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Purpose of review 

This review summarizes studies in natural hosts, with a particular focus on the 

control of immune activation and new insights into viral reservoirs. We discuss why 

these findings are relevant for HIV research today. 

Recent findings 

AIDS resistance in natural hosts is characterized by a rapid control of inflammatory 

processes in response to SIV infection despite persistent viremia. While CD4+ T cells 

are dramatically depleted in the intestine in primary infection, Th17 cells are 

preserved and natural hosts lack microbial translocation.Thus viral replication in the 

gut is not sufficient to explain mucosal damage, but additional factors are 

necessary.Natural hosts also display a lower infection rate of Tscm, Tcm and Tfh. 

The follicles are characterized by a lack of viral trapping and the viral replication in 

the T zone of secondary lymphoid organs is rapidly controlled. Hence, the healthy 

statusofnatural hostsis associated with preserved lymphoid environments.  

Summary 

Understanding the underlying mechanisms of preservation of Th17 cells and of the 

low contribution of Tscm, Tcm and Tfh to viral reservoirs could benefit the search for 

preventive and curative approaches of HIV. Altogether, the complementarity of the 

model helps to identify strategies aiming at restoring full capacity of the immune 

system and decreasing the size of the viral reservoirs.  

Key words 

SIV, inflammation, natural hosts,microbial translocation, reservoirs. 
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Introduction 

Progression towards AIDS in HIV-1 infected humans is closely associated with 

chronic immune activation (IA).How some individuals are able to more effectively 

controlIAthan others remainsa key question. Over the past decades, important 

insights forHIV/AIDS research were achieved from studies involving non-human 

primate (NHP). These studies include both “experimental” or “non-natural” hosts, 

such as Asian macaques, that reproduce all disease progression profiles seen in 

humans infected by HIV, and “natural” hosts of SIV, such African Green Monkeys 

(AGMs) andSooty mangabeys (SMs), where infection is generally non pathogenic. 

One of the striking hallmarks of all studied natural SIV infections is the high viremia 

both in the acute and the chronic phase of infection as high as that observed during 

HIV-1/SIVmac infections (Figure 1)[1]. SIV in their natural hosts also replicate at high 

levels in the gut and the distribution of the virus in many other tissues (e.g. thymus, 

cerebro-spinal fluid, lungs) is also similar to pathogenic infections[1-4]. Similarlyto 

HIV-1/SIVmac, SIV replication in its hosts, occurs preferentially in activated CD4+ 

lymphocytes [5-7] and the primary infection is characterized by a rapid and dramatic 

depletion of mucosal memory CD4+ T cells[8]. However, in contrast to pathogenic 

infection, mucosal CD4+ T cells are partially recovered after the acute phase of 

infection and the epithelial barrier remains intact[8, 9]. We will summarize recent 

insights into natural SIV infections and debate what make natural hosts of SIV so 

interesting for current major challenges in HIV research, i.e. the search for a vaccine 

and HIV cure. 
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Lack of chronic immune activation in natural hosts of SIV 

The most striking feature of SIV infection in natural hosts is the absence of 

aberrant chronic IA[10]. Long-term infected natural hosts display normal 

lymphocyte turnover and no increases of pro- or anti-inflammatory proteins in the 

plasma and tissues during chronic phase[11, 12]. Their LN exhibit (i) a normal 

architecture; (ii) absence of marked lymphadenopathy or extensive follicular 

hyperplasia; (iii) no infiltration of CD8+ T cells into germinal centers and (iv) a 

normal fibroblastic reticular cell (FRC) network [13]. Natural hosts also lack 

microbial translocation, and hypercoagulability and cardiovascular pathology, 

which are consequences of excessive IA in HIV-1 infections, are not observed in 

natural hosts [14]. 

The studies in natural hostsprovided perhaps the strongest evidence that 

theinflammatory response to the virus is a critical determinant of pathogenesis 

[15]. They also demonstrated that high viral replication in the gut is not sufficient 

to explain the mucosal damage, but that other additional factors are responsible 

for this phenomenon.  

 

Induction of a strong but only transient immune activation in natural hosts 

In order to understand the lack of chronic immune activation in natural 

hosts, the early steps necessary to induce immune activation following HIV/SIV 

infections where analyzed, i.e. the sensing by and activation of the innate 

immune system. AGMs display no or only weak increases of inflammatory 

cytokines such asTNF-a and IL-6 in blood, LN and mucosa associated lymphoid 

tissue[12]. Also, only macaques exhibit an up-regulation of Th1-associated 

markers, whereas AGM do not [16-18]. However, some inflammatory cytokines 
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are strongly increased upon infection, in particular IFN-I, IL-15, MCP-1 and 

CXCL10/IP-10[19-24]. The latter are cytokines,which are induced very early on 

during primary infection (Fiebig stages I - III), before the other inflammatory 

cytokines [24].Plasmacytoid DC (PDC)are indeed recruitedin AGM LN from day 1 

p.i. during the acute phase of infection [20, 21]. Natural hosts’ pDC have a 

normal capacity to produce IFN-a upon exposure to SIV[21-23, 25, 26].There 

even seems to be a selective pressure in natural hosts to maintain capacity by 

PDC to sense species-specific SIV [26]. NK cells are highly activated during 

primary infection in natural hosts [24]. Therefore, the lack of chronic inflammation 

is not due to ignorance or tolerance. Indeed, T and B cell responses raised 

against SIVs can be readily detected[27, 28]. Altogether, natural hosts develop a 

strong early inflammatory response, but are able to efficiently control immune 

activation by the end of the acute phase of infection despite persistent virus 

replication. 

These data on the rapid control of inflammation in non-pathogenic SIV infection 

haveraised the hypothesis that individuals infected by HIV-1 displaying lower 

levels of inflammation at the end of the acute phase of infection could have a 

higher probability to become long-term non-progressors [29]. Indeed, the 

inflammatory profile in primary HIV-1 infection is associated with T cell activation 

levels at set-point, CD4+ T cell loss and disease progression [29-31]. In general, 

many studies in non-human primates have indicated that the very early virus-host 

interactions, during primary infection, are determinant for the outcome of infection 

[32]. In macaques it was shown that ART initiation before the peak of viremia 

results in lowertissue viralreservoirs[33]. Altogether, studies in non-human 
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primates providedstrong arguments that treating early upon infection may be 

beneficial for HIV-infectedindividuals.  

 

Natural SIV infections are not associated with microbial translocation 

Despite chronic highly active viral replication and the destruction of mucosal CD4+ T 

cells very early during the acute phase of infection, natural hosts of SIV maintain 

mucosal immune function[8, 9, 34]. Lipopolysaccharide (LPS) administration into 

SIV-infectedAGM led to increased IA and viral replication [35]. To investigate the 

interconnection between microbial translocation, inflammation and pathologic 

consequences, experimental damage to the intestinal epithelial barrier was induced 

by administering dextran sulfate sodium to chronically SIV-infected AGMs[36]. The 

dextran sulfate sodium treatment of SIV-infectedAGM SIV resulted in colitis with 

elevated levels of plasma SIV RNA, sCD14, LPS, CRP and mucosal CD4+ T-cell 

loss.Studies in natural SIV infections thus provided the first direct link between 

microbial translocation and IA. 

 

Natural SIV infections spare specific target cells  

It has been shown that Th17 cells in the gut mucosa are spared in non-progressive 

SIV infections in sharp contrast to pathogenic HIV/SIV infections[18, 34, 37]. The 

dramatic loss of CD4+ T cells in gut in natural hosts upon SIV infection accompanied 

by a remarkable preservation of Th17 cells gut reinforced the hypothesis that 

protecting Th17 might be particularly beneficial [38]. Early initiation of ARV after HIV 

infection helps preserve Th17 [39]. In macaques treated during chronic infection, IL-

21 treatment together with probiotics improved Th17 frequencies, reduced microbial 

translocation and morbidities [40]. 
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Many CD4+ T cells from AGM downregulate CD4 in vivo as they enter the 

memory pool. The loss of CD4 expression protects these memory CD4+ T cells from 

infection by SIVagm in vivo[41, 42]. Studies in SMrevealeda relative protection of two 

CD4+ T cell subsets, the central memory (Tcm) and stem-cell memory (Tscm)[43, 

44]. In particular, SM CD4+ Tcm cells present reduced susceptibility to SIV infection – 

with up to 10-fold lower levels of cell-associated SIV-DNA - when compared with 

CD4+ Tcm cells of rhesus macaques [44]. SM Tcm are also significantly more stable 

than their macaque counterparts [45].It is interesting that particularly central memory 

cells are protected. Memory cells are endowed with resistance to death and self-

renewing properties, which make them an important source of antigen-experienced 

cells to maintain long-term immunological memory. These observations contributed 

to shift attention to the role of Tcm as viral reservoir. It is remarkable that patients 

with distinct types of HIV control (i.e. individuals with early cART initiation during PHI, 

post-treatment Controllers, HLA-B27/57+ HIV Controllers and LNTP) all have in 

common that Tcm contribute less to the viral reservoir[46, 47]. 

Among other target cells, macrophages from SMs have recently been shown 

to be relatively more resistant to SIV infection in vitrocompared to RM 

macrophages[48]. It has been suggested that this is due to a combination of entry 

and post-entry restriction mechanisms. In contrast to macrophages, pDC seem to be 

highly infected in natural hosts, as much as in macaques [26]. Further studies in the 

non-human primates are needed to better understand the contribution of antigen-

presenting cells as viral reservoirs. 

Altogether these observations highlight the entente cordiale set up between 

SIV and their natural hosts. Preserving Tcm from massive rounds of infection may 

partly sustain the immuno-competent state of natural hosts of SIV. In parallel, 
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productive infection of SIV in effector cells of the gut lamina propria concomitantly to 

preserved Th17 cellsensure an environment for the virus to persist without the 

deleterious bacterial leakage which contributes to the generalized immune activation 

seen in pathogenic HIV/SIV infections. 

 

The type I IFN file: the truth is out there  

High viremia and disease progression during HIV-1/SIVmac infections 

areassociated with sustained expression levels of IFN-stimulated genes (ISG, 

interferon-stimulated genes)[19, 23, 49-53].Type I IFN has therefore 

beensuggested as one of the main culprits of chronic IA and HIV pathogenesis. 

Manipulations of IFN-I during pathogenic and natural SIV infections shed light 

onto the complex role of IFN-I in the setting of lentiviral infections. IFN-I treatment 

during chronic infection in natural hosts leads to reduction of viremia to similar 

extents as previously reported for HIV-infected humans[24, 54]. IFN-I injections 

in natural hosts however result neither in sustained ISG expression nor in T cell 

activation, whether injected during primary or chronic SIV infection, ruling out a 

major role of IFN-I in chronic immune activation[24, 54]. Blockade of the IFN-I 

receptor in acute SIVmac infection caused reduced antiviral gene expression, 

increased SIV reservoir size and accelerated disease progressionfurther 

highlighting the antiviral role of IFN-I[55]. In line with this, IFN-I injection at the 

time of SIV transmission in macaques upregulated expression of antiviral genes 

and reduced the risk of infection. In sharp contrast, however, the animals that got 

infected displayed an accelerated disease progression, probably due to  IFN-I 

desensitization subsequent to the IFN-I treatment, decreased antiviral gene 

expression and increased cell-associated SIV DNA loadin lymphoid tissues 
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[55].These results are important with respect to future trialsbased on IFN-I in 

cART-treated patients. 

 

Role of immune activation in the persistence of viral reservoirs 

Strikingly, while the levels of IFN-I decrease after primary infection in both 

pathogenic and non pathogenic SIV infections, ISG expression remains elevated 

in pathogenic infections[19, 23, 56]. It is unclear why in natural hosts ISG returns 

to normal levels.The triggering of ISG may be multifactorial. During the acute 

phase of infection, the ISG expression profiles are strongly correlated with type I 

IFN (IFN-I) levels [57]. In chronic phase of infection, microbial translocation as 

well as the expansion of the enteric virome,as observed in SIVmac infection, 

might be responsible for triggering ISG expression in pathogenic infections[58]. 

Among these ISG, CXCR3-ligands (IP-10, ITAC and MIG) are responsible 

for the recruitment of circulating activated immune cells. In HCV, IP-10 attracts 

cytotoxic T lymphocytes to the site of infection (liver) resulting in better control of 

HCV infection[59]. In natural hosts, these chemokines are rapidly downregulated 

to basal levels in LNs and gut, but remain elevated during SIVmac infectionwhere 

they are responsible for the intense recruitment of CXCR3+ T cells to these 

tissues[50, 60, 61].Among the recruited T cells, many could be potential target 

cells for the virus as CXCR3 is increased on memory CD4+ T cells, which also 

express higher levels of CCR5[62]. Of note, chemokines such as IP-10 can also 

promote viral latency in resting CD4+ T cells and thus enhance the establishment 

of viral reservoirs[63]. The studies in the non-human primates therefore suggest, 

that these ISG might modify the tissue distribution of cellular targets (Figure 2). 
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Secondary lymphoid organs are protected in natural hosts  

Natural carriers of SIV exhibit high viremia in blood and high viral load in gut. 

Surprisingly, the number of productively infected cells in LNs during chronic SIVagm 

and SIVsm infection is remarkably low as comparedto HIV-1 and SIVmac 

infections[4, 13, 64, 65 , 66-71]. The replication levelsin LN are similar to pathogenic 

HIV/SIVmac infections in acute infection but under control during the chronic 

phase.Strikingly, virus-producing cells in the germinal centers are rareat any stage of 

infection in natural hosts[4, 13, 65, 70].Thus, follicular helper CD4+ T cells (Tfh) 

residing in the germinal centersare largely spared of active infection in natural 

hosts[64]. The latter have recently been shown to constitute one of the major 

reservoirs of HIV [64]. Moreover, viral trapping in the follicular DC network is rarely 

observed in natural hosts[4, 13, 65, 70]. In line with the viral RNA and DNA loads, the 

average titer of infectious virus in AGM LNs is also weak (21 TCID50/106 LN 

mononuclear cells) [72]. Inflammationseems to be controlled more rapidly and more 

strongly in LN than in other compartments in natural hosts [12, 23, 73]. It is unclear 

so far if the lower viral load in LN could bea cause or a consequence of lower IA in 

LN. 

LNs are a major organ for the education of adaptive immune responses.During 

pathogenic HIV/SIV infections, regulatory CD4+ T cells (Treg) accumulatein LNsas 

one arm of theimmunosuppressive regulatory response shortly after HIV/SIV 

infections[74]. This results into elevated TGFβ1 expression levels and extensive 

collagen deposition leading to collateral fibrotic lymphoid tissue damage [74]. This 

phenomenon was suggestedto lead to progressive survival impairment of CD4+ T 

cells[75]. In natural hosts, the absence of elevated TGFβ expression and collagen 

deposition help preserve immune functions [74]. The extent of collagen deposition at 
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the time of initiation of suppressive ART was found to predict the magnitude of 

recovery of the peripheral CD4+ T-cell pool [76]. The efficacy of treatment is stronger 

in the gut than in LNs; probably due to aless efficient tissue diffusion of the 

antiretroviral drugs [33, 77]. TGFβ-associated immunosuppressive mechanisms 

initially in place to counteract chronic activation in HIV/SIVmac infections, by 

promoting disruption of the LN integrity, most likelycontribute to limit antiviral drug 

penetration and thus to viral persistence in these compartments. 

Altogether, the studies have shown that natural hosts protect secondary 

lymphoid organs, and in particular follicles, from viral replication. In the future, it will 

be important to decipher the mechanisms of how natural hosts succeed in efficiently 

controlling infection in LNs, in particular in Tfh cells.  

 

Conclusion 

Natural hosts seem to have co-evolved with their respective SIVs in order to 

shape an equilibrium whereby mounting transient inflammatory processes, such as 

the early IFN-I response, allowson the one hand the host to mount some anti-viral 

responses leading to partial control of viremia after the peak. On the other hand, this 

equilibrium allows the virus to spread where it then persists notably in the gut.Natural 

carriers also showed that LNs are rapidly devoid of active viral replication in the long 

run. Preserving Tcm and Tfh in LNs from infection and long-term active viral 

replication is a rather smart trade-off between the virus and its natural host. Further, 

natural hosts have proven that mechanisms preventing AIDS progression are in 

place very early after infection. This calls for further studies evaluating the beneficial 

impact of early anti-viral treatment upon HIV infection as observed in the VISCONTI 

and START studies [47, 78]. Therefore understanding early mechanisms leading to 
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control of viral replication in secondary lymphoid organsand/or chronic immune 

activation may be one of the next promising goals to achieve amongst others in order 

to secure an HIV cure [79]. HIV induced chronic inflammation may also be an 

obstacle to vaccine strategies as it impairs immune responsesand furthermore 

potentially leads to the recruitment of target cells to sites of infection enhancing viral 

dissemination and establishment of viral reservoirs.Further comparative studies 

would definitely help understand the early events or check points that need to be 

overcome in order to inducean efficient control. 
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Key bullet points 

 Studies in natural hosts have contributed to a major extent in highlighting the 

essential role of chronic IA in AIDS pathogenesis and in orientating the 

attention to the role of IA in non-AIDS morbidities and mortality. 

 The generalized IA is most likely multifactorial and studies in natural hosts 

help to distinguish between factors, which are simply associated with 

uncontrolled viral replication from those, which might be driving pathogenesis. 

 Despite strong replication in the gut during SIV infectionin natural hosts, the 

integrity of the gut mucosa is preserved.  

 In natural hosts, SIV spare some specific target cells, notably the central 

memory CD4+ T cells, follicular helper CD4+ T cells and IL-17-producing 

helper CD4+ T cells. 

 In sharp contrast to HIV/SIVmac infections, virus-producing cells are only 

rarely detected in germinal centers during chronic SIV infection in natural 

hostsand secondary lymphoid organs lack signs of fibrosis.  
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Figure 1. Main differences between pathogenic HIV/SIV infections and 

SIV infections in their natural hosts.Natural hosts of SIV exhibit similar viremia as 

observed during pathogenic HIV/SIVmac infections. SIVs also quickly target the gut 

mucosa upon infection. However in contrast to humans and macaques, natural hosts 

display preserved epithelial barrier integrity, Th17 immunity and lack of microbial 

translocation despite continuous viral replication. Another striking difference between 

progressive HIV/SIV and non-pathogenic SIV infections resides in the secondary 

lymphoid organs. Chronic SIV infection in macaques is associated with persistent 

viral replication in germinal centers and viral trapping by FDC. Theinflammation in the 

lymph nodes induces anti-inflammatory regulatory mechanisms, which progressively 

leads to disruption of the lymphoid architecture. In sharp contrast, life-long SIV 

infection in their natural hosts is characterized by a rapid control of viral replication in 

secondary lymphoid organs and very raredetection of viral trapping and viral 

replication in germinal centers. It remains unclear whether during the acute phase of 

natural SIV infection, a more rapid control of viral replication in secondary lymphoid 

organs leads to a more easy control of inflammatory processes. As the virus needs 

activation of its target cells for productive infection, it is not excluded that a more 

efficient control of immune activation in secondary lymphoid organsleads to a 

reduction in viral replication in these tissues. The intimate early interplay between 

viral and host determinants that dictates the efficiency at which viral persistence and 

immune activation will be either controlled or sustained will need to be unraveled. 

Studies of the early events/signals shaping these two distinct outcomes of SIV 

infections in non-human primates are therefore warranted.BZ = B-cell zone, GC = 

Germinal center, FDC = follicular dendritic cells, IFN-I = type I interferons, ISG = 

interferon-stimulated genes, pDC = plasmacytoid dendritic cells, Tcm = central 
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memory T cells, TGF-1 = Transforming growth factor beta 1. 
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Figure 2. Intertwined key features of HIV/SIV infections: immune activation and 

viral persistence.Upon infection, the virus rapidly spreads from the port of entry and 

is produced preferentially in activated antigen-experienced CD4+ T cells. In parallel, a 

cytokine storm is triggered to shape and orchestrate the immune warfare, including 

cells of the innate and adaptive immune systems, in response to the viral insult. 

Chemokines induced by activation of the immune system will attract immune cells to 

the site of infection, among them CXCR3+ CD4+ memory T cells. These cells 

present a target for viral infection in tissues. During the early stage of infection, the 

race between viral spread/replication and host defenses is critical, as this will impact 

the subsequent outcome of infection. 
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