocytes. To this end, we used

an AAV expressing EmGFP and control miRNA or any of two

miRNAs against TGF-b2 under the control of the astrocyte-

specific promoter GFAP (Figure S4C1). In addition, we pseudo-

typed AAV particles with rh43 nonhuman AAV serotype that was

shown to ensure glial cell tropism (Lawlor et al., 2009). The result-

ing AAV indeed guaranteed astrocyte-specific infection in the

OB (98% of total infected cells were astrocytes; Figure S4D).

TGF-b2 expression knockdown was confirmed by western blot

(Figure S4C2). Using this approach, we showed that TGF-b2

knockdown resulted in a significant increase of tdTomato-posi-

tive cells in the glomerular layer (Figures S4E and S4F). TGF-b2

knockdown rescued CTGF-induced neuronal apoptosis, thus

identifying astrocytes as the source that provides TGF-b2.

CTGF Regulates Local Circuit Activity in the Glomerular
Layer
To evaluate the potential impact of CTGF-induced changes on

olfactory information processing, we first tested whether an

increase in the number of neurons in the glomerular layer

changed local circuit activity in the OB. P3-old wild-type mice

were injected into the OB by AAVs expressing tdTomato

together with control shRNA or any of the two shRNAs against

CTGF (Figure 5A). Simultaneously, a retrovirus expressing

EGFP was injected into the SVZ. Around 4–5 weeks postin-

jection, we tested electrophysiological parameters of cells

belonging to the two cell populations: EGFP-labeled neurons

representing periglomerular neurons produced postnatally

around P3, and tdTomato-labeled neurons born before P3

(only interneurons in the glomerular layer of the OB were

recorded, identified by visual and electrophysiological charac-

teristics). The frequency of spontaneous inhibitory postsynaptic

currents (sIPSCs) recorded from control periglomerular cells

(0.37 and 0.27 Hz, for Figures 5B and 5C, respectively) was

similar to what was published before (0.36 Hz) (Grubb et al.,

2008). However, after CTGF knockdown, EGFP-labeled inter-

neurons exhibited an increase in the sIPSC frequency, indicating

an increase in the network inhibition on periglomerular cells,

while the amplitude of sIPSCs was not affected (Figure 5B, Fig-

ure S5A). Frequency and amplitude of spontaneous excitatory

postsynaptic currents (sEPSCs) were not changed (Figure 5B,

S5A). The same effect was observed for tdTomato-labeled inter-

neurons (the bulk of this population is born prenatally) (Figure 5C,

Figure S5B). As a consequence, there was a considerable

decrease in the sEPSC/sIPSC ratio for both cell populations.
Neu
The glomerular layer contains at least five interneuronal subtypes

(Parrish-Aungst et al., 2007) that are born at different prenatal/

postnatal ages (Batista-Brito et al., 2008). The decrease in exci-

tation/inhibition ratio appeared to affect all cell types. The elec-

trophysiological results demonstrate that CTGF expression

levels have a profound role in the regulation of local circuit

activity by shifting the excitation/inhibition ratio in periglomerular

interneurons.

We then tested if the increase in periglomerular cell number

affects inhibition of the two main excitatory neuron types of the

OB, i.e., mitral cells and external tufted cells. P3-old wild-type

mice were injected into the OB with AAVs expressing tdTomato

together with control shRNA or any of the two shRNAs against

CTGF (Figure 5D, D1), and were analyzed around 30 or 45 days

postinjection. At 30 days postinjection there was no difference

in sIPSC frequency betweenCTGFknockdownand controlmitral

cells. However, at 45 days postinjection, mitral cells in CTGF

knockdown mice exhibited significantly increased sIPSC fre-

quency (Figure 5E). In contrast, CTGF knockdown did not in-

crease significantly sIPSC frequency of external tufted cells

that were recorded 45 days postinjection (Figure S5F). Neither

mitral nor external tufted cell sIPSC amplitudes were modified

by CTGF knockdown (Figures S5C and S5D for mitral cells and

Figure S5G for external tufted cells). Mitral cells receive inhibition

via periglomerular cells onto the most distal parts of their apical

dendrites in the glomeruli, whereas granule cells impinge on

mitral cell lateral dendrites considerably more proximally in the

external plexiform layer (Liu and Shipley, 1994; Shipley and

Ennis, 1996). Since dendritic filtering slows the kinetics of re-

corded synaptic inputs, we investigated if the increase in the

electrotonically more distal inhibition of mitral cell dendrites pro-

vided by periglomerular cells leads to a slowing of sIPSC decay

kinetics. There was indeed an increase in the sIPSC tdecay in

mitral cells ofCTGFknockdownanimals compared to that in con-

trol animals around 45 days postinjection (Figures 5F and 5G).

Activation of dopamine and GABAB receptors on olfactory

nerve reduces the probability of glutamate release (Aroniadou-

Anderjaska et al., 2000; Kageyama et al., 2012). We tested if

the periglomerular cell number increase affects the release prob-

ability by analyzing paired-pulse ratios of EPSCs evoked by two

subsequent stimuli delivered on olfactory nerve. Paired-pulse

ratios of EPSCs recorded in mitral and external tufted cells

were around 0.7 for both control and CTGF knockdown condi-

tions (Figures S5E and S5H) and were in accordance with pub-

lished data (Aroniadou-Anderjaska et al., 2000; Grubb et al.,

2008). Thus, unaltered paired-pulse ratios indicate that presyn-

aptic properties of olfactory nerve input to the glomeruli were

not affected by the genetic manipulation.

CTGF Expression Regulates Mouse Olfactory Behavior
Odorant detection, discrimination, and memory (Figure 6A) were

tested in control and CTGF knockdown wild-type mice (Fig-

ure 6A1) 2 months postinjection (n control = 6, n shCtgf-2 = 11)

using anolfactometer. Following theprotocol shown in Figure 6A,

we investigated olfactory sensitivity by determining the detection

threshold for two odorants, namely pyridazine and 1-decanol,

using the descending method of limits in two-odorant rewarded

discrimination tasks (rewarded odorant, stimulus [S+]; solvent,
ron 79, 1136–1151, September 18, 2013 ª2013 Elsevier Inc. 1143



Figure 5. CTGF Expression Levels Control the Excitation/Inhibition Balance in OB Glomeruli

(A) Electrophysiological analysis of periglomerular cells. (A1) P3-old wild-type mice were injected into the OBwith AAVs expressing tdTomato and control shRNA

or one of two shRNAs against CTGF. The SVZ was coinjected with a retrovirus expressing EGFP to label newborn cells produced at the time of injection.

(B and C) Green (B) and red (C) fluorescent cells were electrophysiologically analyzed 4 weeks postinjection. Increased survival of inhibitory neurons following

CTGF knockdown resulted in an increase of sIPSCs. The decreased EPSC/IPSC ratio reflects a change in the excitatory/inhibitory balance that is shifted toward

increased inhibition in local circuits. ‘‘n’’ indicates the number of analyzed cells; Kruskall-Wallis, post hoc Steel-Dwass (raw data and median).

(D) Electrophysiological analysis of mitral and external tufted cells. (D1) P3-old wild-type mice were injected into the OB with AAVs expressing tdTomato and

control shRNA or one of two shRNAs against CTGF.

(E) Increased survival of periglomerular interneurons resulted in an increase of sIPSCs in mitral cells around 45 days postinjection. Representative traces are

shown on the right. ‘‘n’’ indicates the number of analyzed cells; Mann-Whitney (raw data and median).

(F) Increase in interneuron survival also increased the time constant of decay (tdecay) for mitral cell sIPSCs. ‘‘n’’ indicates the number of analyzed cells; Student’s

t test (mean ± SD).

(G) sIPSC tdecay probability histograms were skewed toward bigger values. The overlay on the right illustrates that there was an increase of sIPSCs with slow

tdecay (30–60 ms) in mitral cells of CTGF knockdown mice when compared to control mice. See also Figure S5.
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Figure 6. CTGF Knockdown Enhances Olfactory Discrimination, and CTGF Expression Is Dependent upon Olfactory Experience

(A) Overview of the experimental protocol. OBs of P3-old wild-type mice were infected by AAVs expressing tdTomato and control shRNA or shRNA Ctgf-2 (A1).

Two-month-old mice were analyzed on olfactometers (n control = 6, n shCtgf-2 = 11).

(B and D) CTGF knockdown resulted in a decrease of the detection threshold for pyridazine and 1-decanol, respectively, Student’s t test (mean ± SEM).

(C and E) CTGF knockdown mice reached criterion performance (R90% correct responses in the block) at 10–100 lower odorant concentrations than controls,

two-way ANOVA (mean ± SEM).

(F) CTGF knockdown mice needed fewer blocks of learning to discriminate between odorants, two-way ANOVA, post-hoc Bonferroni (mean ± SEM).

(G) For some odorants, CTGF knockdown mice had a decreased reaction time for the negative (S�) odorant, Student’s t test (mean ± SEM).

(H) Overview of the experimental protocol for olfactory ablation. P30-old wild-type mice were i.p. injected with the olfactotoxin dichlobenil that impairs olfactory

sensory neuronal input into the OB, and CTGF expression was analyzed at 4, 8, 12, and 20 days postinjection.

(I) CTGF expression was dramatically decreased already 4 days postinjection. Twelve days postinjection, CTGF expression was close to background. CTGF

expression was restored to some extent 20 days postinjection, correlating with partial reinnervation of olfactory sensory input as previously reported (Alonso

et al., 2008).

(J) TGF-b2 expression was already increased 4 days postinjection. Eight days postinjection, TGF-b2 expression level was highest and gradually decreased

thereafter.

Scale bars, 50 mm. See also Figure S6.
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nonrewarded [S�]). Mice were given two sessions (eight blocks

each) per day with one decimal dilution of the odorant per ses-

sion. CTGF knockdown resulted in a decrease of the detection

threshold for both odorants (Figures 6B and 6D, respectively)
Neu
and in shifting criterion performance (i.e., R90% correct re-

sponses per block) to lower odorant concentration (Figures 6C

and 6E, respectively). The same paradigmwas used for olfactory

discrimination between limonene pair (+ and� enantiomers) and
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their binary mixtures. Overall, CTGF knockdown mice needed

fewer blocks of trials to reach criterion performance (Figure 6F)

and spent less time at negative (S�) odorant identification

when discriminating between limonene enantiomers (Figure 6G).

Analysis of long-termmemory did not show a difference between

CTGF knockdown and controls (data not shown). Thus, CTGF

knockdown mice performed better in odorant detection and

olfactory discrimination than did controls, but their olfactory

memory remained unchanged.

CTGF Expression Is Dependent on Olfactory Activity
Finally, we investigated whether CTGF expression is sensitive to

the degree of olfactory experience. To this end, we injected P30-

old wild-type mice i.p. with the olfactotoxin dichlobenil, thus

ablating sensory neurons of themain olfactory epithelium target-

ing the OB (Alonso et al., 2008), and analyzed CTGF expression

4, 8, 12, and 20 days postinjection (Figure 6H). Ablation of olfac-

tory receptor neurons was confirmed by impairment in food

search of olfactotoxin-injected mice (Figures S6A and S6B)

and by decreased expression of the olfactory marker protein

(OMP) (Figures S6C and S6D). Suppression of the sensory input

led to a significant decrease in CTGF expression already 4 days

postinjection, and at 12 days postinjection CTGF expression was

barely detectable (Figure 6I and Figure S6E for quantification).

CTGF expression was partially restored 20 days postinjection,

correlating with partial reinnervation of olfactory sensory input

as reported (Alonso et al., 2008). Decreased CTGF expression

levels following olfactotoxin treatment did not result from a

demise of external tufted cells (i.e., CTGF-expressing cells), as

was evidenced by an unchanged number of CCK-positive cells

(data not shown). Conversely, TGF-b2 expression was strongly

elevated during the period of olfactory input impairment and

reached a maximum 8 days postinjection (Figure 6J).

Ctgf is an immediate-early gene with a short half-life (Kroening

et al., 2009) and is thus suited to test whether environmental

changes at a fast timescale alter CTGF expression levels. The

first indication for the activity-dependent regulation of CTGF

expression derives from its coexpression with c-fos, another

activity-dependent immediate-early gene (Figure S6F). Since

suppression of olfactory input resulted in a reduction of CTGF

expression, we hypothesized that olfactory enrichment aug-

ments CTGF expression. Mice were presented daily with three

distinct odors for three weeks (63 distinct odorants in total) (Fig-

ure S6G), and CTGF expression levels were evaluated thereafter

in 200 glomeruli (Figures S6H and S6I). Glomeruli were subdi-

vided according to their intensity of CTGF expression into four

categories: very high (>10 units), high (5–10 units), intermediate

(1–5 units), and low (0–1 units) (for details, see the Supplemental

Experimental Procedures). There was no difference in CTGF

expression levels between controls and mice subjected to an

odor-enriched environment (Figure S6J). This is not too surpris-

ing, as one would expect to see a potential augmentation of the

short-lived CTGF only in few glomeruli that were activated by the

last few odorants. We also measured whether the enrichment

paradigm resulted in changes of neuronal survival in the glomer-

ular layer (see BrdU treatment rationale in Figure S6G) and found

no difference in BrdU-positive cell number between control and

odor-enriched mice (Figure S6K).
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To investigate the possible activity dependence of CTGF

expression in specific glomeruli, we employed transgenic

mice, namely MOR23-IRES-tauGFP, in which only two glomeruli

per OB are EGFP labeled and hence can be surveyed over time

(Vassalli et al., 2002). MOR23 receptors (and thus MOR23-GFP

glomeruli) are activated by the odorant lyral (Grosmaitre et al.,

2006). In the first set of experiments, we presented lyral or ace-

tophenone (unrelated to lyral odorant) to P60-old transgenic

mice for 10 min or 8 hr and analyzed CTGF expression 3 hr post-

exposure or immediately thereafter, respectively (Figure 7A).

Lyral exposure increased CTGF expression levels in EGFP-

labeled glomeruli in comparison to acetophenone (Figures 7B

and 7C). We also investigated whether adjacent glomeruli might

be affected, keeping in mind though that glomeruli detecting

odorants with similar chemical functional groups might cluster

together (Mori et al., 2006). Despite this caveat, differences in

CTGF levels evoked by the two odorants were not significant

(Figures S7A and S7B). Overall, our results indicate that

olfactory activity indeed enhances CTGF expression precisely

in specific odor-activated glomeruli. Thus, CTGF expression

levels undergo rapid modifications in response to changes in

olfactory activity.

Most previous studies employed ‘‘broad-spectrum’’ modifica-

tions of sensory input induced either by olfactory enrichment or

sensory deprivation in order to study survival of postnatally

generated OB neurons in the whole circuitry. Here, we aimed

at studying activity-dependent modulation of neuronal survival

in distinct glomeruli. To this end, we employed MOR23-IRES-

tauGFP transgenic mice and labeled postnatally generated cells

by adding BrdU in the drinking water from P20 to P27 (Fig-

ure S7C). Three weeks later, mice were exposed to lyral or ace-

tophenone for different time periods—1 min, 10 min, 1 hr, 8 hr,

and 24 hr—and analyzed 7 days postexposure. Exposure to lyral

for 1 min had no effect on neuronal survival in MOR23 glomeruli,

but all other treatments from 10 min onward decreased neuronal

survival by 20% (Figures S7D and S7E). Thus, stimulation of ol-

factory activity by a distinct odorant decreases neuronal survival

in the odorant-specific glomeruli.

Finally, we analyzedwhether this decrease of neuronal survival

is mediated by CTGF. We performed a similar experiment as the

one above, in MOR23-IRES-tauGFP transgenic mice that were

injected into the OBs by control or CTGF knockdown AAVs (Fig-

ure 7D, D1). CTGF knockdownmice exhibited higher cell survival

in the glomerular layer in comparison to control mice, again con-

firming our data that CTGF stimulates neuronal apoptosis (Fig-

ures 7E and 7F). As expected, lyral reduced neuronal survival

across MOR23 glomeruli in control AAV-injected mice (Fig-

ure 7F). However, CTGF knockdown completely abolished

lyral-dependent reduction of neuronal survival (Figure 7F). These

experiments demonstrate that modifications in CTGF expres-

sion levels in response to olfactory activity adjust the survival

of postnatally born neurons in an odorant-specific fashion in

the odorant-responsive glomeruli.

DISCUSSION

In this study we identified CTGF as a modulator of postnatal/

adult OB circuitry. Based on our results, we propose that
.



Figure 7. Activity-Dependent Expression of CTGF Regulates Survival of Interneurons in the Glomerular Layer

(A) Overview of the experimental protocol. P60-old MOR23-IRES-tauGFP mice were exposed to lyral for 10 min or 8 hr, and CTGF expression levels were

measured.

(B) CTGF expression was increased after activation of MOR23 glomeruli, indicating that olfactory sensory activity enhanced CTGF expression.

(C) Quantitative evaluation demonstrating that lyral enhances CTGF expression in MOR23 glomeruli after 10 min and 8 hr exposure. ‘‘n’’ indicates the number of

analyzed glomeruli; Student’s t test (mean ± SD).

(D) Overview of the experimental protocol. P3-old MOR23-IRES-tauGFP mice were injected into the OB with AAVs expressing tdTomato and control shRNA or

shRNA against CTGF. Three weeks postinjection mice were given BrdU in the drinking water for 1 week. Mice were given normal water for 3 weeks more and

exposed to lyral or acetophenone for 10 min. Mice were analyzed 1 week following odorant exposure.

(E) CTGF knockdown increased the number of BrdU-positive cells in MOR23 glomeruli in comparison to control mice, and this increase in survival was not

reduced following lyral exposure.

(F) Quantification showing that CTGF knockdown increased neuronal survival in the glomerular layer (green bars, controls; red bars, CTGF knockdown).

Furthermore, whereas in controls lyral exposure reduced cell survival, in CTGF knockdown mice lyral did not affect cell survival. ‘‘n’’ indicates the number of

analyzed glomeruli; Student’s t test (mean ± SD).

Abbreviations are as follows: AC, acetophenone; LY, lyral. Scale bars, 50 mm. See also Figure S7.
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CTGF derived from prenatally born excitatory neurons regulates

the survival of postnatally born inhibitory neurons in the glomer-

ular layer in the following fashion (Figure 8): CTGF is expressed in

external tufted cells that control the output of the glomerular

layer, the first relay station of olfactory information processing

(De Saint Jan et al., 2009; Hayar et al., 2004). CTGF acts via

glial-derived TGF-b2, whose activity it potentiates, promoting

SMAD-dependent apoptosis of newborn neurons in the glo-

merular layer via TGF-bRs. CTGF expression is enhanced by
Neu
olfactory stimulation, thus leading to an activity-dependent

potentiation of TGF-b2 signaling. At the functional level, changes

in inhibitory neuron number modify the excitation/inhibition

balance in stimulated glomeruli and OB output cells (i.e., mitral

cells), thus affecting olfactory behavior. It is of note that the regu-

lation of CTGF-mediated cell survival occurs in a region- and

cell-type-specific manner. Thus, within the OB, only the survival

of periglomerular cells, but not granule cells, is subject to CTGF

regulation.
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Figure 8. Proposed Mechanism by which CTGF Expression Levels Regulate the Survival of Periglomerular Interneurons

External tufted cells secrete CTGF that regulates the survival of newly integrating neurons in the glomerular layer by interacting and potentiating the proapoptotic

activity of glial-derived TGF-b2 via SMAD-dependent cell death. CTGF expression is enhanced by olfactory stimulation.
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Regulation of CTGF expression by olfactory stimuli changes

apoptosis in the glomerular layer and thus adjusts the number

of surviving inhibitory neurons according to olfactory cues in

the environment. Since each odor often activates only few

glomeruli, this adjustment of inhibitory drive provides a mecha-

nism for glomerulus-specific plasticity. Thus, activation of

distinct glomeruli increases CTGF expression, thereby reducing

the number of interneurons in these glomeruli, whereas inactive

glomeruli exhibit lower CTGF levels and hence more periglomer-

ular interneurons. At the behavioral level the increased number of

interneurons very likely lowers the threshold for odorant detec-

tion and enhances olfactory discrimination. The CTGF-depen-

dent behavioral phenotype that we describe here is in accor-

dance with results reported in a recent study, in which the

authors demonstrated that an increase in mitral cell inhibition

enhances odor discrimination, whereas a decrease in mitral

cell inhibition interferes with odor discrimination (Abraham

et al., 2010). The mechanism by which enhanced inhibition

may result in better performance is most likely due to the fact

that augmented inhibition causes better synchronization ofmitral

cell activity (Giridhar et al., 2011; Schoppa, 2006), thereby

enhancing the recruitment of downstream cortical targets (Girid-

har et al., 2011). Increased inhibition was shown to synchronize

the activity not only of mitral cells in mice (Giridhar et al., 2011;

Schoppa, 2006) but also of antennal lobe projection neurons in

locusts (functional analogs ofmitral cells) (MacLeod and Laurent,

1996). These studies and our own are compatible with the

following scenarios, according to which CTGF levels modulate

the olfactory detection threshold: (1) low CTGF levels augment

the number of periglomerular interneurons, leading to an in-

crease in odorant sensitivity; i.e., low abundant odorants can

be detected (Kraemer and Apfelbach, 2004); (2) high CTGF levels

reduce the number of periglomerular interneurons, leading to

odorant habituation; i.e., reaction to strong odorants is

decreased (Buonviso and Chaput, 2000; Dalton and Wysocki,
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1996). Since changes in odorant sensitivity and habituation are

long lasting, CTGF levels are ideally suited to link olfactory input

and behavioral output.

Our data indicate that 10 min of odorant stimulation already

significantly increases CTGF expression and decreases neuronal

survival by 20% across odorant-stimulated glomeruli. Further-

more, it seems that the CTGF effect on cell survival is prone to

‘‘desensitization,’’ since longer exposure to an odorant (up to

24 hr) does not have a stronger effect than a short 10 min expo-

sure. It goes without saying that in addition to CTGF there are

other activity-dependent extracellular signalsmodulatingperiglo-

merular cell apoptosis. For instance, the availability of TGF-b2

per se might dictate as to how much CTGF is required to trigger

cell apoptosis. Each of these signals very likely exhibits different

kinetics of cell survival/death regulation. Little is known so far on

how time of odorant exposure, odorant intensity, level of back-

ground noise in the environment, etc. control CTGF and other

regulatory factors that participate in cell survival/death decision.

Numerous studies have investigated how modifications in

olfactory sensory activity affect the survival of postnatally

generated OB interneurons. Most of these studies focused

on adult-born granule cells (e.g., Alonso et al., 2008; Petreanu

and Alvarez-Buylla, 2002; Saghatelyan et al., 2005), and only

few also investigated periglomerular cells (Bovetti et al., 2009;

Rey et al., 2012). In all these studies, the modification of sensory

input was ‘‘extreme,’’ consisting either of a nonphysiological

enrichment or complete ablation of olfactory receptor neuron

activity. It is of note that a general olfactory enrichment did not

affect periglomerular cell survival in our hands, while the

selective stimulation of definedglomeruli (by lyral) decreasedperi-

glomerularcell survival in the respectiveglomeruli, clearly showing

that these experimental regimes differentially affect outcome.

The restricted expression of CTGF in external tufted cells

regulates the glomerular output on a long timescale (hours/

days), adding therefore further temporal dimensions to the
.
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well-described short timescale (millisecond range) regulation.

External tufted cells exert a control of local synaptic processing

in a glomerulus at several levels. Thus, the axons of external

tufted cells connect intrabulbar isofunctional odor columns

(Liu and Shipley, 1994), whereas intraglomerular connections

between external tufted cells and periglomerular cells as well

as short axon cells amplify the sensory input and synchronize

glomerular output (De Saint Jan et al., 2009; Hayar et al.,

2004). Low threshold activation and the propensity of sponta-

neous rhythmic burst firing designate external tufted cells to be

excitatory pacemaker-like cells that drive glomerular output

activity. External tufted cells exert this control at a fast timescale

via chemical and electrical synapses. In contrast, we demon-

strate here a mechanism by which external tufted cells regulate

glomerular output at a much longer timescale.

CTGF responsiveness is reminiscent of two other immediate-

early genes, c-fos and Egr1 (also known as Zif268 protein).

Expression of c-fos and Egr1 in the glomerular layer already sig-

nificantly increases 45 min after odor exposure (Johnson et al.,

1995). This regulation contrasts with the activity-dependent

regulation of tyrosine hydroxylase (TH) in periglomerular neurons

that decreases significantly only after several days following

sensory deprivation (Baker et al., 1993), again highlighting the

diversity of temporal regulations that take place in glomeruli.

In summary, we here identified CTGF as a proapoptotic factor

whose activity-dependent increase of expression eliminated

newborn neurons in a locally restrictedmanner. Our experiments

showed that even a small increase in the number of surviving

cells dramatically changed olfactory behavior. Survival/death

choice is regulated by external stimuli, and the number of surviv-

ing cells is ‘‘adapted’’ according to the animal’s local environ-

ment. Since olfaction is the most important sensory mode for

many mammals, ‘‘olfactory competition’’ for food, mating, and

predator versus prey relationship plays a decisive role during

the life of an animal. Hence tight regulation of newly added

neurons is a crucial mechanism enabling an adaptive response

to environmental changes.

EXPERIMENTAL PROCEDURES

Materials and Reagents

All antibodies and chemicals are listed in the Supplemental Experimental

Procedures.

Animals

All animal procedures were performed according to the regulations of Heidel-

berg University/German Cancer Research Center or Pasteur Institute Animal

Care Committees.

Plasmid Cloning

To obtain miRNA cassettes expressed under the synapsin or GFAP promoter,

we used the BLOCK-iT PolII system (Invitrogen, Germany) and subcloned

miRNA cassettes to viral vectors containing the synapsin or GFAP promoter,

respectively. shRNA constructs were cloned as previously described (Khodo-

sevich et al., 2009). For details of cloning, see the Supplemental Experimental

Procedures.

Analysis of mi/shRNA Silencing Efficiency

The efficiency of mi/shRNA silencing was tested as previously described

(Khodosevich et al., 2009). For details, see the Supplemental Experimental

Procedures.
Neu
Production of Recombinant Viruses

Recombinant retroviruses and AAVs were produced as previously described

(Khodosevich et al., 2009, 2012).

Injection of Recombinant Viruses into the Mouse Brain

The titer of the injected virus had been adjusted such as to be equal for all

experiments—4 3 108 units/ml for AAVs and 108 units/ml for retroviruses.

For double SVZ/OB injections, mice were first injected into the OB using glass

capillary and immediately after into the SVZ by a Hamilton syringe (Hamilton,

Switzerland). Injection procedure is described in the Supplemental Experi-

mental Procedures.

Data Analysis and Statistics

Data were analyzed using GraphPad Prism (GraphPad Software, USA) and R

software. Normally distributed data were analyzed by t test, ANOVA, Tukey, or

Tukey-Kramer tests; non-normally distributed data were analyzed by

Mann-Whitney, Kruskal-Wallis, Dunn’s, Dunnett’s, or Steel-Dwass tests. See

the Supplemental Experimental Procedures for details of analysis procedures

and statistics.

Olfactory Enrichment

Animals were exposed to odor-enriched environment for 3 weeks as

described previously (Alonso et al., 2008). For details, see the Supplemental

Experimental Procedures.

Chemical Ablation of Olfactory Epithelium

Mice were given one i.p. injection of dichlobenil (2,6-dichlobenzonitrile,

100 mg/kg body weight) or DMSO and analyzed 4, 8, 12, and 20 days

postinjection.

Lyral Stimulation

MOR23-IRES-tauGFP mice were presented with tissue soaked in 4-

(4-hydroxy-4-methylpentyl)-3-cyclohexene-1-carboxaldehyde (= lyral) for dif-

ferent time periods. For details, see the Supplemental Experimental

Procedures.

Electrophysiology

Whole-cell recordings were performed at room temperature using sagittal OB

slices of 250 mm thickness from P31- to P50-old mouse brains. For details, see

the Supplemental Experimental Procedures.

Olfactory Behavior

Mice were partially water deprived for 1 week and then trained using an oper-

ant conditioning go-out procedure in computer-controlled olfactometers. In

this paradigm, mice were trained to respond to the presence of a positive

stimulus odorant (S+) by licking the water delivery tube and to refrain from

responding to the presence of negative stimulus odorant (S�). Odorant detec-

tion threshold, odorant discrimination, and long-term olfactory memory were

analyzed. See the Supplemental Experimental Procedures for details.

Additional experiments are described in the Supplemental Experimental

Procedures.

SUPPLEMENTAL INFORMATION

Supplemental Information includes seven figures, Supplemental Experimental

Procedures, and Supplemental References and can be found with this article

online at http://dx.doi.org/10.1016/j.neuron.2013.07.011.
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