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Abstract

Group B Streptococcus (GBS) is the leading cause of meningitis in neonates. We have previously shown that plasminogen,
once recruited to the GBS cell surface and converted into plasmin by host-derived activators, leads to an enhancement of
bacterial virulence. Here, we investigated whether plasmin(ogen) bound at the GBS surface contributes to blood-brain
barrier penetration and invasion of the central nervous system. For that purpose, GBS strain NEM316 preincubated with or
without plasminogen plus tissue type plasminogen activator was analyzed for the capacity to adhere to, invade and
transmigrate the human brain microvascular endothelial cell (hBMEC) monolayer, and to penetrate the central nervous
system using a neonatal mouse model. At earlier times of infection, plasmin(ogen)-treated GBS exhibited a significant
increase in adherence to and invasion of hBMECs. Later, injury of hBMECs were observed with plasmin(ogen)-treated GBS
that displayed a plasmin-like activity. The same results were obtained when hBMECs were incubated with whole human
plasma and infected with untreated GBS. To confirm that the observed effects were due to the recruitment and activation of
plasminogen on GBS surface, the bacteria were first incubated with epsilon-aminocaproic acid (eACA), an inhibitor of
plasminogen binding, and thereafter with plasmin(ogen). A significant decrease in the hBMECs injury that was correlated
with a decrease of the GBS surface proteolytic activity was observed. Furthermore, plasmin(ogen)-treated GBS infected
more efficiently the brain of neonatal mice than the untreated bacteria, indicating that plasmin(ogen) bound to GBS surface
may facilitate the traversal of the blood-brain barrier. A higher survival rate was observed in offspring born from eACA-
treated mothers, compared to untreated mice, and no brain infection was detected in these neonates. Our findings suggest
that capture of the host plasmin(ogen) by the GBS surface promotes the crossing of the blood-brain barrier and contributes
to the establishment of meningitis.
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Introduction

Group B Streptococcus (GBS), a common designation for

Streptococcus agalactiae, is the leading cause of neonatal infectious

diseases comprising pneumonia, sepsis, and meningitis [1]. Despite

antibiotic therapy, the associated mortality remains high (approx-

imately 10%) and up to 50% of surviving infants experience

permanent neurological sequelae as deafness, seizures, hydro-

cephalous, cerebral palsy, and cognitive deficits [2,3,4]. How GBS

causes meningitis remains incompletely understood [5] and efforts

should be made to characterize the underlying pathogenic

mechanisms that are essential for crossing the blood – brain

barrier (BBB). The functional site of the BBB is the endothelial

lining of the brain capillaries constituted by microvascular

endothelial cells (BMECs). Blood-borne pathogens may enter the

central nervous system (CNS) through multiple mechanisms of

transmigration across the brain vasculature such as intercellular

(paracellular) and/or transcellular passage, disruption of the

endothelial barrier, and leukocyte-facilitated transport by infected

phagocytes (also named Trojan horse) [6,7]. GBS interaction with

hBMECs is the primary step in the pathogenesis of meningitis

where bacterial transcytosis, endothelial injury, and inflammatory

mechanisms may combine to disrupt the BBB [8].

It has been recognized that several human bacterial pathogens

gain a survival advantage by interacting with components of the

host plasminogen system [9,10]. Plasminogen is a central

component of the fibrinolytic system and is found in plasma and

extracellular fluids at concentrations of approximately 2 mM.

Upon activation, plasminogen is converted to the serine protease

plasmin that is able to degrade fibrin clots, connective tissue,

extracellular matrix (ECM), and adhesion proteins. However,

several pathogenic microbes manipulate the host plasminogen
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system to promote their dissemination across several host tissue

barriers [9,10,11,12] including the endothelium [13,14]. Acquisi-

tion of a surface-associated plasmin activity by a pathogen likely

increases its ability to penetrate the ECM and disseminate to distal

sites in the host, a process well documented in the case of

Streptococcus pyogenes [15,16], Borrelia burgdorferi [17,18], and Yersinia

pestis [12,19]. We have demonstrated that GBS can bind human

plasminogen and that this cell-surface associated proenzyme is

converted into plasmin by host-derived activators, a process

contributing to bacterial virulence [20]. Plasmin is a broad-specific

protease that can also activate other proteolytic enzymes such as

the matrix metalloprotease that degrades the tight junction

components of microvascular endothelial cells [9]. This destruc-

tion may favor the passage of bacteria across the vasculature of the

CNS and this scenario was proposed as the mechanism of

translocation of B. burgdorferi through the BBB [14]. We

hypothesized that modulation of the host plasminogen system by

GBS could play a role in the penetration of the BBB and

development of meningitis. In this study, we showed that the

presence of plasmin(ogen) on GBS cell surface increases its ability

to adhere to, invade, and traverse hBMECs, and enables a high

brain penetration in infected neonates. The bacterial invasiveness

was reduced following treatment with epsilon-aminocaproic acid

(eACA), a lysine analogue that efficiently inhibits the specific

binding of plasminogen to cells by competing with lysine-binding-

sites [21]. Moreover, addition of eACA to the drinking water of

mothers conferred protection to their progenies against GBS

infection. This study identifies the interaction of GBS with the host

plasminogen system as a key mechanism involved in the BBB

transmigration and subsequent CNS invasion. It opens new

avenues for the development of innovative strategies to prevent

bacterial invasion of the CNS.

Materials and Methods

Bacteria strain
Group B Streptococcus (GBS) serotype III virulent strain

NEM316 (serotype III, ST-23) was cultured at 37uC in Todd-

Hewitt (TH) broth or agar (Disco Laboratories) containing 5 mg/
mL of colistin sulphate and 0.5 mg/mL of oxalinic acid

(Streptococcus Selective Supplement, Oxoid).

Mice
Male and female BALB/c mice, purchased from Charles River

Laboratories (Barcelona, Spain), were bred at the animal facilities

of the ICBAS (Porto, Portugal).

Ethics statement
This study was carried out in strict accordance with the

recommendations of the European Convention for the Protection

of Vertebrate Animals used for Experimental and Other Scientific

Purposes (ETS 123) and 86/609/EEC Directive and Portuguese

rules (DL 129/92). The animal experimental protocol was

approved by the competent national authority Direcção Geral

de Veterinária (DGV) (Protocol Permit Number: 0420/000/000/

2008). All animal experiments were planned in order to minimize

mice suffering.

Culture of human endothelial cells
Human brain microvascular endothelial cell (hBMEC) line was

derived from primary cultures of hBMEC transfected with SV40

large T antigen [22] and was cultured as previously described [23].

Cell culture flasks or twenty-four well tissue culture plates were

precoated with rat tail collagen (BD Pharmingen) to support the

hBMEC monolayers. Viability of hBMEC was assessed by

examining cellular morphology and trypan blue exclusion.

Cultures were incubated at 37uC in a humid atmosphere of 5%

CO2 and split in 1:5 ratio by using trypsin-EDTA (Sigma-Aldrich)

when semiconuence was reached. HBMECs were transferred into

a collagen-coated 24-well tissue culture plate at a seeding density

of 105 cells in growth medium and left for at least 12 hours (h).

Prior to each assay, the monolayers were washed three times with

Hanks Balanced Salt Solution (HBSS) (Sigma-Aldrich).

Plasminogen binding and activation on GBS cell surface
Log-phase GBS cells were pelleted, washed three times in sterile

PBS, and approximately 26108 GBS cells were incubated for 1 h

at 37uC with 1 mg/mL of purified human plasminogen (Calbio-

chem) or human plasma. Thereafter, the bacteria were washed

with sterile PBS to remove unbound plasminogen and, when

incubated with purified plasminogen, tissue plasminogen activator

(tPA) (Sigma-Aldrich) was added (20 nM in PBS) for an additional

1 h to convert plasminogen into plasmin. In some experiments,

GBS cells were treated for 30 min at 37uC with 200 mM eACA
(Sigma-Aldrich) before incubation with plasminogen plus tPA to

inhibit GBS cell surface binding. The bacteria were then washed

three times in sterile PBS and resuspended at the desired density in

serum-deprived fresh cell culture medium without antibiotics.

Detection of plasminogen bound to GBS cell surface
Plasminogen conjugation with FITC was performed by

incubation for 1 h at 30uC in darkness of 400 mg of human

plasminogen with 40 mg of FITC (Sigma-Aldrich) in 500 mL of

1 M sodium carbonate buffer, pH 9.2. GBS cells were cultured to

log- phase, washed twice in PBS and then fixed in PBS containing

1% paraformaldehyde. After an incubation period of 20 min at

4uC, fixed bacteria were washed twice with PBS and incubated for

30 min at 37uC with different amounts of FITC-conjugated

human plasminogen (10, 20 and 50 mg) in 100 mL (final volume).

Thereafter, the cells were washed, resuspended in PBS, and

analyzed by fluorescence-activated cell sorter (FACS) on an Epics

XL cytometer (Beckman Coulter). Data were analyzed using the

Expo32 software.

Bacterial growth curves
Approximately 106 GBS cells, with or without pre-incubation

with human plasminogen plus tPA, or pre-incubated with human

plasma, were suspended in hBMEC growth medium without

antibiotics, and plated on a 24-well tissue culture plate. GBS cells

were quantified at different time intervals (15, 30, 45 minutes and

every hour up to 6 h) by platting appropriate dilutions of the

suspension onto agar plates.

Bacterial adherence and invasion assays in hBMECs
HBMECs invasion and adherence assays were performed as

previously described [24] with the following modifications.

HBMECs were infected with either 106 cells of plasmin(ogen)-

treated GBS, plasma-treated GBS or untreated GBS in 0.5 ml of

serum-deprived fresh cell culture medium without antibiotics to

give a multiplicity of infection (MOI) of 10 (10 bacteria per

hBMEC). In a separate experiment, hBMECs were incubated in

human plasma and infected with 106 cells of untreated GBS. The

cultures were maintained at 37uC in a humidified chamber

containing 5% CO2 and, at indicated time points, were washed

three times with HBSS to remove any nonadherent bacteria. For

invasion assays, the cultures were further incubated for additional

2 h at 37uC in 5% CO2 with 0.5 mL of hBMEC culture medium

Plasmin(ogen) Bound to GBS Promotes CNS Invasion
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supplemented with antibiotics (penicillin 5 mg/ml and streptomy-

cin 100 mg/mL) to kill extracellular bacteria. After this incubation

period, the monolayers were washed with HBSS, 0.1 mL of

trypsin-EDTA solution was added, and the mixture was incubated

for 10 min at 37uC. Then, 0.4 mL of 0.025% Triton X-100 was

added and each hBMEC monolayer was disrupted by repeated

pipetting to release intracellular bacteria. For adhesion assay, total

hBMEC-associated (invasive plus surface adherent) GBS were

quantified as for the cellular invasion assay but the 2-h incubation

with antibiotics was omitted. The number of invasive and

adherent bacteria was determined by plating appropriate dilutions

of the lysate onto agar plates that were incubated overnight at

37uC. The number of adherent GBS to hBMECs was then

determined by subtracting the intracellular bacteria from the total

cell-associated (intracellular plus surface-adherent).

HBMEC injury assay
HBMECs were infected, as in the previous assay, with 106 cells

of plasmin(ogen)-treated or untreated GBS in 0.5 ml of serum-

deprived fresh cell culture medium without antibiotics to give a

MOI of 10. In a separate experiment, hBMECs were incubated in

human plasma and infected with 106 cells of untreated GBS. At

indicated time-points of infection, the cells were gently washed

with pre-warmed PBS. Adherent cells were dyed with Neutral Red

medium (40 mg/mL in complete medium) and incubated for

further 3 h at 37uC in a humidified chamber containing 5% CO2.

The medium was then carefully removed and the cells were

washed twice with pre-warmed PBS. The dye in each well was

extracted with de-staining solution (1% acetic acid/50% ethanol)

and the cells were allowed to stand for 10 min at room

temperature. The absorbance was read with a spectrophotometer

at a wavelength of 540 nm. The cell injury was evaluated by the

percentage of viability observed in infected cells relative to

uninfected cells. In some experiments, the hBMEC injury was

confirmed by measuring the release of lactate dehydrogenase

(LDH) into the supernatant of the hBMEC infected cells. In this

case, hBMECs were incubated with plasmin(ogen)-treated and

untreated GBS for 120 min, and the culture supernatant was

collected and centrifuged for 10 min at 12,000 g to remove the

cells. LDH activity was determined using a commercial kit (Sigma-

Aldrich) according to the manufacturer’s guidelines.

Migration assay of GBS across hBMEC
A endothelial BBB model in vitro was established by cultivating

the hBMECs on collagen-coated polycarbonate transwell mem-

brane inserts with a pore size of 3 mm (Corning). This in vitro

model of the BBB allows separate access to the upper chamber

(blood side) and lower chamber (brain side) and mimics GBS

penetration into the brain. The hBMEC monolayer was grown by

seeding 500 mL of growth medium containing 56105 cells in the

upper channel and 1,500 mL growth medium in the bottom

chamber of 12-well tissue culture inserts. The hBMEC were grown

to confluence for at least 5 days at 37uC in a humidified chamber

containing 5% CO2. At this point, the transendothelial electric

resistance (TEER) of this monolayer was around 200–250 V
cm22, as measured with a Millicell ERS-2 (Electrical Resistance

System) meter (Millipore). In our experiment, only monolayers

with TEER greater than 200 V cm22 were used. Prior to the

assay, hBMECs were washed and serum-free culture medium

without antibiotics was added. Log-phase GBS cells (106 CFU)

untreated or treated with human plasmin(ogen) were applied to

the apical chamber (total volume of 500 mL) and the monolayers

were incubated at 37uC in a humidified chamber containing 5%

CO2. At 1 and 2 h post-infection, the lower chamber medium was

entirely removed and plated onto TH agar to enumerate the

number of bacteria crossing the hBMEC monolayer. Simulta-

neously, the integrity of the hBMEC monolayer was assessed by

TEER measurement. Three measurements were made at each

time-point for every sample.

Determination of GBS cell surface plasmin-like activity
HBMECs cultured in 24-well plates were infected with 106 cells

of plasmin(ogen)-treated or untreated GBS resuspended in growth

medium, or with 106 cells of untreated GBS in whole human

plasma. In some experiments, GBS cells were incubated for 1 h at

37uC with 200 mM eACA before plasminogen and tPA treatment.

The cultures were incubated at 37uC in a humidified chamber

containing 5% CO2. At the desired time point post-infection, the

supernatant was removed and centrifuged for 10 min at 12,000 g

to recover GBS cells. The bacterial cells were then washed once in

PBS and resuspended in the chromogenic plasmin substrate Val-

Leu-Lys-p-nitroanilide (400 mM final concentration) (S2251,

Chromogenix). Following a 24 h incubation period at 37uC, the
cells were pelleted and the optical density of the supernatant was

read at 405 nm using a microplate reader. All samples were loaded

into triplicate wells. At each time-point, the bacterial growth in the

supernatant was also quantified by plating appropriate dilutions of

the supernatant onto TH agar plates.

Challenging infections of newborn mice
2-days old BALB/c mice were infected intraperitoneally (i.p.)

with 56106 cells of plasminogen-treated and untreated GBS in a

maximum volume of 40 mL. The brain of infected pups,

aseptically removed at indicated time points, was homogenized

in PBS and serial dilutions were plated on TH agar to enumerate

bacterial Colony-forming units (CFU). To inhibit plasminogen

binding to GBS, eACA was added (12 g/L) to the drinking water

of pregnant female BALB/c mice from the gestational day 15 to

the end of the experiment (sacrifice of the pups). As control

experiment, normal water was given to pregnant female. The

neonates were kept with their mothers throughout the end of the

experiments. Females were monitored closely during gestation and

the day of delivery was recorded. Two days after the birth, the

pups were infected with 56106 cells of untreated GBS and the

numbers of CFU in blood, liver, lung, and brain were determined

18 h post-infection. The organs aseptically removed at indicated

time points were homogenized in PBS and serial dilutions were

plated on TH agar to enumerate bacterial CFU. Survival curves

were determined in a 7-day experiment period.

Statistical analysis
All graphs were generated using GraphPad Prism software

(GraphPad Software). Means and standard errors of the means

(SEM) were calculated. Student’s t test was used to analyze the

differences between groups. Survival studies were analyzed with

the log-rank test. Both tests used GraphPad software. A P value of

,0.05 was considered statistically significant.

Results

Role of plasminogen system in adhesion and invasion of
the human brain endothelial cells by GBS
GBS adherence to BMECs constitutes the initial step in the

invasion into the CNS [24] and increased invasiveness is observed

when plasmin(ogen) is bound to GBS surface [20]. Therefore, we

set out to determine whether the plasminogen system plays a role

in the invasion of CNS by GBS. For that purpose, an hBMEC line

that maintains the morphological and functional properties of

Plasmin(ogen) Bound to GBS Promotes CNS Invasion
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primary brain endothelium [25,26] was used to evaluate the

adhesion, invasion and injury of hBMECs after infection of GBS

preincubated with or without human plasminogen and tPA. We

first demonstrated that human plasminogen efficiently binds to

GBS cell surface (Figure 1A) and that the growth rates of the

plasmin(ogen)-treated and untreated GBS were identical

(Figure 1B). We next performed the adhesion and invasion assays

in hBMECs by plasmin(ogen)-treated or untreated GBS. At all

time points tested, a significant increase in the percentage of

bacterial cells adhered to endothelial cells was observed with

plasmin(ogen)-treated GBS, compared with untreated bacterium

(Figure 1C). Moreover, at 30 and 60 min post-infection, invasion

of hBMECs was only observed with plasmin(ogen)-treated bacteria

(Figure 1D) and, 90 min post-infection, the percent invasion was

significantly higher with plasmin(ogen)-treated GBS compared to

untreated bacteria. These results show that plasmin(ogen) bound

to GBS surface increase the ability of the bacterium to adhere to

and invade hBMECs.

Plasmin(ogen) bound to GBS surface induces hBMEC
injury
We have previously shown that plasminogen recruited to the

GBS cell surface by plasminogen receptors is converted into

plasmin by host-derived activators, thus generating a proteolytic

bacterium [20]. Therefore, we next questioned whether GBS

surface-bound plasmin(ogen) induced the hBMECs monolayer

disruption. The cell viability was assessed after infection of GBS

preincubated with or without plasminogen plus tPA. The

quantification of hBMECs viability, assessed 120 min post-

infection by the neutral red uptake assay, showed that the

percentage of viable hBMECs infected with untreated GBS was

greater than 95% (Figure 2A, lower left panel). In contrast, a

noticeable increase in hBMECs detachment was observed at

120 min post-infection with plasminogen-treated GBS that was

associated with a 50% decrease in hBMECs viability (P,0.0001).

However, when GBS cells were incubated with eACA before

plasminogen and tPA treatments only 20% of decrease in

hBMECs viability was observed (Figure 2A, lower left panel).

Moreover, the release of LDH by hBMECs was significantly

higher with plasmin(ogen)-treated GBS compared with untreated

bacteria (Figure 2A, lower right panel). Cell surface-bound plasmin is

exploited by bacteria for proteolytic degradation of components of

the ECM, basal membrane, and host tissues [27]. We therefore

determined the plasmin-like activity of GBS cell surface when

hBMECs were infected with plasmin(ogen)-treated or untreated

GBS. As shown in Figure 2B, the bacteria coated with

plasmin(ogen) displayed a significantly greater proteolytic activity

at the time point tested, which is abrogated when the GBS cells

were incubated with eACA before plasminogen and tPA

treatments. These results indicate that the cell surface-bound

plasmin(ogen) endows the bacteria with proteolytic activity that

promotes disruption of hBMECs monolayer.

Human plasma incubation increases the ability of GBS to
invade and degrade hBMECs
Numerous unrelated streptococcal surface proteins are involved

in the binding of plasminogen including the glycolytic enzymes

enolase, phosphoglycerate kinase, glyceraldehyde-3-phosphate

dehydrogenase (GAPDH), and phosphoglycerate mutase [28].

We have previously shown that plasma plasminogen is efficiently

recruited at the GBS cell surface [25] and, more recently, have

identified several plasminogen-binding receptors on the GBS

surface among which enolase and GAPDH were predominant in

binding plasminogen (Magalhães et al., unpublished data). To

provide a more physiologically relevant experimental set-up, the

invasion and hBMECs viability assays were studied following

incubation of the hBMECs monolayer in whole human plasma

that contains plasminogen at a physiological concentration (2 mM)

[29]. GBS invasion of the hBMECs was significantly greater at all

time points analyzed when the bacteria were pretreated with

human plasma compared to untreated cells (Figure 3A). This

difference was not due to increased bacterial growth since

untreated GBS or human plasma-treated GBS displayed similar

growth rates (data not shown). We next determined whether the

interaction of GBS with human plasma in the presence of

hBMECs can lead to acquisition of cell surface plasmin activity.

The proteolytic activity on the GBS cell surface was assessed using

the chromogenic substrate S2251 at different time points (60, 120,

180, 240, and 300 min) of co-culture. As shown in Figure 3B, GBS

co-cultured with hBMECs in human plasma acquired an

increasing surface plasmin-like activity over the incubation period

that reflects bacterial growth. To ensure that the observed GBS

cell surface plasmin activity was due to binding and activation of

the plasminogen present in human plasma, we determined at

300 min post-infection the proteolytic activity of GBS cells

previously incubated with eACA prior to hBMECs infection. As

shown in Figure 3C, pre-incubation of GBS with eACA
significantly (P=0.0231) inhibited the acquisition of cell surface

plasmin activity by GBS. The inhibition was not complete,

presumably because plasmin(ogen)-coated GBS can arise after

bacterial multiplication in the plasma. No difference between the

bacterial CFU at this time point was observed between eACA-
treated and untreated GBS indicating that the eACA treatment

did not modify the bacterial growth (data not shown). Moreover,

as shown in Figure 3D, infection of hBMECs with GBS in human

plasma leads to a significant cell detachment, as observed at 240

and 300 min post-infection. These experiments showed that

plasminogen present in plasma is recruited to the bacterial cell

surface and is converted into plasmin by host-derived activators

leading to hBMECs injury.

GBS-surface bound plasmin(ogen) promotes
transmigration across hBMECs
It was reported that GBS adheres to and invades hBMECs

[24], but the factors that contribute to the penetration of the

BBB remain to be characterized. To investigate the role of

plasminogen system in this process, an in vitro assay mimicking

GBS migration across the BBB was performed in a transwell

system. As shown in Figure 4, a time-dependent increase in GBS

crossing through the hBMECs monolayer was observed both

with untreated and plasmin(ogen)-treated bacteria. However,

plasmin(ogen) captured by the GBS cell surface significantly

increased the ability of this bacterium to traverse across the

hBMECs monolayer. After 60 and 120 min of infection,

plasmin(ogen)-treated bacteria displayed a 3- and 2-fold increase

in their ability to migrate through the hBMECs monolayer,

respectively, as compared to untreated GBS cells (Figure 4A).

Consistently, a significant reduction of the trans-epithelial electric

resistance (TEER) was observed when GBS cells were incubated

with plasmin(ogen), as compared to untreated bacteria, and this

effect was abolished by eACA (Fig. 4B). These results suggest that

the plasminogen system contributes to GBS migration across the

hBMEC monolayer by disrupting the cellular integrity.

Plasmin(ogen) Bound to GBS Promotes CNS Invasion
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Role of the host plasminogen system in BBB penetration
in a murine model of infection
The in vitro results described above support our hypothesis that

interaction of GBS with the host plasminogen system enhances the

ability of this bacterium to invade the CNS in vivo. To confirm this

hypothesis, neonatal mice were infected by intraperitoneal route

(i.p.), 48 h after birth, with 56106 cells of plasmin(ogen)-treated or

untreated GBS. The bacterial load was determined at 6 h and

Figure 1. Plasmin(ogen)-coated GBS displays enhanced abilities to adhere to and invade hBMECs in vitro. (A) GBS cells were incubated
with FITC-labeled human plasminogen (hPLG) (grey filled histogram) or PBS (white dotted histogram). Plasminogen binding was measured by a
FACScan cytometer as the increase in FITC mean uorescent intensity (MFI). Each histogram shows cell number as a function of relative fluorescence
obtained for 10,000 events per population. Results are shown for 10, 20, and 50 mg of FITC-conjugated hPLG. (B) Representative growth curves of GBS
preincubated without (untreated GBS) or with (PLG-treated GBS) plasminogen plus tPA in complete hBMEC growth medium. Data are from a
experiment performed in triplicate that is representative of three independent experiments. Each point is the mean of three samples 6 SEM. (C and
D) HBMEC monolayers were infected with 106 cells of GBS preincubated without (untreated GBS) or with (PLG-treated GBS) plasminogen plus tPA
(MOI of 10 bacteria per cell). (C) HBMECs surface adherent GBS cells and (D) intracellular bacteria were isolated and enumerated after 30, 60, and
90 min of infection. The percentages of hBMECs surface adherent GBS and intracellular bacteria are expressed relative to the initial inoculums. Data
are the mean + SEM of three independent experiments. Statistical differences (P values) are indicated; ND – not detected.
doi:10.1371/journal.pone.0063244.g001
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18 h post-infection in the brains of the neonatal mice from both

groups. As shown in Figure 5A, 6 and 18 h after infection, the

brains of the neonates mice challenged with plasmin(ogen)-treated

GBS displayed higher bacterial counts than those challenged with

untreated GBS (P= 0.0450 and P= 0.0289, respectively). No

difference in bacterial counts was observed in the blood of pups

infected with untreated or plasmin(ogen)-treated GBS, excluding

Figure 2. Plasmin(ogen)-coated GBS induces hBMECs detachment and injury. GBS cells were preincubated without (untreated GBS) or with
(PLG-treated GBS) plasminogen plus tPA, or pre-treated with eACA prior to plasminogen plus tPA incubation (eACA-treated GBS). HBMECs
monolayers were infected with 106 CFU (MOI of 10) of untreated GBS, PLG-treated GBS or eACA-treated GBS, for 120 min at 37uC; uninfected cells
were used as negative controls. (A) Upper panel: representative microscopic photos of the average cell density were taken at6100 magnification for
visualization purposes. Lower left panel: percentage of viable cells, determined by the neutral red assay, expressed relative to the number of viable
cells observed in uninfected control. Lower right panel: Cell viability determined by measuring the LDH release. Data represents mean the values
normalized to the mean 100%-death control + SEM from an experiment performed in triplicate that is representative of three independent
experiments. (B) Plasmin-like activity in bacterial cell surface. The plasmin activity in GBS surface was assessed following incubation with its specific
chromogenic substrate S-2251 and determination of the absorbance at 405 nm. Data represents mean + SEM from an experiment performed in
triplicate that is representative of three independent experiments.
doi:10.1371/journal.pone.0063244.g002
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Figure 3. Incubation with human plasma increases the ability of GBS to invade and degrade hBMECs. (A) HBMECs monolayers were
infected with 106 GBS CFU (MOI of 10) pre-incubated or not with whole human plasma and bacterial invasion was determined at the indicated time
points and expressed in log 10 CFU/mL (left) or in percentage of intracellular bacteria relative to the initial inoculum. (B) HBMEC monolayer were
infected with 106 GBS CFU (MOI of 10) in whole human plasma and the plasmin-like activity of GBS cells was assessed as described in Figure 2C (bars
are the mean values of plasmin activity + SEM) and the bacterial CFU were determined at the same time points (line represents the mean numbers of
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the possibility that increased brain penetration was due to

increased levels of bacteremia (data not shown).

We further tested whether the increased entry of plasmin(ogen)-

treated GBS into the brain of infected pups was associated with

cell-surface plasmin(ogen) binding. Based on the knowledge that

orally administered eACA is almost entirely absorbed from the

gastrointestinal tract and is rapidly detected in plasma [30], we

developed an in vivo assay in which plasminogen binding to GBS

was blocked by adding eACA in the drinking water of pregnant

mice, while the control group was given normal water. Pups born

from eACA – treated or control females were infected i.p., 48 h

after birth with 56106 untreated-GBS cells. The pups were

maintained with their mothers throughout the experiments. Ten

out of the 12 mice born from eACA – treated mothers survived the

infection (83.3% survival) whereas all but two infected pups

succumbed to GBS challenge in the control group (16.7% survival)

(P= 0.0067) (Figure 5B). Moreover, as depicted in Figure 5C, a

significantly lower CFU of GBS were recovered 18 h after

infection from the liver of pups born from eACA–treated mothers,

as compared to the control group. Importantly, no bacterial counts

were detected 18 h after GBS infection in the lung and brain of

pups born from eACA – treated mothers (Figure 5C). Moreover,

in pups born from eACA-treated mothers, no CFU were detected

in all blood samples, while the blood samples of some control pups

were found to have CFU.

Altogether, our results indicate that interaction of GBS with the

host plasminogen system contributes to successful crossing of the

BBB and penetration into the CNS.

Discussion

A major limitation to advances in the prevention and treatment

of CNS infection is our incomplete understanding of the

pathogenesis of this disease and the associated BBB dysfunction.

The development of in vitro models of BBB crossing and in vivo

animal models of experimental haematogenous meningitis have

shed some light on the mechanisms of microbial traversal of the

BBB, the key step leading to CNS infections. Concerning the

pathophysiology of GBS, the precise mechanisms whereby this

bacterium leaves the bloodstream and access to the CNS remain

incompletely understood. A number of GBS surface proteins

including pili [31], the fibrinogen adhesin FbsA [32], the serine-

rich repeat glycoprotein Srr1 [33], the hypervirulent GBS adhesin

HvgA [6,34], the laminin-binding protein Lmb [35], and the

lipoteichoic acid anchoring enzyme LagA [36], have been shown

to promote in vitro adhesion to or invasion of BMECs. A recent

study identified the surface glycosaminoglycans as host receptor

molecules that interact with the GBS alpha C protein to facilitate

the bacterial entry into CNS [37].

We previously reported that GBS can specifically bind human

plasminogen that can be subsequently activated to plasmin by host

activators, such as uPA and tPA, and generate a proteolytic

bacterium that is more virulent [20]. As reported in other bacteria

[38,39] including streptococci [28] we have identified the GBS

enolase and GAPDH as predominant cell surface plasminogen

binding proteins (Magalhães et al., unpublished data). As these

proteins are essential for bacterial growth, the corresponding genes

could not be deleted. The ability of invasive pathogens to recruit

plasmin(ogen) on their surface constitutes a well described strategy

for translocation through tissue barriers and dissemination

bacterial CFU 6 SEM). (C) HBMECs monolayers were infected with 106 GBS CFU (MOI of 10) preincubated (GBS + eACA) or not (GBS) with 200 mM
eACA in whole human plasma for a 300 min period at 37uC. The acquisition of cell surface plasmin activity was detected as described in Figure 2C and
results are the mean values + SEM of the plasmin activity determined in one experiment performed in triplicate. These data are representative of
three independent experiments. Statistical differences (P values) are indicated. (D) Upper panel: representative microscopic photos of the average cell
density after 300 min of infection (for visualization purposes, magnification was at 100X). Bottom panel: the percentage of viable cells, assessed by the
neutral red assay, was determined as described in Figure 2A. Data are the mean + SEM and are representative of three independent experiments.
Statistical differences (P values) are indicated.
doi:10.1371/journal.pone.0063244.g003

Figure 4. Transmigration of GBS across hBMECs. (A) Confluent hBMECs monolayers grown in the upper chamber of Transwell inserts were
infected for a 2 h period with 106 GBS cells preincubated without (untreated GBS) or with (PLG-treated GBS) plasminogen plus tPA. The total lower
chamber medium was collected at the indicated time points and total GBS CFU were enumerated. (B) The integrity of the HBMEC monolayers
infected with 106 GBS CFU previously incubated with plasminogen plus tPA (PLG-treated GBS), untreated (untreated GBS) or pre-treated with eACA
prior to plasminogen plus tPA incubation (eACA-treated GBS) was monitored by measuring the change in TEER. Data are the mean values + SEM of at
least two experiments. Statistical differences (P values) are indicated.
doi:10.1371/journal.pone.0063244.g004
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[9,10,12,40]. In the present study, we demonstrated that GBS

utilizes the host plasminogen system to promote bacterial

migration across BBB and entry into the CNS. We showed that,

early after infection, GBS surface-bound plasmin(ogen) increased

the bacterial adherence to and invasion of hBMECs monolayer

and subsequently induced hBMECs injury and disruption by

endowing the bacteria with host-derived proteolytic activity.

Plasmin bound to GBS cell surface is enzymatically active, as

measured by the degradation of chromogenic specific plasmin

substrate. Several studies have shown that the acquired and

surface-bound proteolytic activity endows the bacterium with the

capacity to degrade components of the ECM [41] and penetrate

endothelial monolayers, including the BBB [13,14,42,43,44].

Accordingly, plasmin-mediated penetration of tissue barriers

leading to brain invasion was reported in the case of B. burgdorferi

[42]. Another important factor for the development of meningitis

Figure 5. Plasmin(ogen)-coated GBS displays enhanced abilities to invade the central nervous system. (A) Neonatal BALB/c mice were
infected i.p. at 48 h after birth with 56106 CFU of GBS incubated with (PLG-treated GBS) or without (untreated GBS) plasminogen plus tPA. GBS CFU
were determined in the brain of neonates at 6 and 18 h post-infection. Results from individual mice are shown. Statistical differences (P values)
between groups are indicated. (B and C) Pregnant BALB/c mice, from the gestational day 15 until the end of the experiment, were given drinking
water containing eACA (12 g/L) or normal water (control group). The newborns were kept with their mothers throughout the experiments. Two days
after the birth, the pups were infected with 56106 cells of untreated GBS. (B) Kaplan-Meier survival curves of neonatal mice born from eACA-treated
or control mothers. The numbers between parentheses represent the number of animals that survive versus the total number of infected animals.
Results represent data pooled from two independent experiments. (C) GBS CFU recovered at 18 h post-infection in the liver, lungs, blood and brain of
pups. Results from individual mice are shown. Statistical differences (P values) between groups are indicated. ND – not detected.
doi:10.1371/journal.pone.0063244.g005
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is the ability of pathogens to cross the BBB as live organisms.

Transmission electron microscopy studies with extracellular

pathogens (e.g., Escherichia coli and GBS) revealed that they

transmigrate across hBMECs monolayer in membrane-bound

enclosed vacuoles [24,45]. Our results suggest that these two

potential mechanisms can function sequentially. The increased

internalization detected early during the infection process should

favor the bacterial transcytosis, as reported by others [22,46], and

the cell injury and detachment of hBMECs observed later should

favor bacterial transmigration between injured cells. The loss of

BBB integrity had also been reported with the toxicity of bacterial

products and/or the activation of host inflammatory mediators

[47,48]. Here, we provide evidences that hijacking of the host

plasminogen system to generate a proteolytic bacterium constitutes

another mechanism enabling endothelial cell injury. Indeed, we

showed that incubation of hBMECs and GBS in human plasma

resulted in the acquisition of a plasmin activity at the bacterial

surface. This surface modification should facilitate the GBS

traversal of the extracellular matrix barriers and the tissue

penetration and, consequently, led to increased bacterial invasive-

ness. Our in vitro results were confirmed in vivo in a neonatal

murine model of GBS infection where an increased CNS

dissemination was observed in neonates infected with GBS cells

exhibiting surface-bound plasmin(ogen). This indicates that

recruitment of the host plasminogen to the bacterial surface

generates a proteolytic bacterium that, after conversion to plasmin,

possesses an increased ability to traverse the BBB. Since eACA has

been used as an anti-fibrinolytic agent in humans, this molecule

was added to the drinking water of mother’s mice. The liver of

GBS-infected pups born from eACA-treated mothers was much

less colonized than those born from untreated progenitors.

Remarkably, no bacterium was recovered from the lungs and

the brains of pups born from eACA-treated mothers, whereas

those of pups from untreated mothers were found to possess

detectable CFUs. Moreover, pups born from eACA-treated
mothers were free of detectable bacteremia which could indicate

that GBS-associated plasmin(ogen) facilitate bacterial access to the

vasculature with systemic spread, as described for Group A

Streptococcus [16]. Remarkably, the treatment of mothers with

eACA improved neonatal survival from 16.7 to 83.3%. Our results

combined with previous reports suggest that the ability to recruit

the host plasmin(ogen) could constitute a strategy utilized by

unrelated meningeal pathogens such as GBS (this work),

Streptococcus pneumoniae [49], and B. burgdorferi [13,14].

Overall, our findings suggest that plasmin(ogen) bound at GBS

surface facilitates bacterial penetration of CNS. To our knowledge,

this is the first report that identifies the interaction of GBS with the

host plasminogen system as one of the key events in the

pathogenesis of CNS infections. Moreover, our results suggest

that therapies aimed at neutralizing the activation of plasminogen

system at GBS surface could be beneficial in preventing

development of meningitis.
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