Supplementary Information:

Key role of Pks5 recombination-mediated surface remodelling in *Mycobacterium tuberculosis* emergence

Eva C. Boritsch, Wafa Frigui, Alessandro Cascioferro, Wladimir Malaga, Gilles Etienne, Françoise Laval, Alexandre Pawlik, Fabien Le Chevalier, Mickael Orgeur, Laurence Ma, Christiane Bouchier, Timothy P. Stinear, Philip Supply, Laleh Majlessi, Mamadou Daffé, Christophe Guilhot and Roland Brosch.

Supplementary Figure 1. Smooth *M. canettii* strains contain both *pks5* genes and *pap*. Long range PCRs were performed using oligos that bind either downstream *pks5-1* and inside *pap* to amplify *pks5-1* (red dotted line) or upstream *pks5-2* as well as inside *pap* to amplify *pks5-2* (green dotted line). *M. canettii strains* A, D, J, L, K_S, K_R, I_S, I_R and *M. tuberculosis* H37Rv (*Mtb*).

Supplementary Figure 2. Domain organization of the different *pks5* genes.

(A) Comparison of the different domains of *pks5-1* (left panel) and *pks5-2* (right panel) between *M. tuberculosis* H37Rv (middle), *M. canettii* strains A (CIPT 140010059) (top) and K_s (bottom).

(B) Potential recombination of *pks5* of *Mtb* H37Rv as compared to the two *pks5* genes of *M. canettii* strain A. Domains of *M. canettii* strain A were predicted according to the organization of *pks5* of *M. tuberculosis* H37Rv (Quadri et al., 2014) and the respective amino acid positions (AA) are depicted either above or below the particular domains. Sequences of individual domains of *pks5-1* and *pks5-2* were aligned using ClustalW2 and identity values are shown as percentage. Origin of the domains of the potentially recombined *pks5* of *Mtb* H37Rv is represented in different nuances of gray (light gray originating from *pks5-2* and dark gray from *pks5-1*). Domain abbreviations: ketosynthase (KS), acyltransferase (AT), dehydratase (DH), enoylreductase (ER), ketoreductase (KR) and acyl-carrier protein (ACP).

Supplementary Figure 3. (A) Genetic locus of *pks5* genes in *M. canettii* strains I_S and I_R and amino acid (AA) positions of non-synonymous SNPs occurring between the smooth and the rough morphotype in the two genes *pks5-1* and *pks5-2*. No mutations were found in the *pap* gene. Amino acid sequences were compared by using MEGA5 software (Tamura, et al., 2011).

(B) Comparison of *pks5-1* and *pks5-2* domains of *M. canettii*- I_S and *M. canettii*- I_R . Note that mutations were only located in the ketosynthase (KS) domains and were attributed to probable recombination events of sub-fractions of the *pks5* genes. The three mutated regions are highlighted in red and probable genetic exchange is indicated by black arrows.

Supplementary Figure 4. Map of the pYUB412-based cosmids C9 and H6 used to complement *M. canettii* K_R or other tubercle bacilli with rough morphotypes. The genetic regions of *M. canettii* strain A (CIPT 140010059), cloned into the backbone of the integrating cosmid pYUB412 is shown on top. Arrows indicate insert position on the cosmid. The right panel shows the site of integration (*attB*) of the cosmid in mycobacterial genomes (within glyV-tRNA gene) (Bange et al., 1999).

Supplementary Figure 5. Complementation of *M. canettii* strains I_R and K_R with cosmid H6, or HA-tagged *pks5-2* and *pap*. (**A**) Colony morphologies of *M. canettii* I_R ::H6 and K_R ::H6. Scale bar = 5 mm. (**B**) Colony morphologies of strains K_R and I_R complemented with either *pks5-2* or *pap*. Scale bar = 5 mm. (**C**) Expression of HA-tagged *pks5-2* or *pap* in *M. canettii* I_R and K_R was confirmed by Western Blot analysis using anti-HA antibodies. Expression of SigA was used as loading control.

Supplementary Figure 6. Colony morphotypes observed after complementation attempts with integrating cosmid C9 in different members of the *M. tuberculosis* complex, including *M. tuberculosis* (*Mtb*) 79112 (lineage 1), *M. tuberculosis* CDC1551 (lineage 4), *M. tuberculosis* Tb36 (lineage 1) and *M. africanum* 20010989 (lineage 5/6). Scale bar = 5 mm.

Supplementary Figure 7. MALDI-TOF mass spectra of purified LOS from *M. canettii* strains D, E, F, G, L, H, and J. The analysis of the mass spectra of the LOS-like compounds purified from the various strains shows a series of pseudo-molecular ions peaks [M+Na]+, between m/z 2450 and 2800, similar to that of the previously characterized LOS from *M. canettii* strain A (CIPT 140010059). The mass values of the major forms of the glycoconjugates from *M. canettii* strains G, J, K, and L correspond to that of the LOS 9 from *M. canettii* A. In strains D, E, F, and H, additional mass peaks were observed. Based on their mass values, these compounds may correspond to LOS containing 10 sugar residues (LOS 10), *e.g* the nine sugar units of LOS 9 plus an additional pentosyl residue. Note that LOS from strain J shows the same 14 mass-units shift as that observed for LOS from strain I (Fig. 4). This difference is predicted to be caused in these strains by the absence of a methyl residue on one 2-O-Me-rhamnosyl unit, probably due to a missing or non-functional methyltransferase.

Supplementary Figure 8. GC-MS analysis of the LOS-specific fatty acids produced by strains K_S and K_R . (**A**) Fatty acid composition of LOS purified from strain K_S by GC-MS. The chromatogram of the released fatty acid methyl esters shows the presence of three major peaks with retention times (t_R) of 8.43, 10.35, and 13.28 min. Electron impact EI-MS and the McLafferty rearranged ions of these peaks are consistent with the 2L-,4L-

dimethylhexadecanoate (t_R =8.43min), 2L-,4L-,6L-,8L tetramethyloctadecanoate (t_R =10.35min) and 2-methyl-3-hydroxyeicosanoate (t_R =13.28min), the acyl substituents of the LOS as reported earlier (Daffé et al., 1991). Note that fragment ions at *m*/z 88 and *m*/z 189, which indicate the presence of 2-Me and 3-OH-2-Me/TMS derivatives in the purified LOS, were selected as base peaks to detect the presence or not of fatty acid methyl esters released from the total extractable lipids from the S- and R-variants.

(**B**) and (**C**) Identification of LOS-specific fatty acids from crude lipid extracts from strains K_S and K_R that were first released from complex lipids by alkaline methanolysis and converted to trimethylsilyl derivatives before being subjected to GC-MS analysis. The chromatograms show fatty acid methyl esters from strain K_S (**B**) and K_R (**C**) that gave fragmentation ion at *m/z* 88. Note that 2L-,4L-dimethylhexadecanoate (t_R=8.43min) and 2L-,4L-,6L-,8L-

tetramethyloctadecanoate (t_R =10.35min) were detected in strain K_S, but not in strain K_R.

Supplementary Figure 9. TLC analyses of lipid extracts from S- and R-variants of *M. canettii* strains. (A) TLC analysis of lipid extracts from *M. canettii* strains I_R , I_S , K_R and K_S , which were spotted on silica gel G60 plates, separated with CHCl₃/CH₃OH (95/5) and visualized by spraying with 0.2% anthrone in concentrated H₂SO₄, followed by heating. Phenolic glycolipids (PGL) are indicated. This experiment was performed once.

(**B**) and (**C**) TLC analysis of various lipids, including acyl-trehaloses such diacyltrehaloses (DAT), polyacyltrehaloses (PAT), sulfolipids (SL), phenolic glycolipids (PGL) or lipooligosaccharides (LOS) from different *M. canettii* strains using metabolic labelling with ¹⁴C propionate. Note that under the growth conditions used, very low production of SL and DAT/PAT was observed for K_S and I_S strains and no accumulation of these compounds is seen in the K_R and I_R variants. In contrast, clear differences between S- and R-variants can be seen for production of LOS. Strain *M. canettii* A ΔPhoP/R was used as control as this strain does not produce DAT/PAT and SL due to PhoP/R-mediated downregulation of *pks3/4* and *pks2* genes (Gonzalo-Asensio J et al., 2014). This experiment was performed once.

Α

Supplementary Figure 10. Complementation of LOS production in various strains. (**A**) TLC analysis (CHCl₃:CH₃OH:H₂O, 60:24:2) of lipid extracts of *M. canettii* strains K_R and I_R complemented with the *pks5-2* gene. (**B**) TLC analysis (CHCl₃:CH₃OH:H₂O, 60:24:2) of lipid extracts of various MTBC strains complemented with the C9 cosmid. LOS: lipooligosaccharides. Glycolipids were visualized by spraying with anthrone, followed by charring. This experiment was performed once.

Supplementary Figure 11. Intra-macrophagal behaviour of *M. canettii* S- and R-variants in (**A**) human monocyte-derived macrophages and (**B**) in murine Raw macrophages. Results shown correspond to experiments in which macrophages (7.5 x 10⁴ cells per well) were infected with various strains at an MOI of 0.05 (~ 1 bacterium per 20 cells). The Figure shows fold growth rates of intracellular bacteria determined at 3 h and at the indicated timepoints post infection. Data are represented as means and standard deviation of three independent experiments. Significance in difference between strains K_R and K_S as well as K_R and K_R::C9 was determined using Two-way *ANOVA* (**p* < 0.05, ***p* < 0.001, ****p* < 0.0001).

Supplementary Figure 12. Cytokine and chemokine production in BM-DCs upon infection with different morphotypes. BM-DCs of C57BL/6 WT mice were infected with Sauton-grown *M. tuberculosis (Mtb)* H37Rv, *M. canettii strains* K_S, K_R or K_R::C9 at an MOI of 1. 24 h post infection the level of indicated cytokines and chemokines in the cell supernatants was determined by Luminex Muliplex Assay. Data represent mean and standard deviation of 2 independent biological replicates each done in duplicate.

+ indicates that values were above the detectable range limit. *Mcan* = *M. canettii*

Supplementary Figure 13. IL-6 production and IL-12p40 in BM-DCs of WT and TLR-KO mice upon infection with different morphotypes. BM-DCs of C57BL/6 WT, TLR2 KO, TLR4 KO or TLR2/4 KO mice were infected with Sauton-grown *M. tuberculosis* H37Rv, *M. can*ettii K_s, K_R or K_R::C9 at an MOI of 1. 24 h post infection, the level of IL-6 or IL-12p40 in the cell supernatants was determined by ELISA. PAM3CSK4 (10 µg/ml) was used as a positive control for TLR2 and LPS (100 ng/ml) for TLR4 stimulation. Viability of TLR2/4 double KO cells was comparable to the other cell lines as determined by observations by microscope. Data are represented as means and standard deviation of three biological replicates. Significance in difference was determined using Mann Whitney test (**p* < 0.05).

Supplementary Table 1: Putative SNPs suggested by mapping of Illumina-generated sequence reads relative to the *M. canettii* strain I (CIPT 140070007 or STB-I)(Supply et al., 2013) using the parameters of an inhouse SNP analysis pipeline described in Material and Methods.

Please note that results obtained by complementary mapping and SNP analyses, using the same set of reads but pre-calibrated parameters for re-sequencing data of reference genomes (Pouseele & Supply,, 2015), some of the listed SNPs were not confirmed and might correspond to be read-mapping artefacts caused by the high GC content and the repetitive nature of the genes involved.

Locus Tag	Ref Base	Base Position	Variant	Mutation	Ref Amino- Acid	Amino-Acid Position	Substitution	Gene Product
STB-Iv1_800020	A	984468	0	non-synonymous	*	77	×	fragment of PROBABLE CONSERVED INTI PROTEIN (par
STB-Iv1_860045	G	1094121	C	synonymous				Uncharacterized PE-PGRS family pro
STB-Iv1_890003	G	1108961	C	synonymous				fragment of PROBABLE CONSERVED I (part 1)
STB-Iv1_1170007	G	1253492	C	non-synonymous	G	427	A	Uncharacterized PE-PGRS fam
STB-Iv1_1340012	С	1369460	Ч	synonymous				PROBABLE PYRROLINE-5-CARBOXY
STB-Iv1_1900001	A	1834669	G	non-synonymous	<	146	A	polyketide synt
STB-Iv1_1900001	G	1834668	Þ	non-synonymous	<	146	A	polyketide syntl
STB-Iv1_1900001	Т	1834666	G	non-synonymous	×	147	S	polyketide synth
STB-Iv1_1900001	G	1834665	C	non-synonymous	×	147	S	polyketide synth
STB-Iv1_1900001	G	1834663	Þ	non-synonymous	A	148	<	polyketide synth
STB-Iv1_1950022	G	1903561	0	non-synonymous	G	239	A	fragment of CONSERVED HYPOTH
STB-Iv1_1950022	G	1903567	Þ	non-synonymous	G	241	D	fragment of CONSERVED HYPOTH
STB-Iv1_2000016	G	1968979	Þ	synonymous				CONSERVED HYPOTHE
STB-Iv1_2420001	G	2324496	Ч	non-synonymous	Ч	303	z	transpos
STB-Iv1_2970010	G	2747759	Þ	non-synonymous	A	132	<	PROBABLE OXYGEN-INDEPENDENT OXIDASE HEMN (COPROPORPHYRINOC
STB-Iv1_3040002	G	2863651	C	non-synonymous	R	52	S	Ice-structuring protei
STB-Iv1_3050001	G	2864527	C	non-synonymous	P	4	A	PE-PGRS FAMILY PROT
STB-Iv1_4880028	G	4387574	C	non-synonymous	G	250	A	fragment of POSSIBLE CONSERVED N
STB-Iv1_4920001	С	4404314	G	non-synonymous	<	443	F	POSSIBLE CONSERVED ME
STB-Iv1_4930001	C	4427879	A	synonymous				CONSERVED HYPOTHETICAL AL

Supplementary Table 2: Putative SNPs suggested by mapping of Illumina-generated sequence reads relative to the *M. canettii* strain K (CIPT 140070010 or STB-K, accession number NC_019951.1) (Supply et al., 2013) using the parameters of an inhouse SNP analysis pipeline described in Material and Methods.

Please note that results obtained by complementary mapping and SNP analyses, using the same set of reads but pre-calibrated parameters for resequencing data of reference genomes (Pouseele & Supply, 2015), most of the listed SNPs were not confirmed and might correspond to be readmapping artefacts caused by the high GC content and the repetitive nature of the genes involved.

Locus Tag	Ref Base	Base Position	Variant	Mutation	Ref Amino- Acid	Amino-Acid Position	Substitution	Gene Product	mutation in S, R or both
BN42v3_CDS248358R	Т	249658	G	non-synonymous	N	606	Т	Putative zinc metalloprotease (part 1)	both
BN42v3_CDS248358R	Т	249655	G	non-synonymous	Q	607	P	Putative zinc metalloprotease (part 1)	both
BN42v3_10242	Т	249658	G	non-synonymous	к	3	N	Putative zinc metalloprotease (part 2))	both
BN42v3_10242	I	249655	G	synonymous		20		Putative zinc metalloprotease (part 2))	both
BN42V3_10330	G	353091		non-synonymous	P	20	S	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS3	both
BN42v3_10330	т	353055	C C	synonymous	ĸ	50	3	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS3	both
BN42v3 10330	Ť	353055	č	non-synonymous	к	40	G	Conserved protein of unknown function, PE-PGRS family protein PE PGRS3	both
BN42v3 10330	Ť	353054	č	non-synonymous	ĸ	40	G	Conserved protein of unknown function, PE-PGRS family protein PE PGRS3	both
BN42v3_10330	т	353053	С	non-synonymous	К	40	G	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS3	both
BN42v3_10330	т	353052	С	non-synonymous	Т	41	A	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS3	both
BN42v3_10330	G	353039	С	non-synonymous	A	45	G	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS3	both
BN42v3_10330	G	353035	С	synonymous				Conserved protein of unknown function, PE-PGRS family protein PE_PGRS3	both
BN42v3_20003	A	354699	C	synonymous				Uncharacterized PE-PGRS family protein PE_PGRS3	both
BN42v3_20003	A	354693	C	synonymous		162		Uncharacterized PE-PGRS family protein PE_PGRS3	both
BN42V3_20003	L T	354686	G	non-synonymous	A	162	P	Uncharacterized PE-PGKS family protein PE_PGKS3	DOTH
BN42V3_20005	Ċ	355946	G	non-synonymous	E	390	A A	WAG22 antigen (fragment)	P
BN42v3_20005	т	355873	G	non-synonymous	ĸ	415	Ť	WAG22 antigen (fragment)	both
BN42v3_20005	Ċ	355872	G	non-synonymous	ĸ	415	Ť	WAG22 antigen (fragment)	both
BN42v3 20079	Ă	449413	G	synonymous	i.	115		Conserved protein of unknown function, PPE6/PPE7 family protein	S
BN42v3 20079	G	449411	Ā	non-synonymous	S	868	F	Conserved protein of unknown function, PPE6/PPE7 family protein	s
BN42v3_20270	А	639536	G	synonymous				Conserved protein of unknown function, uncharacterized PE-PGRS family protein PE PGRS33	both
BN42v3_20270	A	639537	G	non-synonymous	т	542	A	Conserved protein of unknown function, uncharacterized PE-PGRS family protein PE_PGRS33	R
BN42v3_20324	G	694345	Т	non-synonymous	Т	862	N	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS54	R
BN42v3_20602	C	942403	G	synonymous				Conserved protein of unknown function, PE-PGRS family protein (part2)	R
BN42v3_20603	A	942574	C	non-synonymous	L	490	V	Conserved protein of unknown function, PE-PGRS family protein (part1)	R
BN42v3_20603	C	942572	A	non-synonymous	L	490	V	Conserved protein of unknown function, PE-PGRS family protein (part1)	R
BN42V3_20605	L T	942403	G	non-synonymous	E	547	Ŷ	Conserved protein of unknown function, PE-PGRS family protein (part1)	R
BN42v3_20095	Ť	1034001	Č	non-synonymous	M	484	Ť	Conserved protein of unknown function, PPE family (fragment)	P
BN42v3 20914	Ġ	1252332	Δ	non-synonymous	1	222	Ē	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3 20914	Ğ	1252309	Â	synonymous	-			Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3 20914	A	1252307	G	non-synonymous	V	230	А	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_20914	А	1252300	C	synonymous				Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_20914	С	1252299	Α	non-synonymous	D	233	S	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_20914	Т	1252298	G	non-synonymous	D	233	S	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_20914	Т	1252281	C	non-synonymous	N	239	A	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_20914	Т	1252280	G	non-synonymous	N	239	A	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_20914	A	1252276	G	synonymous	•	241		Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42V3_20914	C	1252275		non-synonymous	A	241	1	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42V3_20914	G	12522/4	A C	non-synonymous	A	241	I C	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3 20914	G	1252267	c	non-synonymous	Δ	243	G	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3 20914	T	1252261	č	synonymous		2.15	U	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3 20914	Ċ	1252260	Ť	non-synonymous	А	246	т	Conserved protein of unknown function, PE-PGRS family protein (PE-PGRS 20)	R
BN42v3_21367	G	1708360	С	synonymous				Conserved protein of unknown function, PE-PGRS family protein PE_PGRS54 (part1)	both
BN42v3_21367	A	1708348	G	synonymous				Conserved protein of unknown function, PE-PGRS family protein PE_PGRS54 (part1)	R
BN42v3_21371	G	1710804	C	non-synonymous	A	250	G	Conserved protein of unknown function, PE_PGRS family protein (part3)	both
BN42v3_21371	C	1710803	G	non-synonymous	A	250	G	Conserved protein of unknown function, PE_PGRS family protein (part3)	S
BN42v3_21372	т	1711684	A	synonymous				Conserved protein of unknown function, PE-PGRS family protein PE_PGRS54 (part2)	both
BN42v3_21372	C	1711682	A	non-synonymous	G	153	V	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS54 (part2)	both
BN42v3_21457	A	1806180	G	synonymous		260		Putative polyketide synthase Pks5	R
BN42V3_21457	A	1806178	G	non-synonymous	v	268	A	Putative polyketide synthase PKS5	K
BN42V3_40444	A C	2923449	G	synonymous	D	461	N	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS54	both
BN42v3_40840	G	3286129	G	non-synonymous	۵ ۵	401	G	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS48 (part1)	both
BN42v3 40840	G	3286130	c	non-synonymous	Δ	464	G	Conserved protein of unknown function, PE-PGRS family protein PE PGRS48 (part1)	both
BN42v3 40841	Ğ	3286119	Ă	synonymous		101	U	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS48 (part2)	both
BN42v3 40841	C	3286129	G	non-synonymous	R	17	A	Conserved protein of unknown function, PE-PGRS family protein PE PGRS48 (part2)	both
BN42v3_40841	G	3286130	С	non-synonymous	R	17	Α	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS48 (part2)	both
BN42v3_40893	Т	3332127	С	synonymous				Conserved protein of unknown function (part1)	both
BN42v3_40893	Т	3332125	С	non-synonymous	E	96	G	Conserved protein of unknown function (part1)	both
BN42v3 41048	А	3526871	С	non-synonymous	F	6	1	Putative cytochrome C oxidase polypeptide I CtaD (cytochrome AA3 subunit 1) Putative	both
5111215_11010	~	5520071	Ŭ	non synonymous	·	Ū	-	cytochrome C oxidase polypeptide I CtaD (cytochrome AA3 subunit 1) (part2)	both
BN42v3 41048	А	3526868	С	synonymous				Putative cytochrome C oxidase polypeptide I CtaD (cytochrome AA3 subunit 1) Putative	both
				., . ,				cytochrome C oxidase polypeptide I CtaD (cytochrome AA3 subunit 1) (part2)	
BN42v3_41049	A	3526871	C	non-synonymous	L	260	W	Putative cytochrome C oxidase polypeptide I CtaD (cytochrome AA3 subunit 1) (part1)	both
BN42v3_41049	A	3526868	C	non-synonymous	v	261	G	Putative cytochrome C oxidase polypeptide I CtaD (cytochrome AA3 subunit 1) (part1)	both
BN42V3_30005	T	J001/13 4150167	G	synonymous				Conserved protein of unknown function, PPE lamity protein PPE54 (fragment)	hoth
BN42v3_90104	Δ	4159170	r r		F	518	D	Conserved protein of unknown function, PE-PGRS family protein	both
BN42v3 90104	Â	4159171	Ğ	non-synonymous	R	519	G	Conserved protein of unknown function, PE-PGRS family protein	both
BN42v3 90104	G	4159173	c	non-synonymous	R	519	G	Conserved protein of unknown function, PE-PGRS family protein	both
BN42v3 90153	Ā	4205115	c	synonymous			_	Conserved protein of unknown function, PE-PGRS family protein	both
BN42v3_90159	т	4210087	G	non-synonymous	*	143	G	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS33 (fragment)	S
BN42v3_90159	Α	4210088	G	non-synonymous	*	143	G	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS33 (fragment)	S
BN42v3_90159	A	4210089	G	non-synonymous	*	143	G	Conserved protein of unknown function, PE-PGRS family protein PE_PGRS33 (fragment)	S
BN42v3_90160	Т	4210086	G	non-synonymous	L	8	R	Conserved protein of unknown function, PE-PGRS family protein (fragment)	S
BN42v3_90160	Т	4210087	G	non-synonymous	L	8	R	Conserved protein of unknown function, PE-PGRS family protein (fragment)	S
BN42v3_90160	A	4210088	G	non-synonymous	к	9	G	Conserved protein of unknown function, PE-PGRS family protein (fragment)	S
BN42v3_90160	A	4210089	G	non-synonymous	ĸ	9	G	Conserved protein of unknown function, PE-PGRS family protein (fragment)	S
BN42V3_90160	A	4210090	G	non-synonymous	к	Э	G	conserved protein of unknown function, PE-PGRS family protein (fragment)	5

M. canettii A M. canettii K phenotype o mutants mmar_2307 hypothetical transmembrane protein (van der Woude et al. 2012) LOS-I accumulation in *M. marinun* udgL; UDP-glucose/GDP-mannose dehydrogenase family (Ren et al. 2007) mmar_2309 mkan_27380 putative UDP-glucuronate decarboxylase glycosyl transferase/ methyl transferase mmar_2310 mkan_27385 mmar_2311 mkan_27390 mmar 2312 MCAN_15191 losA, glycosyl transferase (Burguière et al. 2005) Rv1500 mmar_2313 BN42v3_2142 mmar 2314 Rv1501 MCAN_15201 BN42v3_21428 hypothetical protein (Rombouts et al. 2009) mmar_2315 hypothetical methyltransferase (Rombouts et al. 2009) . *marinu* specific cluster mmar 2316 transcriptional regulator (Rombouts et al. 2009) LOS-III hypothetical O-methyltransferase (Rombouts et al. 2009) hypothetical transmembrane protein (van der Woude et al. 2012) mmar 2317 accumulation in M. marinum mmar_2319 Rv1504c/Rv1503c MCAN_15221/ MCAN_15231 BN42v3_21430 wecE; pyridoxal phosphate-dependent enzyme (van der Woude et al 2012) mmar_2320 BN42v3_21431 hypothetical acyltransferase (Alibaud et al. 2013) mmar_2321 Rv1505c MCAN_15241 mmar_2322 mmar_2325 BN42v3_21432 BN42v3_21433 Rv15060 MCAN 15251 Rv1507c MCAN_15261 hypothetical protein hypothetical di- and tri-carboxylate transporter (van der Woude et al. 2012) mmar_2327 Rv1508c MCAN_15281 BN42v3_21436 mmar_2328 nort-chain dehydroge nmar_2330 hypothetical protein, potentially involved in synthesis of caryophyllo (Alibaud et al. 2013) nmar_2331 LOS-II and LOS-II* mmar 2332 //vB1_3; acetolactate synthase (Ren et al. 2007) accumulatio M. marini specific cluster wcaA, glycosyl transferase (Sarkar et al. 2011) mmar_2333 mmar_2334 nucleotidyltransferase nmar_2336 gal/E6; UDP-glucose 4-epimerase (van der Woude et al. 2012) rA-like membrane protein; putative role in synthesis and assembly o nmar_2337 mkan_27425 glycosyl transfera mkan_27430 mkan_27435 (LOS IV-VII) in M. kansasii glycosyl transferase (Nataraj et al. 2015) M. kansas specific cluster mkan_27440 se-1-phosphate cytidiltransfer mkan_27445 mkan_27450 mkan_27475 NAD dependent epimerase/dehydratase family Rhamnose epimerase methyltransferas mkan_27695 glycosyl transferase mmar_2339 mkan_27480 methyltransferase MKAN 23850 MKAN_23855 Rv1511 MCAN_15321 BN42v3_21441 amdA GDP-D-mannose dehydratase Rv1512 ep/A: putative nucleotide-sugar epimerase MCAN_15331 BN42v3_21442 Rv1513 MCAN_15341 MCAN_15351 BN42v3_21443 BN42v3_21444 hypothetical protein putative glycosyl transferase putative methyl transferase мтвс Rv1514c specific cluster MCAN_15361 MCAN_15371 BN42v3_21444 BN42v3_21445 BN42v3_21446 Rv15150 Rv15160 putative sugar transferase Rv1518 MCAN_15391 BN42v3 21448 putative glycosyl transferase putative sugar transferase Rv1520 MCAN_15411 BN42v3_21450 Rv1523 MCAN_15441 BN42v3 21453 putative methyltransferase MCAN_15481 pks5-1 mkan_27485 (BN42v3 21457) mmar_2340 Rv1527c msmeg_4727 s5; polyketide synthase (van der Woude et al. 2012) fadD25, fatty acyl AMP ligase (van der Woude et al. 2012) MCAN_15421 BN42v3_21451 mkan_27490 msmeg_4731 Rv1521 mmar_2341 Rv1529 MCAN_15521 BN42v3_21460 mkan_27490 fadD24, fatty-acid-AMP ligase nmar 2341' msmeg_4731 Rv1522c MCAN_15431 BN42v3_21452 mkan_27530 msmeg_4741 mmar_2342 Rombouts et al. 2011) (papA4 in M. marin mkan_27535 msmeg_4728 nmar_2343 MCAN_15491 pap mmar_2344 MCAN 15501 pks5-2 mkan_27540 Rv1528c (truncated ?) MCAN_15511 BN42v3_21458 + BN42v3_21459 papA4, MTBC version (truncated ?) mkan_27545 (fragment) mkan_27550 mkan_27555 mkan_27575 Rv1530 MCAN_15531 BN42v3_21461 adh, alcohol dehydrogenase LOS-d MCAN_15541 MCAN_15551 MCAN_15461 -BN42v3_21462 BN42v3_21463 BN42v3_21455 core cluster for first step in LOS Rv1531 hypothetical protein nmar_2345 Rv15320 Rv1525 of LOS-0 in amnosyltransferase (Alibaud et al. 2013) mar_2349 mmar_2350 Rv1531 MCAN_15541 BN42v3_21462 -mmar_2351 mkan_27580 glycosyl transferase Rv1517 MCAN_15381 BN42v3_21447 nmar_2352 msmeg_4733 tical transmembrane pr msmeg_4740 Rv1524 MCAN_15451 BN42v3_21454 mkan_27600 mmar 23532 mmar 2353² Rv1526c MCAN_15471 BN42v3_21456 mkan_27600 msmeg_4740 msmeg_4729 / msmeg_4729 / smeg_4728 (see papA4) mmar_2354 mmar 2355 mkan 27610 ferase (van der Woude et al. 2012 mmar 2366 Rv1543 MCAN 15661 BN42v3 21474 mkan 27675 mmar_2367 Rv1544 MCAN_15671 BN42v3_21475 mkan_27680 msmeg_4722 keto acyl reductase 549 + Rv1550 nmar_2370 MCAN_15721 BN42v3_21481 mkan_27700 msmeg_4772 fadD11, fatty-acid-CoA ligase mmar 2371 Rv1551 MCAN 15731 BN42v3_21482 mkan_27705 msmeg_4703 mar_2405 msmeg_4732 msmeg_4734 msmeg_4735 msmeg_4736 msmeg_4737 ical protein, PE-PPE like possible glycosyl transferase specific cluster msmeg_4738 msmeg_4739 wh/B4; transcriptional regulator protein (van der Woude et al. 2012) diminished in M. marinum mmar_5170 Rv3681c MCAN_37021 BN42v3_90194 mkan_24700 msmeg_6199 MCAN_38841 BN42v3_90396 mkan_27515 mmar_5437 Rv3862c msmeg_0051

Supplementary Table 3: Comparison of genes present in the LOS locus in different mycobacterial species

 1 note that mmar 2341 shows homoloav to Rv1521 and Rv1529 2 note that mmar 2353 shows homoloav to Rv1524 and Rv1526

Supplementary Table 4: Comparison of gene similarities present in the orthologous LOS locus in M. canettii vs M. tuberculosis

gene name in <i>M.</i> tuberculosis	% amino acid identity to homolog in <i>M.</i> <i>canettii</i> A (AA <i>Mcan</i> A / AA <i>Mtb</i>)	% amino acid identity to homolog in <i>M.</i> canettii K (AA <i>Mcan</i> K / AA <i>Mtb</i>)	gene function	phenotype of mutants	
Rv1500	100%	147 AA longer	glycosyl transferase LosA		
Rv1501	100%	99% (272/274)	hypothetical protein (Rombouts et al. 2009)	1.05-111	
Rv1504c/Rv1503c	MCAN_15231/ MCAN_15221; 36 AA shorter	one polypeptide (as in <i>M. marinum</i>)	pyridoxal phosphate-dependent enzyme WecE (van der Woude et al. 2012)	accumulation in <i>M. marinum</i>	
Rv1505c	100%	100%	hypothetical acyltransferase		
Rv1506c	100%	98% (164/167)	hypothetical protein		
Rv1507c	100%	99% (231/232)	hypothetical protein		
Rv1508c	99% (598/600)	97% (583/600)	hypothetical di- and tri-carboxylate transporter (van der Woude et al. 2012)	LOS-II and LOS-II* accumulation in <i>M. marinum</i>	
Rv1511	99% (1022/1023)	99% (1022/1023)	GDP-D-mannose dehydratase GmdA		
Rv1512	99% (968/969)	99% (965/969)	putative nucleotide-sugar epimerase EpiA		
Rv1513	1 AA more at beginning	1 AA more at beginning	hypothetical protein		
Rv1514c	100%	97% (255/263)	putative glycosyl transferase		
Rv1515c	99% (297/299)	97% (290/299)	putative methyl transferase		
Rv1516c	100%	96% (325/337)	putative sugar transferase		
Rv1518	100%	99% (311/314; 1AA shorter)	putative glycosyl transferase		
Rv1520	16 AA longer	16 AA longer	putative sugar transferase		
Rv1521	100%	99% (579/584)	fatty acyl AMP ligase FadD25 (van der Woude et al. 2012)		
Rv1522c	99% (1146/1147)	99% (1132/1147)	MmpL family transport protein		
Rv1523	100%	99% (344/348)	putative methyltransferase		
Rv1524	99% (414/415)	99% (410/415)	putative glycosyl transferase		
Rv1525	100%	99% (260/262)	Rhamnosyltransferase WbbL2		
Rv1526c	99% (424/427)	99% (424/427)	glycosyl transferase (van der Woude et al. 2012)		region
Rv1527c	97% (2042/2108; 4 AA longer)	94% (115/2108; 9 AA longer)	polyketide synthase Pks5 (van der Woude et al. 2012)		on C9
-	MCAN_15491	рар	<i>papA</i> polyketide synthase-associated protein (<i>papA4</i> in <i>M. marinum</i>) (Rombouts et al. 2011)	LOS-deficient	
-	MCAN_15501	pks5-2	polyketide synthase Pks5.1	in <i>M. marinum</i>	
Rv1528c	99% (164/166)	frameshift	papA4; short MTBC version		
Rv1529	99% (584/585)	99% (580/585)	fatty-acid-AMP ligase FadD24		
Rv1531	100%	100%	methylase		
Rv1543	100%	99% (341/342)	fatty acyl co-A reductase		
KV1544	100%	99%(267/268)	keto acyl reductase		
Rv1549 + Rv1550	one single gene (frameshift)	one single gene (frameshift; 32 AA shorter in the beginning ¹)	fatty-acid-CoA ligase FadD11		
Rv1551	99% (620/622)	99% (614/622)	acyltransferase PIsB1		
Rv3681c	100%	100%	transcriptional regulator protein WhiB4 (van der Woude et al. 2012)	LOS diminished in <i>M. marinum</i>	

¹same as in *M. marinum* FadD11

Strain/	Use	Sequence (5'-3')
<i>pks5</i> locus	Amplification of <i>pks5</i> locus (long range	TTTATTAATCAGGGAAAAGGCGACATCGGA TTTTTATAACCGCCAAGACAAACTTCATC
	PCR)	
<i>pks5-2</i> + <i>pap</i> (5')	Amplification of <i>pks5-2</i> (long range PCR)	TTTCAGGGAAAGGCGACATCGGA TTTCGCTACCAACGACTAGTAGTTCGTC
pap (3') + pks5-1	Amplification of <i>pks5-1</i> (long range PCR)	GACGAACTACTAGTCGTTGGTAGCG TTTTTATAACCGCCAAGACAAACTTCATC
pks5-2	Sequencing of <i>pks5-2</i>	GTTGTGGGAGGCGTTGCT CGAAGAACTCGGGATCAAAG GAAACGTCGAACGCATGAC GTCATGCGTTCGACGTTTC GCCACACCCGGTATCGAC GGTGGTGGCCTCCCCGCAGT AACGAGGTCGCCGAGTAGTA GACTGATCAACGCACCACTG ACTGCGAGATGGCGTTGGC CTCATCCGCCGTCCCAGGGC CGACGTGCTGGTCACCTT CGACCTTGAGTTCGCTGAC TGGCAGGGCGAGGTCGGCAC CATCGAACTCGTCCGCGCGA TGAGTTCGTCGGTGATGTTG CACTCTTCACTGGGCAACCT GACCCTGCTGCGCCACACC
pks5-1	Sequencing of <i>pks5-1</i>	GTTGTGGGAGGCGTTGCT CGAAGAACTCGGGATCAAAG GAAACGTCGAACGCATGAC GTCATGCGTTCGACGTTTC GCCACACCCGGTATCGAC GGTGGTGGCCTCCCCGCAGT AACGAGGTCCCCCGCAGTA AACGAGGTCGCCGCGCAGTA GACTGATCAACGCACCACTG TGTCAAACATGTGGTGGCGC GCTCGCAGGTCAAAGCTTAC CGACGTGCTGGTCACGTTA CGACCTGGGTGATGCTGAC TGAGTTCGTCGGTGATGTCG TAGACCTGGGGGAGGTCGGCAC ACGAACGGTGGTGGTGATGTTG TAGACCTGGGGGAGGTCGGCAC ACGAACGGTGGTGTGATTTT GACCCTGCGTGCGCCACAACC
pap	Sequencing of pap	ACCAGCCGTGAATAATCGAG AGCACAAAGTCTCGCCATTC CGTATAGCCCGGTGATCAAC CAGAACACCCGATGAGTACA GGCACATTTGCGAGGTCTAT
hygromycin	amplification	ACAGGCCTGTCGAGGTCCACCAA
	of hygromycin cassette	ACAGGCCTGGATGCCAGGGCCTTTCA
hsp60	amplification of <i>hsp60</i> promoter	aaaGCTAGCAAGCTTggtgaccacaacgacgccgcccgctttgatc aaaTCTAGAgatatcACTAGTtgtcttggccattgcgaagtgattcetcc
<i>pks5-2-</i> HA	HA-tagged pks5-2	aaaACTAGTGTGGGTAAGGAGAGAACAAAG aaaTTATAAttaAGCATAATCAGGAACATCATACGGATATGAAGGTGCTGCAATG TCGG
<i>pks5-1-</i> HA	HA- tagged pks5-1	aaaACTAGTGATGGCTGGGCTCCCGTGG aaaTTATAAttaAGCATAATCAGGAACATCATACGGATAggcgggtgccggtgcgtcc
<i>pap-</i> НА	HA-tagged pap	aaaACTAGTGTGATCATTGGCGGGGGGC aaaTTATAAttaAGCATAATCAGGAACATCATACGGATAGCTAGATACGCGAACT GCTG.
pks5	probe for Southern Blot	GTTGTGGGAGGCGTTGCT GAAACGTCGAACGCATGAC
рар	probe for	CTCGATTATTCACGGCTGGT
C9 cosmid	Southern Blot verification of complemented strains (T7 side)	CGTATAGCCCGGTGATCAAC AGGCATGCAAGCTCAGGATA GGATCGGTCCAGTAATCGT
C9 cosmid	verification of complemented strains (T3 side)	GCAGAAGCACTAGACGATCC GCCGCAATTAACCCTCACTA

Supplementary Table 5: List of primers (oligos) used in this study

Supplementary Note

Whole genome sequence (WGS) analysis of *M. canettii* I_{S/R} and K_{S/R}

We compared whole genome sequences and found R-specific differences that mapped to two genes of strain I, corresponding to a codon change in *hemN* and to 5 SNPs in the polyketide-synthase-encoding gene *pks5* (Supplementary Table 1). For strains $K_{S/R}$, we also found a non-synonymous SNP mapping to *pks5* of K_R and noted a two-fold higher depth of read coverage for *pks5* of K_S relative to its flanking regions, whereas this was not seen for strain K_R . Other putative SNPs mapped to genes encoding polymorphic GC-rich PE_PGRS proteins but these could not be confirmed and are likely to be read-mapping artefacts caused by the high GC content and the repetitive nature of these sequences (Cole et al., 1998), (Supplementary Table 2).

Polyketide synthase domain comparison

Sequences of pks5-1 from M. canettii strains K_s and A (CIPT 140010059) showed 99% identity (ClustalW2), and sequences of pks5-2 genes 97% identity, respectively. As shown in Fig. 1C, alignment of pks5 of strain K_R with the two pks5 of strain K_S revealed that the 5' region of pks5 from the R variant was 100 % identical to pks5-2 (bp 1 – 6056), while the 3' region was identical to pks5-1 (bp 3533 – 6327), which suggested a recombination between the pks5 genes in the R variant. Since Pks5 belongs to the family of polyketide synthases with multiple functional domains on one large polypeptide chain (Rousseau, C., et al., 2003), we investigated whether the recombination of the two pks5 genes in M. canettii K_R possibly affected the function of one of the domains or whether the recombination happened in a non-functional region in between, leaving the domains potentially operational. The overall organization of the domains of *pks5* of strain K was the same as for M. tuberculosis H37Rv, as determined by sequence alignment with the predicted domains of pks5 of M. tuberculosis and consists of a ketosynthase (KS), an acyltransferase (AT), a dehydratase (DH), an enoylreductase (ER), a ketoreductase (KR) and an acyl-carrier protein (ACP) (Fig. 1). The recombination in the rough strain took place in a sequence stretch of about 2523 bp, between basepair 3533 and 6056, comprising the ER and KR domains which were completely identical between the two pks5 genes of STB-K_s. Consequently, the recombined pks5 in the R variant of M. canettii K consisted of the KS, AT and DH domain of pks5-2, the ER and KR domain which were identical in both genes and the ACP domain of pks5-1 (Fig. 1D). A similar event seemed to have happened in *M. tuberculosis* H37Rv, when comparing the *M. tuberculosis* pks5 with the two copies in M. canettii STB-A (CIPT 140010059) whose independent domains generally showed higher sequence identity scores to those of *M. tuberculosis* than the domains of M. canettii strain K (Supplementary Fig. 2A). Recombination in M. tuberculosis possibly happened in a region of about 960 bp in between the AT and DH domains, resulting in a recombined pks5 with KS and AT from pks5-2 and the remaining four domains (DH, ER, KR and ACP) from pks5-1 (Supplementary Fig. 2B). A BLAST comparison of pks5 of M. tuberculosis H37Rv with available pks5 sequences from various MTBC members showed more than 99% identity within the MTBC, suggesting that recombination in this particular locus might have happened in the last common ancestor of the MTBC strains after their separation from the M. canettii strains.

Supplementary Note (cont.)

Homologous recombination events in genomes of *M. tuberculosis* complex (MTBC) members

Homologous recombination in general plays a significant role in the evolution of the MTBC, due to abundant repetitive sequences and highly conserved gene paralogues. One such an example is the serine/threonine protein kinase-encoding *pknH* gene (*rv1266c*) of *M. tuberculosis*, which evolved from the recombination of *pknH1* and *pknH2* that are still present in most other MTBC members, such as *M. africanum* (Bentley et al., 2012) or *M. suricattae* (Parsons et al., 2013), as well as in *M. canettii* strains (Supply et al. 2013). This genetic lesion named region of difference 900 (RD900), which is characteristic for "modern" (TbD1 region deleted; Brosch et al., 2002) *M. tuberculosis* strains (Bentley et al., 2012) also involved the deletion of an intervening gene originally located between the *pknH1 and pknH2* genes. The *pknH* gene of *M. tuberculosis* was described as playing a role in regulating bacillary load in mouse organs to facilitate adaptation to the host environment (Papavinasasundaram et al., 2005), which suggests that the recombined *pknH* gene might have retained or gained some signalling function.

Similarly, recombination of two *pks5* genes might have resulted in the generation of a potentially functional new gene. Earlier studies reported that a *pks5* knockoutmutant of *M. tuberculosis* H37Rv was attenuated for virulence in mice, which suggests a putative function for the single, recombined *pks5* of *M. tuberculosis* (Rousseau et al., 2003), although some uncertainty prevails as the mutant was not complemented (Rousseau et al., 2003). Moreover, a non-synonymous SNP in *pks5* was recently suggested as a mutation that might have contributed, among others, to the expansion of the highly successful European-Russian Beijing lineage of *M. tuberculosis* (Merker et al., 2015), but this finding also needs experimental confirmation.

In conclusion, the recombination-derived Pks5 present in *M. tuberculosis* and the other members of the clonal MTBC might have retained some biological function, although the original function in LOS biosynthesis seems to have been lost by the recombination event during the evolution from *M. canettii*-like tubercle bacilli towards the MTBC, as we have shown in this study by using different strains and complementation constructs. At present it is unclear however, to which biological process the recombined Pks5 of *M. tuberculosis* might contribute, as indistinguishable lipid profiles between the parental strain and the *pks5* knock-out strain were found in previous studies (Rousseau et al., 2003). Further research is warranted to clarify this point.

REFERENCES

Bange *et al.* Survival of mice infected with *Mycobacterium smegmatis* containing large DNA fragments from *Mycobacterium tuberculosis*. Tubercle and Lung Disease **79**, 171–180 (1999)

References (cont.)

Bentley, *et al.* The genome of *Mycobacterium africanum* West African 2 reveals a lineage-specific locus and genome erosion common to the *M. tuberculosis* complex. *PLoS Negl Trop Dis* **6**, e1552 (2012).

Brosch *et al*. A new evolutionary scenario for the *Mycobacterium tuberculosis* complex. Proc Natl Acad Sci USA **99**, 3684-3689 (2002).

Cole, *et al.* Deciphering the biology of *Mycobacterium tuberculosis* from the complete genome sequence. *Nature* **393**, 537-544 (1998).

Daffe, *et al.* Novel type-specific lipooligosaccharides from *Mycobacterium tuberculosis*. Biochemistry. **30**, 378-388 (1991).

Gonzalo-Asensio, *et al.* Evolutionary history of tuberculosis shaped by conserved mutations in the PhoPR virulence regulator. Proc Natl Acad Sci U S A. **111**, 11491-6 (2014).

Merker, *et al.* Evolutionary history and global spread of the *Mycobacterium tuberculosis* Beijing lineage. *Nat Genet.* **47**, 242-249 (2015).

Papavinasasundaram et al. Deletion of the *Mycobacterium tuberculosis* pknH gene confers a higher bacillary load during the chronic phase of infection in BALB/c mice. J Bacteriol. **187**, 5751-60 (2005).

Parsons et al., Novel cause of tuberculosis in meerkats, South Africa. *Emerg Infect Dis.* **19**, 2004–07 (2013).

Pouseele & Supply Accurate whole-genome sequencing-based epidemiological surveillance of *Mycobacterium tuberculosis*. Methods in Microbiology. doi:10.1016/ bs.mim.2015.04.001 (2015).

Quadri, L.E. Biosynthesis of mycobacterial lipids by polyketide synthases and beyond. Crit Rev Biochem Mol Biol,. **49**, 179-211 (2014).

Rousseau, C. *et al.* Virulence attenuation of two Mas-like polyketide synthase mutants of *Mycobacterium tuberculosis*. Microbiology **149**, 1837-47 (2003).

Supply, P., *et al.* Genomic analysis of smooth tubercle bacilli provides insights into ancestry and pathoadaptation of *Mycobacterium tuberculosis*. Nat Genet. **45**,172-9 (2013).

Tamura, K., *et al. MEGA5:* molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. **28**, 2731-9 (2011).