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The generation of phagocytic cups and immunological synapses are crucial events of 
the innate and adaptive immune responses, respectively. They are triggered by distinct 
immune receptors and performed by different cell types. However, growing experimental 
evidence shows that a very close series of molecular and cellular events control these 
two processes. Thus, the tight and dynamic interplay between receptor signaling, actin 
and microtubule cytoskeleton, and targeted vesicle traffic are all critical features to build 
functional phagosomes and immunological synapses. Interestingly, both phagocytic 
cups and immunological synapses display particular spatial and temporal patterns of 
receptors and signaling molecules, leading to the notion of “phagocytic synapse.” Here, 
we discuss both types of structures, their organization, and the mechanisms by which 
they are generated and regulated.

Keywords: phagocytosis, immunological synapse, immune receptor, signal transduction, actin, microtubules, 
exocytosis, endocytosis

iNTRODUCTiON

Immunological synapses are organized cell–cell contacts shaped at the interface between T cells 
and antigen-presenting cells (APCs) (Figure 1). They are triggered by the binding of T cell antigen 
receptors (TCR) to their ligands, peptide antigens associated with major histocompatibility complex 
molecules (pMHC) expressed on the surface of APCs. TCR engagement induces the polarization of 
the T cell toward the APC and a coordinated reorganization of various T cell components, including 
receptors, signaling and adhesion molecules, the actin and microtubule cytoskeleton, and intracel-
lular vesicle traffic. Thus, the TCR and its proximal signaling molecules (e.g., protein kinases and 
phosphatases, signaling adapters, and effectors molecules) form dynamic signaling complexes at the 
immunological synapse that drive T cell activation. Moreover, TCR signaling triggers the fine reor-
ganization of the actin and microtubule cytoskeleton that ensures synapse architecture and signaling 
complex dynamics, critical for TCR signal regulation. Finally, various intracellular compartments 
polarize toward the immunological synapse, including the Golgi apparatus, early and late endosomes, 
and mitochondria. Importantly, the TCR signaling machinery, actin and microtubule cytoskeleton, 
and intracellular vesicle traffic interplay at the synapse to sustain and regulate T cell activation (1).

Phagocytic cup formation mirrors a large number of events occurring during immunological syn-
apse formation, before leading to a productive engulfment of the target (Figure 1). First, clustering 
of phagocytic receptors induced by particle-associated ligands triggers signal transduction pathways 
similar to those engaged by the TCR. In particular, a similar spatial and temporal segregation of 
tyrosine kinases and phosphatases was observed at both immunological synapses and phagocytic 
cups, leading to the notion of “phagocytic synapse” (2). Second, phagocytic receptor signaling triggers 
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FiGURe 1 | Schematic representation of the immunological synapse and the phagocytic cup formation. Immunological synapse formation is initiated by 
the engagement of TCRs on the surface of the T lymphocytes by peptide antigen–MHC complexes on the APC (left). Similarly, engagement of phagocytic receptors 
by multiple ligand binding on a target particle drives the formation of phagocytic synapses (right). In both settings, receptor engagement leads to F-actin 
polymerization and membrane deformation at contact sites. Polarization of the MTOC and microtubule network toward at the IS are important for the delivery of 
vesicles containing cytokines or lytic enzymes in helper or cytotoxic T cells, respectively, but also to deliver TCR-signaling components during immunological 
synapse formation. Microtubules also contribute to F-actin remodeling in complement-mediated phagocytosis. Internalization of cell surface TCRs by endocytosis 
and their focal recycling participate in the regulation of T cell activation. Finally, in either system, triggering of multiple signaling pathways downstream of the surface 
receptors leads to de novo transcriptional programs controlling cell survival, activation, and cytokine production.
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a profound reorganization of the actin cytoskeleton that is similar 
to the one induced by the TCR, generating large membrane exten-
sions rich in filamentous (F)-actin. Third, microtubule dynamics 
are also important for some receptor-mediated phagocytosis. 
Fourth, intracellular traffic involving several vesicular compart-
ments reorients toward the phagocytic cup. Fifth, internalization 
of the triggered receptors together with their ligands occurs and 
may lead to their degradation or recycling back to the plasma 
membrane. Interestingly, the TCRs may be phagocytosed from 
the immunological synapse internalizing with them their pMHC 
ligands together with portions of the APC membrane (3). Finally, 
a series of downstream signaling events lead to cytokine gene 
activation in both cases.

We review here the molecular and cellular events taking place 
in both phagocytic and immunological synapses, highlighting 
their mechanisms of regulation.

ReCePTOR SiGNAL TRANSDUCTiON iN 
T CeLLS AND PHAGOCYTeS

T cell receptor engagement induces a series of molecular reorgani-
zation events that stabilize T cell–APC interactions and optimize 
signal transduction. Several other receptors are recruited to the 
immunological synapse and contribute to the activation process. 
These include the co-receptors CD4 and CD8, co-stimulatory 

receptors such as CD28, or adhesion proteins such as the integrins 
αLβ2 (LFA1) or α4β1 (VLA4) [reviewed in Ref. (4)].

One of the earliest events elicited by antigen recognition is 
the sequential activation of protein tyrosine kinases belonging to 
the Src and Syk families. The Src-family kinases Lck and/or Fyn, 
phosphorylate several TCR complex subunits, namely CD3 (ɛ, γ, 
and δ) and ζ (5). These subunits are all endowed with one or more 
consensus sequences called immunoreceptor tyrosine-based 
activation motif (ITAM), each containing two phosphorylatable 
tyrosine residues. Doubly phosphorylated ITAMs then recruit 
Syk-family kinases, either ZAP-70 or Syk (6), whose tandem 
SH2 domains provide specific, high-affinity binding to ITAM 
phosphotyrosines. Src kinases may be further required to phos-
phorylate and activate Syk kinases, in particular ZAP-70. The 
interplay between these two families of tyrosine kinases is crucial 
for transmitting downstream signals. Thus, Syk family kinases 
phosphorylate adaptor proteins, such as LAT and SLP-76 that in 
turn gather signaling effectors within multiprotein complexes, or 
signalosomes (6). Moreover, both Src- and Syk-family kinases 
activate several enzymes recruited in these signalosomes that are 
responsible for the generation of intracellular second messengers, 
such as Ca2+ or phosphoinositides. Collectively, these early steps, 
induced within seconds after TCR engagement, initiate a cascade 
of downstream events leading to cytoskeletal rearrangement and 
cellular polarization. Concomitantly, various serine–threonine 
kinases, including MAP kinases, are activated, regulating the 
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activation of several transcription factors that will drive in turn 
T cell growth and differentiation and the production of effector 
cytokines (7).

Detection and engulfment of bacteria or fungi by phagocytic 
cells are triggered by a similar sequence of early events. However, 
multiple unrelated ligands trigger phagocytosis by engaging dis-
tinct receptors. Indeed, phagocytic receptors can recognize their 
target by binding either to specific molecules expressed on the 
target’s surface or to opsonizing antibodies or complement subu-
nits previously bound to the target. For instance, phagocytosis of 
IgG-coated pathogens is triggered upon antibody recognition by 
Fcγ receptor (FcγR), whereas integrins, such as αMβ2 (also known 
as Mac-1 or CR3), can recognize complement-coated particles. 
Finally, phagocytosis of fungi expressing β-glucans on their cell 
wall is triggered by Dectin-1 receptor (8).

Phagocytic Fc receptors (FcγRII and FcγRIII) belong to the 
immunoreceptor family and are structurally related to antigen 
receptors. Importantly, they transmit activating signals using 
ITAM motifs that are either built in the receptor intracellular tail 
or in the associated common γ-chain (9). Hence, early signaling 
events involve Src- and Syk-family kinases, similarly to what 
explained above for the TCR. In macrophages, the Src kinases 
Lyn, Hck, and Fgr are involved in FcR-induced phagocytosis. 
However, phagocytosis was significantly reduced but not abol-
ished in cells of triple knockout mice, suggesting the existence 
of further redundancy or alternative triggering mechanisms 
(10). In contrast, Syk knockout resulted in a complete block of 
phagocytosis, indicating the indispensable role of this kinase (11). 
Since Syk, but not ZAP-70, has been shown to phosphorylate 
ITAM motifs (12), it can be envisaged that Syk can trigger some 
phagocytic activity in the absence of Src kinases.

The β-glucan receptor Dectin-1, a member of the C-type lectin 
receptor (CLR) family, also induces sequential activation of Src 
and Syk kinases. Dectin-1 displays in its cytoplasmic domain 
ITAM-like sequences named hem-ITAM, each containing a 
single tyrosine-based motif. Once phosphorylated by Src kinases, 
they are able to bind Syk and trigger downstream activation (13). 
Since Dectin-1 is a dimer, it has been proposed that Syk binds in 
trans to two phosphorylated hem-ITAMs on adjacent subunits 
in order to be recruited to the activated receptor (13). However, 
this model has not been validated experimentally. Furthermore, 
a potential alternative mechanism for Syk recruitment has been 
revealed recently, implying a scaffolding role of the protein tyros-
ine phosphatase SHP-2 in bridging Syk to Dectin-1 and other 
CLRs (14).

The molecular mechanisms underlying integrin-dependent 
phagocytosis, such as that elicited by complement-coated parti-
cles binding to CR3, are more complex than those described for 
FcRs and Dectin-1. Importantly, integrin binding to their ligand 
requires prior activation via a conformational change induced by 
“inside-out signaling.” This priming phase is induced by inflam-
matory or pathogen-specific signals, such as those triggered by 
G-protein-coupled (GPCRs) or toll-like receptors (TLRs). These 
proteins initiate different signaling cascades converging on a 
common effector, the GTPase Rap1 (15). Active Rap1 induces 
the recruitment of RapL, RIAM, and talin to integrin cytoplasmic 
tails, thus promoting the switch of integrins to their extended 

conformation that can bind ligands with high affinity (16). Then, 
ligand-bound integrins transmit “outside-in” signals that drive 
actin polymerization and downstream activation. These steps 
involve several effectors including the protein kinases FAK (or 
Pyk2) and ILK, non-muscle myosin II, and Rho GTPases (17). 
Nonetheless, the fact that Syk inhibition impairs CR3-mediated 
phagocytosis demonstrates the existence of some crosstalk 
between integrin activation and ITAM-bearing receptors or 
adaptors (18). Interestingly, FcRs have confined mobility in the 
plasma membrane, in fenestrated cortical actin structures that 
depend on the activity of Src- and Syk-family kinases (19). 
Integrins or pattern recognition receptors, such as the scavenger 
receptor CD36, are potentially initiating Syk activation, leading 
to FcR increased mobility and engagement (8). However, further 
work is needed to define the molecular basis of integrin interplay 
with ITAM-dependent signaling.

SPATiOTeMPORAL ORGANiZATiON OF 
iMMUNe AND PHAGOCYTiC ReCePTORS 
AND THeiR SiGNALiNG MACHiNeRieS

How early signals are elicited by antigen or phagocytic receptors 
engagement is still a matter of debate. One model proposed for 
TCR activation postulates that initial triggering is achieved when 
key inhibitory proteins, such as the tyrosine phosphatase CD45, 
are segregated away from the engaged TCR and the proximal 
tyrosine kinase Lck. This segregation is mainly driven by the 
size of membrane protein ectodomains. Indeed, the length of the 
TCR–pMHC pairs is relatively small (7  nm) compared to that 
of CD45 ectodomain (28–50  nm); hence, TCR engagement by 
pMHC induces the formation of areas of close juxtaposition of T 
cell and APC membranes from which phosphatases are excluded 
(20, 21). As a consequence, local activity of tyrosine kinases 
would be favored, leading to an increase in net phosphorylation 
of TCR downstream effectors and T cell activation. Interestingly, 
a similar mechanism was observed during Dectin-1-dependent 
phagocytosis, leading to the “phagocytic synapse” model. Indeed, 
Dectin-1 engagement by β-glucan-bearing particles results in local 
exclusion of phosphotyrosine phosphatases CD45 and CD148 
from receptor-enriched areas containing phosphotyrosine, thus 
triggering downstream signaling (e.g., Syk phosphorylation) and 
phagocytic cup formation (2). Importantly, several results suggest 
that this mechanism also concerns FcRs (22, 23); hence, it may be 
relevant for all phagocytic receptors.

Concomitantly to initial kinase and phosphatase segregation, 
T cell receptor subunits, the tyrosine kinases Lck and ZAP70, and 
the adapters LAT and SLP76 associate into dynamic signaling 
complexes that nucleate at the periphery of immunological syn-
apses and then migrate toward its center, where they concentrate 
or vanish (24–26). Interestingly, centripetal dynamics of signaling 
complexes at the immunological synapse and their concentration 
in the center is a regulatory mechanism that depends on actin and 
microtubule cytoskeleton and is meant to downregulate proximal 
TCR signaling (27–29). Various mechanisms have been proposed 
for TCR signal downregulation at the synapse. These include 
relocalization to membrane regions containing the tyrosine 

http://www.frontiersin.org/Immunology/archive
http://www.frontiersin.org/Immunology/
http://www.frontiersin.org


January 2016 | Volume 7 | Article 184

Niedergang et al. Immunological and Phagocytic Synapses

Frontiers in Immunology | www.frontiersin.org

phosphatase CD45 (28), internalization and degradation of TCR 
and signaling complexes (30–32), post-translational modification 
of signaling adapters leading to signalosome disassembly (33), or 
the extracellular release of vesicles containing TCR (34). Of note, 
in FcR-mediated phagocytosis, receptors are engaged sequentially 
in a receptor-guided, zipper-like advance of the membrane over 
the particle surface, and there is no evidence for a movement of 
the receptors toward the base of the phagocytic cup. Receptors 
are downregulated from the surface with the engulfment of 
the particle. Thus, the late events in the mature immunological 
synapse differ from those observed in phagosome completion 
and closure.

ACTiN AND MiCROTUBULe 
CYTOSKeLeTON iNTeRPLAY

Signaling downstream of the TCR and phagocytic receptors 
leads to intense and transient actin polymerization that relies 
on the activation of Rho family GTPases (35). In T cells and 
phagocytes, Rho GTPase activation occurs to a large extent via 
tyrosine phosphorylation and activation of the Rac1 and Cdc42 
guanine exchange factor (GEF) Vav (36, 37). In addition, Rac1 
can be activated by other GEFs, including DOCK2, DOCK8, 
Tiam1, and Trio. DOCK2 is involved in Rac1 activation down-
stream of the TCR and in lymphocyte migration in response 
to chemokines. DOCK2 and DOCK8 physiological relevance 
has been underscored by the discovery of human-inherited 
immunodeficiencies caused by DOCK2 or DOCK8 gene muta-
tions. B and T cells from these patients display impaired actin 
polymerization and migration in response to chemokines, as 
well as impaired lytic granule release by NK cells (38, 39). DOCK 
family proteins are also involved in phagocytosis as regulators 
of Rac1 (40).

In phagocytes, the pioneering description of the involve-
ment of Rho family proteins initially led to the classification of 
type I phagocytosis implicating Rac1 and Cdc42 downstream 
of FcR and type II phagocytosis relying on RhoA downstream 
of CR3 (41). More recently, RhoG has been shown to act as 
regulator for both FcR and CR3-mediated phagocytosis (42). 
As RhoG is also critical for phagocytosis of apoptotic bodies 
(43), and for the nibbling of MHC-associated portions of APC 
membrane by T cells (3), it could well act as a still ill-defined 
“master regulator” in immunological synapse and phagosome 
formation. Dynamic studies by fluorescence resonance energy 
transfer (FRET) revealed different patterns of activation for Rac 
and Cdc42 downstream of FcR. Active GTP-Cdc42 is present 
at the tip of the advancing pseudopod where it colocalizes with 
polymerizing actin, while Rac1 activation is biphasic. GTP-Rac1 
is induced at a low level early after particle binding and peaked 
at the time of pseudopod fusion (44). Cdc42 activation and 
phosphatidylinositol-4,5-bisphosphate PI(4,5)P2 accumulation 
in the nascent phagocytic cup activate effectors among which 
the actin nucleation promoting factor (NPF) N-WASP that acts 
on the Arp2/3 actin nucleation complex. Rac1 is then essential 
for F-actin polymerization to complete extension and closure, 
through activation of another NPF, the WAVE complex. In 

CR3-mediated phagocytosis, RhoA is critical for the signaling 
to actin polymerization as it activates the Rho-Kinase (ROCK), 
the formin mDia1, and myosin II that are implicated in polym-
erization and contraction of F-actin around the particles (41, 
45–47). The microtubules are important for this pathway, and 
CLIP1 (CLIP-170), a microtubule plus-end protein, is especially 
required for efficient recruitment of mDia1 downstream of 
CR3 and therefore for efficient phagocytosis (48, 49), showing 
crosstalk between microtubules and actin.

Immunological synapse formation and function require the 
coordinated activation of RhoA after initial LFA-1 clustering 
and Rac1 and Cdc42 activation downstream of the TCR (35). 
Active Cdc42 and its effector WASP are independently recruited 
to the synapse. WASP seems not to be necessary for broad actin 
polymerization at the synapse, but rather for the generation of 
dynamically polymerizing actin foci that facilitate PLCγ activa-
tion and calcium flux (50). Consistently, WASP is necessary for 
efficient IL2 production (51, 52). In contrast, WAVE2, Arp2/3, 
and the cortactin homolog HS1 are required for T cells to regu-
late actin polymerization at the synapse (53–55). In turn, actin 
dynamics is necessary for triggering and sustaining T cell activa-
tion (56). This occurs in various concomitant ways, including 
the regulation of T cell–APC conjugate formation via integrin 
clustering (57), the interplay between actin cytoskeleton regula-
tors and the calcium second messenger (58), or the regulation 
of immunological synapse architecture and its interplay with 
the TCR signaling machinery (59). Finally, the formation of 
signaling microclusters around the synapse periphery and their 
convergence toward the center depends on actin dynamics and 
F-actin inward flows (24, 60).

Cortical actin-associated proteins, such as ezrin and moesin, 
play important roles in building an activation competent immu-
nological synapse. These proteins connect the cortical cytoskel-
eton with membrane components. Thus, moesin supports CD43 
exclusion from the center of the synapse, a mechanism proposed 
to remove the CD43-dependent steric inhibition and to facilitate 
synapse formation (61–63). Moreover, ezrin and moesin contrib-
ute to the architecture of the immunological synapse, cell cortex 
rigidity, and T cell activation as well as differentially regulate early 
and late activation events (64–67).

Microtubules are finely reorganized at the immunological syn-
apse bringing the microtubule-organizing center (MTOC) close 
to T cell–APC contact (67–69). Microtubule polarization depends 
on TCR-induced signaling (70, 71) and the microtubule-driven 
molecular motor dynein (72). Interestingly, ezrin plays a critical 
role in driving the MTOC close to the synapse, in controlling 
microtubule network organization, and in signaling microcluster 
dynamics at the synapse. Ezrin does so via its association with 
the polarity regulator Dlg1 (67). Moreover, the actin-nucleating 
proteins Diaphanous 1 (mDia1) and formin-like 1 (FMNL1) 
are also necessary to polarize MTOC to the synapse (53). The 
involvement of ezrin and formins in MTOC polarization high-
lights that actin and microtubule network organization at the 
synapse are tightly connected. Microtubule stability modulated 
by the HDAC6 deacetylase is also regulated during immunologi-
cal synapse formation and necessary for synapse formation and 
T cell activation (73). Actin and microtubule interplay is also 
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critical for T cell effector function, such as polarized secretion of 
helper cytokines, since it is necessary for Golgi complex polariza-
tion toward the APC (74).

As mentioned above, microtubule–actin interplay is also 
necessary for efficient phagocytosis (48). Of note, the MTOC 
has also been reported to be relocated at the site of phago-
some formation (75), but given that multiple targets are often 
phagocytosed at the same time, how this applies to uptake in 
physiological situations is uncertain. Similarly, when a cytotoxic 
T cell is engaged in multiple contacts, the antigen-specific 
delivery of lytic granules occurs independently of centrosome 
positioning (76).

Microtubule dynamics and organization ensure the delivery 
of TCRs and signaling molecules to the synapse via recycling 
endosomes (77–79). Moreover, microtubules, together with actin 
flows, drive signaling microcluster centripetal movement at the 
synapse (67, 80). Therefore, microtubules drive the arrival and 
removal of TCRs and signaling molecules in a way to sustain and 
regulate TCR signaling at the synapse.

ACTiN DYNAMiCS AND CLeARANCe

Actin polymerization is crucial to achieve efficient pseudopod 
extension and phagosome formation, but actin turnover and 
depolymerization is as important. This turnover, which occurs 
at the base of the phagocytic cup (81), is directly dependent on 
the hydrolysis of PI(4,5)P2 (82), which is mediated by several 
effectors including phosphatases that hydrolyze PI(4,5)P2, such as 
phospholipase C, PI3 kinase, and 5′ phosphatases, such as Inpp5b 
or oculocerebrorenal syndrome of Lowe (OCRL) (81, 83–85). 
In addition, the severing protein cofilin is recruited to the site 
of phagocytosis and its activity is regulated by LIM kinase (86). 
Interestingly, the presence of OCRL at sites of phagocytosis was 
shown to depend on vesicular recruitment of AP1 and EpsinR adap-
tors, which is under the unexpected control of the NF-kB signaling 
protein Bcl10 (81), showing how interconnected the signaling and 
trafficking events are. Inactivation of Rho GTPases is also achieved 
by several Rho GAP proteins, such as ARHGAP12, ARHGAP25, 
and SH3BP1, that are recruited under the dependence of PI3K 
and synergistically inactivate Rac and Cdc42 (87). Actin clearance 
from the base of the phagocytic cup, which is required for large 
but not small particle internalization (87), is then necessary for 
vesicles to make their way to the plasma membrane (81).

Actin clearance is also observed in immunological synapses, 
and it is thought to be important to facilitate vesicle fusion at 
the synapse, particularly in cytotoxic T cells, which destroy target 
cells by the polarized secretion of lytic granules (88). F-actin relo-
calization at the immunological synapse depends on PI(3,4,5)P3 
(89) and modulates cytotoxicity. Actin and PI(4,5)P2 are cleared 
from the site of secretion, indicating a tight interplay between 
actin cytoskeleton reorganization and phospholipid second mes-
senger at the synapse (68, 90).

Therefore, the reorganization of the actin and microtubule 
cytoskeleton is triggered by TCR and phagocytic receptors and is 
the key to maintain the structure and function of phagocytic cups 
and immunological synapses.

veSiCLe TRAFFiC DURiNG PHAGOCYTiC 
CUP AND iMMUNOLOGiCAL SYNAPSe 
FORMATiON

Phagocytic cup formation generates membrane protrusions capa-
ble of engulfing particles of different sizes. Instead of a decrease 
in membrane surfaces after internalization of the phagosomes, an 
increase in cell surface was reported during phagosome forma-
tion using capacitance measurements (91). This is in agreement 
with the concept of membrane remodeling and “focal delivery” of 
intracellular compartments at the site of phagosome formation (92, 
93). The requirement for focal vesicle fusion in optimal phagocy-
tosis of large targets came from studies interfering with the fusion 
machineries composed of soluble N-ethylmaleimide-sensitive 
factor attachment protein receptors (SNAREs). These are mem-
brane fusion regulatory proteins that form a tri-party complex 
composed of one vesicle (v)-SNARE and two target membrane 
(t)-SNAREs. SNARE complex formation helps bringing together 
the two membranes to facilitate their fusion. SNAREs act with 
various regulatory proteins, such as Rab GTPases, Munc proteins, 
and the calcium sensors synaptotagmins to bring together, dock, 
tether, and fuse vesicles with target membranes, either the plasma 
membrane or other vesicles (94). Several intracellular vesicular 
compartments have been implicated in focal recruitment and 
fusion concomitant with phagosome formation (95–97). These 
include recycling endosomes bearing the v-SNARE VAMP3 on 
their surface (98–100) and late endocytic compartments display-
ing the v-SNARE VAMP7 or lysosomes (101, 102). The endocytic 
compartments also harbor the adaptor proteins AP1 and EpsinR, 
both implicated in efficient phagosome formation, while the AP2 
complexes and the clathrin-related endocytic machinery are not 
involved (81, 100). Interestingly, VAMP3+/AP1+ endosomes also 
partially colocalize with TNFα, a cytokine that is delivered at the 
site of forming phagosomes (103).

Similarly, different endosomal compartments and vesicle traf-
fic regulators are involved in immunological synapse formation. 
These compartments differentially transport TCRs, the tyrosine 
kinase Lck, and the adapter LAT to the synapse by recycling these 
proteins back and forth between their plasma membrane location 
and endosomes. These endosomal compartments display different 
traffic regulators, such as Rab GTPases (i.e., Rab4, Rab8, Rab11, 
Rab27, and Rab35), transport proteins (i.e., MAL, intraflagellar 
transport proteins), or vesicle fusion regulators (i.e., VAMP3, 
VAMP7, Synaptotagmin-7, and Munc13) (77, 78, 104–108). 
The immunological synapse clusters the t-SNAREs SNAP23 and 
syntaxin 4 preparing the zone for active vesicle fusion activity. 
It is still a matter of debate whether vesicles transporting the 
signaling adapter LAT only dock and stay as subsynaptic vesi-
cles (106, 109, 110) or fuse with the plasma membrane driving 
LAT clustering at the synapse (77, 78, 111, 112). The regulated 
exocytosis of vesicular compartments in T cells might also be 
important during the early stages of synapse formation when 
a large lamellipodium-like membrane structure is formed over 
the APC. Finally, vesicle traffic is important for T cell effector 
functions, such as polarized secretion of cytokines or cytotoxic 
granules in helper and cytotoxic cells, respectively (88, 113).
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During phagosome formation, the recruitment of compart-
ments and their fusion are regulated by small GTPases of the 
Rab and ARF families. Rab11, localized on the recycling com-
partments, is implicated in efficient phagocytosis (114–116). 
ARF6 was shown to be activated during phagosome formation 
and to control the delivery of VAMP3+ recycling endosomes 
(99, 117, 118). Rab35 regulates actin-dependent phagosome 
formation by recruiting ACAP2, an ARF6 GTPase-activating 
protein (119), or by regulating the localization of Rac1 and 
Cdc42 (120). In addition, Rab11 and ARF6 activities might be 
coordinated via common effectors, such as the Rab11-FIP3/4/
RIP/RCP (Rab-coupling proteins), also named arfophilins, which 
were implicated in phagosome formation and maturation (115). 
Rab31 (Rab22b) recruits the adaptor APPL2 that participates in 
PI3K/Akt signaling and phagosome completion (121). As Rab35 
recruits the OCRL phosphatase during cytokinesis (122), it could 
also be implicated together with Rab5 (85) in OCRL recruitment 
during phagocytosis, although this has not been demonstrated. 
There are therefore multiple levels of regulation that implicate 
tight coordination between the signaling platforms and their 
subcellular localization, and further investigations are required 
to dissect them both in the context of the immunological synapse 
and the phagocytic cup.

CONCLUSiON

Although we have largely progressed in our understanding of the 
mechanisms underlying the membrane and cytoskeletal reor-
ganization that support phagosome and immunological synapse 
formation, there are still a number of issues that need further in-
depth investigation. These issues may be different in the phago-
cytosis and the immunological synapse fields, but a comparison 
of the two systems may help solve these different questions faster. 
These include how some phagocytic receptors get engaged and 
the type of signals they generate? What is the phospholipid 

chemistry of each of the systems and its influence on cytoskeleton 
organization? What is the precise time and space organization of 
signaling complexes and vesicular compartments? Interestingly, 
we have recently described several examples of “ménage à 
trois” between receptor signals, vesicle traffic, and cytoskeletal 
structures in both processes; for instance, the involvement of 
the proinflammatory signaling pathway NFκB in the control of 
vesicle trafficking and actin clearance in nascent phagosomes via 
the signaling protein Bcl10 (81), or the orchestrated action of the 
TCR signaling machinery, the actin and microtubule cytoskel-
eton, and intracellular vesicle traffic in ensuring immunological 
synapse architecture and function in T cell activation and effector 
functions, such as polarized secretion of cytokines or cytotoxic 
granules (1). Collectively, the vast majority of data presented here 
emphasize the similarities between immunological and phago-
cytic synapses formation and suggest a possible evolutionary link 
between these two structures, whereby the phagocytic synapse of 
innate immune cells would be an ancestor of the immunological 
synapse in the adaptive immune system (123).
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