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ORIGINAL ARTICLE

The approved pediatric drug suramin identified as a
clinical candidate for the treatment of EV71 infection—
suramin inhibits EV71 infection in vitro and in vivo

Peijun Ren1,2,3, Gang Zou1, Benjamin Bailly1,4, Shanshan Xu1, Mei Zeng5, Xinsheng Chen6, Liang Shen6,
Ying Zhang7, Patrice Guillon4, Fernando Arenzana-Seisdedos3, Philippe Buchy8, Jian Li6, Mark von Itzstein4,

Qihan Li7 and Ralf Altmeyer1

Enterovirus 71 (EV71) causes severe central nervous system infections, leading to cardiopulmonary complications and death in young

children. There is an urgent unmet medical need for new pharmaceutical agents to control EV71 infections. Using a multidisciplinary

approach, we found that the approved pediatric antiparasitic drug suramin blocked EV71 infectivity by a novel mechanism of action

that involves binding of the naphtalentrisulonic acid group of suramin to the viral capsid. Moreover, we demonstrate that when suramin

is used in vivo at doses equivalent to or lower than the highest dose already used in humans, it significantly decreased mortality in mice

challenged with a lethal dose of EV71 and peak viral load in adult rhesus monkeys. Thus, suramin inhibits EV71 infection by

neutralizing virus particles prior to cell attachment. Consequently, these findings identify suramin as a clinical candidate for further

development as a therapeutic or prophylactic treatment for severe EV71 infection.
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INTRODUCTION

Hand, foot and mouth disease (HFMD), a contagious infectious dis-

ease mostly affecting children under the age of five years, is common in

Asia1–3 and has been particularly prevalent since 2008.4 The disease is

endemic in other regions but severe forms are rarely observed.5 In

China alone, over 7.6 million children have been diagnosed with

HFMD and more than 2400 of these children have died, since

2008.4,6,7 In most cases, symptoms are mild, such as fever, sore throat,

malaise, rashes on the hand palms, soles of feet, buttocks and herpan-

gina. However, severe disease, including central nervous system infec-

tion, brain stem encephalitis, neurogenic pulmonary edema and

cardiopulmonary complications, may occur and is frequently fatal.2

human enterovirus serotype 71 (EV71) is the main causal agent of

HFMD, and particularly of the severe forms of this disease.1,2

Children become susceptible to severe EV71 infections after the loss

of maternal antibodies and one to two-year-old children are most at

risk.8

EV71 is a single-stranded positive-sense RNA virus from the

Picornaviridae family, genus Enterovirus (along with Poliovirus and

coxsackievirus species A).1 It has a non-enveloped capsid consisting of

60 identical subunits, each containing one copy of each of four viral

structural proteins (VP1, 2, 3 and 4), and packages a 7.5 kb genome.

EV71 can be classified into genogroups A, B and C, recently identified

D, E and F9 on the basis of its VP1 gene sequence. Group C is prevalent

in East Asia and the C4 genotype currently predominates in mainland

China, Vietnam, Cambodia and prevalent in Taiwan and Thailand.1,10

During infection, EV71 binds to host cells via viral receptors, such as

human scavenger receptor class B, member 211 and P-selectin gly-

coprotein ligand-1.12 Binding to scavenger receptor class B, member

2 triggers the uncoating process,13 a series of structural changes occur-

ring in the viral capsid leading to the release of the viral genome into

the host cell. Like many other viruses, EV71 also uses cell surface

heparan sulfate glycosaminoglycan as attachment receptor to initiate

target cell entry.14 Also recently, Du et al.15 demonstrated that cell

surface vimentin serves as an attachment site that mediated the initial

binding and subsequently increased the infectivity of EV71.

There is currently no specific anti-EV71 drug, and guidelines for the

treatment of HFMD are therefore limited to supportive care, antipy-

retic drugs, intravenous non-immune immunoglobulin and possibly,

glucocorticoids.16 Type 1 interferons and inhibitors of 3C protease, 3D

polymerase and entry inhibitors are candidate drugs for the treatment

of EV71 infections. However, no proof-of-concept study has yet been

established for these treatments in non-human primate models or

clinical trials.

A series of structurally related antiviral compounds known as the

Winthrop compounds inhibit picornavirus attachment to host cells
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and virus uncoating, by binding to a hydrophobic pocket of the cap-

sid.17 The Winthrop compound pleconaril, attenuates severe symptoms

in EV71-infected mice, although differences in potency between viral

isolates were described.18 Pleconaril and Winthrop compounds served

as scaffolds for the design of pyridyl imidazolidinones.18 Two of these

compounds, BPR0Z-194 and DBPR-103, have potent antiviral activity,

preventing the attachment or uncoating of several enteroviruses,

including EV71.18 Rupintrivir, or AG7088, a picornavirus 3C protease

inhibitor, has potent broad-spectrum activity against human rhinovirus

and human enterovirus, including EV71, both in vitro and in vivo.19,20

Ribavirin, which can be incorporated by viral RNA-dependent RNA

polymerase, is sometimes used to treat HFMD.21 Glycosaminoglycans

such as heparin, heparan sulfate and their mimetics have been shown to

strongly inhibit EV71 attachment to cells22 suggesting that interfering

with EV71 binding to glycosaminoglycans could be used as a target for

the development of an antiviral.

We investigated whether any United States Food and Drug

Administration-approved drugs were of potential value for treating

EV71 infection. There are several advantages to focusing on approved

drugs: (i) experience in clinical use or data from clinical trials, for

pharmacokinetics and toxicity in particular, can significantly decrease

development time; and (ii) the physiological roles of the targets of

most approved drugs are known, facilitating mechanism-of-action

studies and providing valuable information about potential drug–

drug interactions.

We identified suramin as a clinical candidate molecule directly

binding the EV71 capsid, blocking attachment and entry and decreas-

ing viral replication in susceptible animals. Suramin has been in clini-

cal use for decades,23 as a prophylactic and therapeutic agent in

children.24 Attempts have recently been made to develop the use of

suramin in a cancer setting25 and as an antiviral agent against human

immunodeficiency virus26 and hepatitis B virus.27 We identified sur-

amin as an inhibitor of EV71 entry and provide the first demonstra-

tion of the efficacy of a small molecule in a non-human primate model

of EV71 infection.

MATERIALS AND METHODS

Cell lines and viruses

RD (human rhabdomyosarcoma) cells were purchased from the

American Type Culture Collection (ATCC NO CCL-136). The EV71

isolate Fuyang573 (subgenotype C4a, GenBank accession number:

HM064456, isolated from a 2008 epidemic sample in Anhui province)

was used throughout this study, unless otherwise stated. EV71 isolates

SH12-036 (GenBank accession NO KC570452) and SH12-276

(GenBank accession NO KC570453) were isolated from patient samples

in Shanghai, in 2012. SEP-4 (2012 Cambodia EV71 isolate, GenBank

accession NO KF543271) was provided by the Virology Unit of the

Institut Pasteur in Cambodia. Coxsackie virus A16 (strain shzh05-1,

GenBank accession NO EU262658) and poliovirus-1 (Sabin, type I oral

poliovirus vaccine) were also used to evaluate antiviral potency. We

titrated virus stocks on RD cells, by both microtitration tissue culture

infective dose 50% (TCID50), according to the Kärber formula and

plaque assays in 0.7% carboxymethylcellulose.

Quantitative reverse transcription polymerase chain reaction (qRT-

PCR) for EV71 viral load quantification

We extracted RNA with the TIANamp RNA Extraction Kit for Virus

Detection (cat. NO DP315-R; Tiangen Biotech Beijing Co., Ltd,

Beijing, China), or the TIANamp N96 Virus RNA Kit (cat. NO

DP434; Tiangen Biotech Beijing Co., Ltd) in semihigh-throughput

operations. We assessed viral genome load with the Quant One Step

qRT-PCR (Probe) Kit (cat. NO FP304; Tiangen Biotech Beijing Co.,

Ltd) on a 7900HT Fast Real-Time PCR system (Applied Biosystems,

Foster City, CA, USA). The VP1 gene was detected with forward pri-

mer: 59-GTT CAC CTA CAT GCG CTT TGA-39, reverse primer: 59-

TGG AGC AAT TGT GGG ACA AC-39 and probe: 59-HEX-TCT TGC

GTG CAC ACC CAC CG-TAMRA-39.28 The PCR standard curve was

obtained by serial dilution of the defined-titer (TCID50/mL) virus

stock, and the sample cycle threshold (CT) number was converted into

viral load with this standard curve (Supplementary Figure S1), and

viral load is expressed as EV71 genome equivalent.

Cell viability assay

We evaluated cell viability with the CellTiter-Glo Luminescent Cell

Viability Assay Kit (cat. NO G7571; Promega, Fitchburg, WI, USA).

Drug library and compounds

We screened the United States Drug Collection (1040 compounds) and

the International Drug Collection (240 compounds) (MicroSource

Discovery Systems Inc., Gaylordsville, CT, USA), searching for com-

pounds active against EV71.

Suramin sodium salt (cat. NO S2671), PPADS (pyridoxal phosphate-

6-azo (benzene-2,4-disulfonic acid) tetrasodium salt hydrate, cat. NO

P178), vinylsulfonic acid sodium salt (cat. NO 278416) and heparin

sodium salt (cat. NO H3393) were purchased from Sigma-Aldrich (St.

Louis, MO 63103, USA). DIDS (4,49-diisothiocyanatostilbene-2,29-dis-

ulfonic acid disodium salt, cat. NO sc-203919) was obtained from Santa

Cruz Biotechnology Inc (Santa Cruz, CA 95060, USA). iso-PPADS

tetrasodium salt (pyridoxalphosphate-6-azophenyl-29,59-disulfonic acid

tetrasodium salt, cat. NO 0683), NF 023 (8,89-[carbonylbis(imino-3,1-

phenylenecarbonylimino)]bis-1,3,5-naphthalene-trisulphonic acid, hexaso-

dium salt, cat. NO 1240), NF 157 (8,89-[carbonylbis[imino-3,1-phe-

nylenecarbonylimino(4-fluoro-3,1-phenylene)carbonylimino]]bis-1,3,5-

naphthalenetrisulfonic acid hexasodium salt, cat. NO 2450) and NF

449 (4,49,40,409-[carbonylbis(imino-5,1,3-benzenetriyl-bis(carbonyli-

mino))]tetrakis-1,3-benzenedisulfonic acid, octasodium salt, cat. NO

1391) were obtained from Tocris Bioscience (Bristol, UK). Sucralfate

sodium was obtained from MicroSource Discovery Systems Inc.

Suramin used in the monkey study was provided free-of-charge by

Bayer Healthcare (Elberfeld, Germany).

Drug screening

We screened the drug library in 96-well plates, by inoculating 53104

RD cells per well with 10 mM drugs and incubating at 376C for 1 h. We

then infected cells, at a multiplicity of infection of 0.1, in the presence

of 10 mM drugs, at 376C for 1 h. The cells were then incubated, in the

presence of 10 mM drug, at 376C for 46–48 h, under an atmosphere

containing 5% CO2. We collected the culture supernatant, extracted

the viral RNA and determined viral load by qRT-PCR.

Antiviral potency assay

The cells and the virus were incubated separately with the compound

for 1 h at 376C. The cells were then infected in the presence of the

compound for 1 h and incubated with the compound for 46–48 h. We

then evaluated viral load by qRT-PCR. Antiviral potency was also

evaluated by microtitration (results expressed as TCID50) with a series

of concentrations of the compound assessed. Alternatively, plaque

assays were carried out, in which we incubated 90% confluent RD cells

and virus separately with the compound and then infected cells with 50

plaque forming units EV71 in the presence of the compound.
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In vivo anti-EV71 efficacy

The anti-EV71 efficacy of suramin in vivo was assessed in 10-day-old

Institute of Cancer Research mice29 and adult rhesus monkeys,30 as

previously described. We injected 13107 TCID50 (lethal dose) of the

mouse-adapted EV71 strain MP10 (GenBank accession NO

HQ712020, genotype C4) intraperitoneally into mice. We then

injected 20 or 50 mg/kg suramin dissolved in saline, or saline alone

as a placebo, intraperitoneally into the mice, twice daily for seven days.

For monkey studies, we intravenously injected 13106.5 cell culture

infective dose 50% (CCID50) EV71 FY-23 (GeneBank accession NO

EU812515, genotype C4) into the monkey. We then injected 50 mg/kg

suramin in saline, or saline alone as a placebo, into the monkeys

intravenously on the day before virus challenge and on days 1, 3 and

5 post-challenge. We then assessed serum viral load by qRT-PCR,

assessed the neutralizing antibody titer on RD cell as described

before,31 in neutralizing assay, serum was diluted for eight times.

Saturation transfer difference nuclear magnetic resonance

spectroscopy (STD NMR)

We prepared viral particles for the STD NMR assay by inactivating the

virus stock by incubation with 1:2000 (v/v) b-propiolactone (H0168;

TCI, Shanghai, China) overnight at 46C. We then concentrated the viral

particles by centrifugation on a 20% sucrose cushion in a Beckman

SW28 rotor, at 25 000 r.p.m., 46C, for 4 h. The pellet was resuspended

in phosphate-buffered saline, ultracentrifuged on 10%,50% sucrose

gradients in a Beckman SW41 rotor at 156 000g for 16 h at 46C. The

50% sucrose layer was subjected to centrifugation on a 20% sucrose

cushion, and the pellet was resuspended in phosphate-buffered saline.

All NMR experiments were performed on a Bruker 600 MHz

Avance spectrometer at 280 K using a conventional 1H/13C/15N gra-

dient cryoprobe system under similar conditions to that previously

described.32 Deuterium oxide (99.9% deuterium) was purchased from

Novachem Pty Ltd (Collingwood, Australia). NMR samples were pre-

pared by mixing EV71 particles and suramin, at a molar ratio of 1:100,

in NMR buffer (10 mM NaCl in 20 mM phosphate buffer, pH 7.1).

Cytochrome P450 (CYP) inhibition assay

CYP inhibition was determined with a marker substrate cocktail. For

each reaction, enzyme activities in the presence and absence of the test

compound (10, 30 and 100 mM) were measured in duplicate. Known

inhibitors for each isoform (O-deethylation (CYP1A2), 49-hydroxyla-

tion (CYP2C9), 49-hydroxylation (CYP2C19), O-demethylation

(CYP2D6) and 19-hydroxylation (CYP3A4)), were tested at 3 mM as

positive controls.

Incubation mixture containing human microsomes, substrate

cocktail and standard inhibitor or test compound was pre-incubated

at 376C for 5 min. The reaction was initiated by adding nicotinamide

adenine dinucleotide phosphate. The mixture was incubated at 376C

for 10 min, and ice-cold acetonitrile was added to terminate the reac-

tion. We assessed metabolite generation from the substrate reactions

by liquid chromatography-tandem mass spectrometry and peak area

ratios for analyte/internal standard. The extent of inhibition was

expressed as a % of control activity.

Cynomolgus monkey plasma pharmacokinetics

We studied the plasma pharmacokinetics of suramin in male cynomolgus

monkeys. Three monkeys were given 4.37 mg/kg body weight suramin

by intravenous bolus administration, with serial blood sample collection

for up to seven days. Plasma samples were obtained by centrifugation

(3000g for 10 min at 2–8 6C). A liquid chromatography-tandem mass

spectrometry method was developed for the quantification of suramin

in monkey plasma. Changes in plasma concentration over time were

analyzed with a non-compartmental model in WinNonlin software

(version 5.2.1; Pharsight, Mountain View, CA, USA), with calculation

of the following pharmacokinetic parameters: AUC0-last, AUC0-inf

(AUC: area under the concentration time curve; AUC0-last: AUC up

to the last measurable concentration; AUC0-inf: AUC curve to infinite

time), half-life (TK), maximum concentration observed (Cmax), clear-

ance (CL), volumes of distribution calculated either by the steady-

state method (Vdss).

Statistical analysis

In the in vivo efficacy test of suramin in monkey, comparisons between

the viral load in drug treated group and control groups were per-

formed by the two-way analysis of variance test. A difference with a

P value of less than 0.05 was considered to be significant.

RESULTS

Approved drug library screening

One thousand two hundred and eigthy drugs from the United States

and International Drug Collection were screened, at 10 mM, using

EV71 genome equivalent reduction in the supernatant of infected

RD cells by .1 log10 and cytotoxicity less than ,25% as readout.

Suramin was selected for further analysis based on its inhibition pro-

file and its approval status as a pediatric drug. Suramin inhibited

several C4-genotype EV71 isolates (Figure 1A) with a concentration

causing 90% inhibition (IC90) of 0.93, 3.92, 22.19 and 25.84 mM for

the Fuyang573 (Anhui 2008), SH12-036, SH12-276 (Shanghai 2012)

and SEP-4 (Cambodia 2012) isolates, respectively. These results were

confirmed in an EV71 plaque reduction assay, in which the IC90 of

suramin was 0.49, 6.08 and 7.80 mM for Fuyang573, SH12-036 and

SH12-276, respectively (Figure 1B). Suramin was not cytotoxic at

concentrations as high as 1 mM (Figure 1A) and had a selectivity

index greater than 12 500. In TCID50 reduction assays, coxsackievirus

A16 replication was reduced by 106 TCID50/mL by 50 mM suramin,

whereas poliovirus-1 (Sabin) was not inhibited (Supplementary

Figure S2).

Suramin inhibits EV71 entry

We investigated the step in the viral infectious cycle targeted by sur-

amin, by time-of-addition assays in which cells and virus were pre-

incubated or not with 10 mM suramin, and 10 mM suramin was

present or not in viral-cell adsorption and post adsorption stage of

EV71 infection. Single round viral replication is get by infecting RD

cell at multiplicity of infection of 5, collecting at 16 h post infection,

and testing culture supernatant and intracellular RNA at 16 h post

infection. Suramin decreased viral replication by .1 log10 when added

at the virus-cell adsorption stage, but had no effect if added after

adsorption (Figure 2A). Furthermore, when incubated with cells

and virus at 46C, to prevent virus internalization, suramin reduced

virus binding to the cell with an IC90 of 6.17 mM (Figure 2B).

Sulfonated and sulfated compounds inhibit EV71 infection

Structural analogs of suramin also inhibited EV71 replication

(Figure 3A), with the following IC90: NF 449, 0.9 mM; NF 157,

2.5 mM; iso-PPADS, 6.4 mM; PPADS, 7.0 mM; NF 023, 8.9 mM.

Sulfated and sulfonated compounds that were not structural analogs

of suramin were also shown to be active: the monosulfonated com-

pound vinylsulfonic acid sodium and the disulfonated compound

DIDS inhibited EV71 infection with an IC90 of 4.5 mM and
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10.3 mM, respectively, and the polysulfated molecules, heparin and

sucralfate sodium, inhibited EV71 replication with IC90 values of

24.3 mg/mL and 3.3 mM, respectively.

STD NMR is a powerful tool for assessing small-molecule binding

to viruses.33 We observed strong STD NMR signals for all protons on

the suramin framework (Figure 4A), whereas the proton signals of

added sucrose, an internal control, were not observed as anticipated

in the STD NMR spectrum in the presence of inactivated, purified

EV71. The suramin napthalenetrisulfonic acid moiety H7 and H8

protons, displayed the strongest signal intensities, indicating close

proximity of these protons and consequently that part of the molecule

to the EV71 capsid (Figure 4B).

Our results indicate that suramin binds to the EV71 particle via the

naphthalenetrisulfonic acid group, preventing viral attachment and

entry.

Pharmacokinetics of suramin

CYP1A2 was the only CYP enzyme tested to display slight inhibition

by suramin, with an IC50.10 mM (Supplementary Table S1), suggest-

ing a low risk of drug–drug interaction. Suramin did not inhibit the

human Ether-à-go-go-related gene channel (Supplementary Table

S2), suggesting a low likelihood of cardiotoxicity.

The approved dose of suramin is 1 g for adults and 10–15 mg/kg

for children (http://home.intekom.com/pharm/bayer/suramin.html).

We used 15 mg/kg as the highest human reference dose. Following a

single intravenous administration of 4.37 mg/kg suramin, corres-

ponding to one-eleventh the highest human dose allometrically scaled

to the monkey (46.5 mg/kg), in male cynomolgus monkeys, suramin

was rapidly detected in the plasma and cleared slowly with an average

CL of 0.0317 mL/min/kg (Supplementary Figure S3 and Supplementary

Table S3). Suramin plasma level reached 10.9 mM at 24 h (Supplementary

Figure S3 and Supplementary Table S4), which is .10 times superior

to the in vitro IC90 (0.93 mM to Fuyang573 isolate) (Figure 1). Plasma

drug level is 2.9 times to the IC90 at seven days (168 h) after a single-

dose administration.

Suramin efficacy

We assessed the suramin efficacy in 10-day-old Institute of Cancer

Research mice infected with lethal doses of the mouse-adapted EV71

strain MP10. Treatment with 50 mg/kg resulted in survival rates of

30% while vehicle-treated mice developed paralysis at 3 dpi and died

within 10 days of infection (Figure 5A).

Rhesus and cynomolgus monkeys can be successfully infected with

EV71 and represent the most predictive animal models for EV71.30,34,35

Rhesus monkeys were treated four times with 50 mg/kg suramin, the

highest human dose allometrically scaled to the monkey (http://www.
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fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/

Guidances/ucm078932.pdf), at two-day intervals, starting one day before

infection with 13106.5 CCID50 EV71 FY-23. In the vehicle-treated control

group, more than 100 copies of EV71 genomic RNA per mL of blood

were readily detected in sera at days 6 and 9 post-infection by qRT-PCR,

with viremia peaking at 7 dpi. However, in the suramin-treated group,

fewer than 20 copies of viral genomic RNA/mL were detected between

days 6 and 9 (Figure 5B). EV71 neutralizing antibody was negative in all

serum collected before viral challenge, monkeys involved in this study do

not have pre-antibody. And all serum collected at 2, 3 and 3 weeks post

challenge have EV71 neutralizing antibody.

These data demonstrate that suramin has a favorable pharmacoki-

netic and toxicity profile and inhibits EV71 replication in vivo at doses

at or below the highest human dose.

DISCUSSION

Drug development for acute pediatric infectious diseases is challen-

ging due to long development times and high costs.36 We reasoned

that the repurposing of approved drugs,37 particularly those for

pediatric use, might be a useful approach. We found that suramin,

previously approved for the treatment and prophylaxis of African

sleeping sickness and onchocerciasis,38 inhibited EV71 replication in

vivo at doses at or below the highest human dose.

HFMD epidemics occur annually in several Asian countries.1,2

Physicians are faced with large numbers of patients with mild

symptoms (rash, fever)8 and a lack of markers of progression to

severe disease, which typically occurs one to two days after

symptom onset. There are two major therapeutic needs: (i) treat-

ment of children diagnosed with EV71, to prevent progression to

severe forms and death; and (ii) prophylactic treatment of chil-

dren in contact with EV71-infected children, to prevent viral

transmission.

Suramin was the only drug, approved for prophylactic and thera-

peutic uses in children, identified in our screening campaign.

Significant toxicity has been observed in patients with Trypanosoma

infection, due to inflammatory reactions caused by suramin-mediated
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killing of parasite.39 However, data from patients without parasitic

infections40–42 suggest that suramin is generally safe, provided that

plasma drug concentrations do not exceed 200 mM.40 Furthermore,

suramin had no significant effect on Ether-à-go-go-related gene chan-

nel activity and little potential for drug–drug interactions.

Suramin has a long half-life25,43 and .10 times the IC90 for EV71 can

be reached in monkeys after a single injection at one-eleventh the high-

est human dose allometrically scaled to monkeys according to United

States Food and Drug Administration guidelines. This profile makes a

single-dose strategy possible, with sufficiently high drug concentrations

being reached over a few days following a single injection and ensuring

antiviral efficacy throughout the period of peak viremia.30,35,44

Most antiviral drugs target viral enzymes involved in replication,

but viral entry has been successfully used as a target for antiviral drug

development for human immunodeficiency virus.45–47 Pleconaril,

which binds the capsid of human rhinovirus, a picornavirus, prevents

virus entry.48 It was tested in phase III trials for common cold treat-

ment, but did not obtain regulatory approval. Pleconaril is also active

against EV71 but its potency varies considerably between viral isolates.

The mode of action of suramin involves the sulfonate groups of the

naphthalene moiety. Our results are consistent with those of Tan

et al.,14,22 who simultaneously described sulfate-mediated inhibition

of EV71 entry by demonstrating the binding of EV71 to cell surface

heparan sulfate glycosaminoglycan and the blocking of this binding by
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suramin. NF449, a suramin analog, has also been shown to inhibit

EV71.49 A large number of sulfated and sulfonated molecules inhibit

EV71 (Figure 3), including several antagonists of P2X receptors

(Figure 3A), suggesting a possible role for P2X receptors in cell entry.

However, no non-sulfonated/sulfated P2X inhibitors displayed acti-

vity (Figure 3B) and the siRNA knockdown of P2X receptors did not

decrease viral replication or affect the ability of suramin to block EV71

replication (data not shown).

Time-of-addition and virus binding assays showed that suramin

prevented EV71 from binding to the target cell in vitro (Figure 2).

STD NMR spectroscopy is a powerful tool for identifying the phar-

macophores of small molecules binding to virus particles.33 Our study

of suramin in complex with EV71 particles by this technique clearly

demonstrated that the protons adjacent to the viral capsid are

positioned close to the sulfonic acid groups, identifying the naphtha-

lene trisulfonic acid group as the pharmacophore by which suramin

binds to and inhibits virus attachment and replication (Figure 4).

Mechanism-of-action studies suggested that suramin inhibited virus

entry through a mechanism similar to the antibody-mediated neut-

ralization of virus particles.

We evaluated suramin efficacy in two validated animal models.29,30

In mice,29 suramin decreased mortality by 30% (Figure 5A). In the

monkey model, previously shown to be of predictive value in vac-

cine development,31 the highest human dose of suramin, allome-

trically scaled to the monkey decreased peak viremia (Figure 5B).

This provides the first proof-of-concept that a small-molecule

inhibitor can have a strong antiviral effect against EV71 in non-

human primates.

Suramin displays high levels of serum protein binding, generally

considered predictive of poor therapeutic efficacy for small mole-

cules.50 However, our data suggest that the protein-binding features

of suramin may be a key element in its anti-EV71 activity and that

circulating EV71 may be neutralized by suramin the blood.

The primary objective of the treatment of EV71 infection is pre-

venting severe and fatal outcome of disease. Our findings suggest that

suramin, an approved pediatric drug, may be useful for therapeutic

and prophylactic applications in young children infected with or

exposed to EV71. Overall, this study indicates that the identification

of new indications for approved drugs is an attractive approach for

developing new treatments for acute viral infections in situations of

major unmet need. Moreover, we believe that our study supports the

notion that suramin presents an exciting opportunity as a possible

drug candidate to treat and prevent HFMD and severe EV71 infec-

tions. This opportunity should be investigated further, by evaluating

safety and efficacy in clinical studies.
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