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Cryptococcosis Serotypes Impact Outcome and Provide Evidence of
Cryptococcus neoformans Speciation

Marie Desnos-Ollivier,a,b Sweta Patel,a,b Dorothée Raoux-Barbot,a,b Joseph Heitman,c Françoise Dromer,a,b The French
Cryptococcosis Study Group

Institut Pasteur, Molecular Mycology Unit, National Reference Center for Invasive Mycoses & Antifungals, Paris, Francea; CNRS URA3012, Paris, Franceb; Department of
Molecular Genetics and Microbiology, Duke University, North Carolina, USAc

ABSTRACT Cryptococcus neoformans is a human opportunistic fungal pathogen causing severe disseminated meningoencephali-
tis, mostly in patients with cellular immune defects. This species is divided into three serotypes: A, D, and the AD hybrid. Our
objectives were to compare population structures of serotype A and D clinical isolates and to assess whether infections with AD
hybrids differ from infections with the other serotypes. For this purpose, we analyzed 483 isolates and the corresponding clinical
data from 234 patients enrolled during the CryptoA/D study or the nationwide survey on cryptococcosis in France. Isolates were
characterized in terms of ploidy, serotype, mating type, and genotype, utilizing flow cytometry, serotype- and mating type-
specific PCR amplifications, and multilocus sequence typing (MLST) methods. Our results suggest that C. neoformans serotypes
A and D have different routes of multiplication (primarily clonal expansion versus recombination events for serotype A and se-
rotype D, respectively) and important genomic differences. Cryptococcosis includes a high proportion of proven or probable
infections (21.5%) due to a mixture of genotypes, serotypes, and/or ploidies. Multivariate analysis showed that parameters inde-
pendently associated with failure to achieve cerebrospinal fluid (CSF) sterilization by week 2 were a high serum antigen titer, the
lack of flucytosine during induction therapy, and the occurrence of mixed infection, while infections caused by AD hybrids were
more likely to be associated with CSF sterilization. Our study provides additional evidence for the possible speciation of C. neo-
formans var. neoformans and grubii and highlights the importance of careful characterization of causative isolates.

IMPORTANCE Cryptococcus neoformans is an environmental fungus causing severe disease, estimated to be responsible for
600,000 deaths per year worldwide. This species is divided into serotypes A and D and an AD hybrid, and these could be consid-
ered two different species and an interspecies hybrid. The objectives of our study were to compare population structures of sero-
type A and serotype D and to assess whether infections with AD hybrids differ from infections with serotype A or D isolates in
terms of clinical presentation and outcome. For this purpose, we used clinical data and strains from patients diagnosed with
cryptococcosis in France. Our results suggest that, according to the serotype, isolates have different routes of multiplication and
high genomic differences, confirming the possible speciation of serotypes A and D. Furthermore, we observed a better prognosis
for infections caused by AD hybrid than those caused by serotype A or D, at least for those diagnosed in France.
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Cryptococcus neoformans is a life-threatening human fungal
pathogen causing meningoencephalitis, mainly in patients

with cellular immune defects, such as those with acquired immu-
nodeficiency syndrome (AIDS). This yeast is estimated to cause 1
million annual cases globally and nearly 625,000 deaths/year (1).
This species exists in two mating types (MATa and MAT�) (2)
and two varieties, C. neoformans var. grubii (serotype A) and
C. neoformans var. neoformans (serotype D), which were recently
proposed as distinct species (3); most serotype D isolates are
found in Europe (4, 5). The third serotype (AD hybrid) results
from the fusion of serotypes A and D and in some cases has an
apparent African origin (6–8). The proportion of AD hybrids var-
ies worldwide (1.8% in Thailand, 1.3 to 5.9% in the Americas, and
3.4 to 45% in Europe) (4, 9). The allelic profiles for the mating

types are also heterogeneous: a majority of �AD�, fewer aAD�,
and even fewer �ADa strains in the United States, a majority of
�ADa strains in Spain, Portugal, and Germany, and a similar pro-
portion of �ADa and aAD� strains in Italy (10). Of note, some AD
hybrid isolates have only one mating type allele because of partial
or complete chromosome deletion or chromosome loss and redu-
plication, suggesting genomic instability (11, 12). For serotype A,
the vast majority of clinical and environmental isolates are MAT�
(0.1 to 2% MATa) (13–15), except in sub-Saharan Africa (10%
MATa) (16). For serotype D, it is established that 15% of Dutch
isolates are MATa (17). �AD� hybrids, which have two � type
mating alleles, also occur and result from unisexual reproduction
(18).

The C. neoformans population structure has been studied
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mainly for serotype A using PCR fingerprinting, multilocus se-
quence typing (MLST), or variable-number tandem repeat
(VNTR) methods (7, 17, 19–24). The majority of serotype A iso-
lates exhibit clonal expansion with very few recombination events
and low genetic diversity (2). These results show mitotic clonal
expansion, inbreeding via unisexual reproduction of clonally re-
lated or identical isolates, or both. Geographic specificity has been
observed so far only for isolates recovered in Botswana that exhibit
higher genetic diversity and recombination events (25) and for
environmental isolates in India that show evidence of recombina-
tion and extensive gene flow (26). The experimental design (sam-
pling and geographical area) may contribute to differences in the
extent of clonal expansion versus recombination events reported
(6). For serotype D, a unique molecular type is usually described as
VNIV or AFLP2 (27–30). Evidence of recombination was found
after analysis of 58 environmental isolates from North Carolina
(31) and 33 from other areas (11), which differs from results ob-
tained with Dutch isolates (17).

In humans, serotype A is the more frequent serotype and is
thought to be associated with more severe infections, at least in
HIV-infected patients (5). In experimental animal models, most
studies have established higher virulence for serotype A than se-
rotype D and for MAT� than MATa (32, 33). Contradictory re-
sults have been published on AD hybrids. Their virulence may
vary depending on the inoculation route and also on the chromo-
somal composition, with higher virulence for strains containing a
majority of the serotype A genome (12, 34, 35). Overall, there are
few clinical data on patients infected with AD hybrids.

Our objectives were thus to (i) analyze the population struc-
ture of serotype A versus serotype D using isolates recovered from
patients diagnosed with cryptococcosis in France and (ii) analyze
clinical presentations and outcomes in patients infected with AD
hybrids compared to serotype A or D.

RESULTS
Molecular characterization of clinical isolates. Among the 400
CryptoA/D isolates recovered from the 181 patients, 61% (244)
corresponded to serotype A, 19% (76) to serotype D, and 20%
(80) to AD hybrids. Of note, the serotypes determined here by
PCR matched those obtained previously using fluorescence mi-
croscopy (5) except for patients infected with AD hybrids that
were previously considered infected with either serotype A (20/
131, 15%) or D (11/50, 22%). Overall, diploid strains were found
in 52 (29%) patients (37 hybrids, 6 serotype A, and 9 serotype D).
None of the serotype A isolates were MATa, whereas 13% (13/97)
of the serotype D isolates were MATa. Among the 37 (20%) pa-
tients infected with AD hybrids, 25 (67%) were infected with
�ADa, 3 (8%) with �AD�, and 6 (16%) with aAD�. For three
hybrids, only one allele of the mating types was identified (1 of
each aAD-, -ADa, and -AD�), probably due to partial or complete
chromosome loss.

Among the 181 CryptoA/D patients, 26 (14.4%) had proven
mixed infection with mixed serotypes (12 patients), ploidies (6),
genotypes (2), or a combination of mixed serotypes/genotypes (2)
or serotypes/ploidies (4) (Table 1), confirming data obtained for a
subset of the patients (36). Patients with mixed genotypes of sero-
type A were infected with unrelated (patient 27) or related (patient
197) isolates. Patients with mixed ploidies were infected with hap-
loid and diploid isolates sharing the same genetic profile, suggest-
ing in vivo diploidization by endoreplication (36). Some patients

were infected with unrelated A (or D) and AD isolates (differences
in �3/5 loci), suggesting coinoculation. Finally, one patient was
infected with potentially related D and AD isolates (differing at
only 1 of 5 loci), suggesting possible in vivo hybridization even
though the serotype A partner was never uncovered (36) (see Ta-
ble S1 in the supplemental material). Mixed infections were sus-
pected for 13 additional patients (PCR on the original haploid
isolate suggested a mixture of A and D or the presence of AD, but
the 10 single colonies analyzed for each patient were haploid and
either A [9/13] or D [4/13]).

Comparison of genetic diversity and population structures
of C. neoformans. Serotypes A and D differed in the number of
genetic profiles (19 sequence types [STs] grouped in 3 major clus-
ters and 3 singletons for the 121 serotype A isolates, versus 44 STs
grouped in 7 clusters and 20 singletons for the 97 serotype D
isolates) (Fig. 1; also, see Tables S2 and S3 in the supplemental
material). For serotype D, the discriminatory power was 0.95,
confirming the robustness of the MLST method for the serotype D
population. ST121 was the major profile (17/97, 17.5%), but most
STs corresponded to a single isolate. Isolates harboring MATa
belonged to 10 STs, including 2 STs shared with MAT� isolates
(ST116 and ST125) (Fig. 1). The genetic diversity was greater for
serotype D than for serotype A, according to maximum-
parsimony phylogenetic analysis (Fig. 2), gene diversity, and av-
erage number of alleles per locus (Table 2).

For both populations, the observed variance was significantly
different from the expected variance (P � 0.0001), suggesting
linkage disequilibrium among the 7 loci. Similarly, a significant
test of congruence for 10/21 combinations for serotype D and 8/21
for serotype A suggested that some loci exhibited coevolution con-
firming linkage disequilibrium. However, based on the allelic
compatibility test, compatibility was observed in 19/21 graphs for
serotype D and in 6/21 graphs for serotype A (Fig. 3; also, see
Fig. S1 in the supplemental material) serving as evidence of re-
combination in both but more recombination events among se-
rotype D than serotype A populations. Furthermore, the index of
association (IA) was not significantly different from zero, suggest-
ing that some recombination events could occur in the serotype D
population, which contrasted with results obtained for serotype A.
Recombination parameters (S, R, and Rm) differed between sero-
types D and A (Table 2). Altogether, these results suggested re-
combination events in the serotype D and clonal expansion for the
serotype A populations.

Finally, multiple alignment of the concatenated sequences of
the 7 loci (�4,000 bp in length) showed that similarity ranged
from 98.7% to 100% among serotype A isolates and from 99.2% to
100% among serotype D isolates. In contrast, 81 to 92% similarity
was observed between sequences of A and D isolates. Multiple
alignments revealed 7 gap positions corresponding to 20 (range,
1-7) bp for serotype A isolates, and 22 gap positions correspond-
ing to 81 (range, 1-19) bp for serotype D isolates. These indels
were distributed among all isolates and localized mainly in the
IGS1 locus (5/7 positions for serotype A and 18/22 positions for
serotype D), which is an untranslated region.

Influence of AD hybrids on clinical presentation and out-
come of cryptococcosis. We compared the characteristics of the
patients depending on the infecting serotype (A, D, and AD) for
the 155 patients infected with a unique strain (Tables 3 and 4).
Overall, the three populations did not differ in terms of sex or age.
The proportion of patients infected with AD hybrids did not differ
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TABLE 1 Molecular information for isolates recovered in the 26 proven mixed infections

Patient
Origin
isolate

Serotype, mating
type, and ploidy

Single-colony
isolate

ST of serotype:

Type of mixed infection Probable origin of mixed infectionA D

5 AD5-87 A�, n AD11-71 104 Serotypes Coinoculation
D�, n AD11-72 129

10 AD5-85 �ADa, 2n AD5-35 Serotypes � genotypes Coinoculation
AD4-64 A�, n AD8-93 63

�ADa, 2n AD2-86

20a AD3-28 A�, n AD9-61 63 Serotypes Coinoculation
D�, 2n AD1-75 114

21 AD3-88 A�, n AD3-87 23 Serotypes Coinoculation
D�, n AD3-89 119

23a AD4-5 A�, n AD7-84 23 Serotypes Coinoculation
D�, 2n AD4-16 122

27 AD4-44 A�, n 23 Genotypes Coinoculation
AD4-45 A�, n 77

34 AD3-74 A�, n AD8-83 69 Serotypes Coinoculation
D�, n AD7-28 134

35 AD3-37 D�, n AD11-22 108 Serotypes Coinoculation
A�, n AD5-71 45

51 AD5-26 D�, n AD12-34 135 Ploidies In vivo endoreplication
D�, 2n AD12-35 135

62 AD4-62 aAD�, 2n AD3-35 Serotypes Possible in vivo hybridization
D�, n AD2-25 131

71a AD4-26 Da, n AD10-73 132 Serotypes � ploidies Coinoculation � in vivo endoreplication
Da, 2n AD10-72 132

AD4-27 A�, n AD7-68 32
Da, n AD10-72 132

80 AD3-91 D�, n AD3-91 121 Serotypes Coinoculation
aAD�, 2n AD7-25

82 AD7-3 D�, n AD11-77 120 Ploidies In vivo endoreplication
D�, 2n AD11-79 120

96 AD3-23 A�, n AD4-41 63 Ploidies In vivo endoreplication
A�, 2n AD4-34 63

100 AD4-70 �ADa, 2n AD5-70 Serotypes Coinoculation
A�, n AD12-8 106

119a AD1-60 Da, n AD6-82 130 Ploidies In vivo endoreplication
Da, 2n AD10-75 130

130 AD1-66 A�, n AD8-36 46 Serotypes Coinoculation
D�, n AD1-84 122

139 AD4-77 A�, n AD3-64 71 Ploidies In vivo endoreplication
A�, 2n AD3-76

140 AD4-80 A�, n AD2-77 63 Ploidies In vivo endoreplication
A�, 2n AD2-55

161a AD1-76 A�, n AD7-53 46 Serotypes � ploidies Coinoculation � in vivo endoreplication
D�, n AD1-70 121

AD1-77 A�, n AD7-99 46
A�, 2n AD8-18 46

(Continued on following page)
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according to the continent of birth, whereas there were no sero-
type D isolates in patients born in Africa. Of note, no association
between geographical origin and cluster or ST was observed for
serotype A or D isolates. There was a trend toward fewer serotype
D and more AD hybrids among HIV-infected patients, whereas it
was the opposite among HIV-negative patients. When four risk
categories among the 33 HIV-negative patients (“malignancy,”
“solid organ transplantation,” “others” [disease/treatment], and
“none” [no known risk factor]) were considered, “malignancy”
and “others” were the major risk factors for the 19 patients in-
fected with A, “malignancy” and “none” were the major risk fac-
tors for the 10 infected with D, and all four categories were re-
corded for the 4 patients infected with AD. Clinical presentation
and disease severity were similar despite a trend toward less dis-
seminated infection and less frequent abnormal lung imaging
with AD hybrids, lower serum antigen titers with serotype D and
AD hybrids, and less frequent abnormal brain imaging with sero-
type D. Intracranial pressure was recorded for only 21 patients and
was increased in 16 (14 infected with serotype A, 1 with D, and 1
with AD). Induction therapy with a combination of amphotericin
B and flucytosine was prescribed with similar frequencies to pa-
tients infected with serotypes A and AD and significantly less fre-
quently to patients infected with serotype D. Fluconazole induc-
tion therapy mirrored that of the amphotericin B-flucytosine
combination. The proportion of mycological failure (nonsteril-
ization at week 2 despite antifungal therapy) was lower in the case
of the AD hybrid than in that of serotype A or D. This was signif-
icant when patients with meningoencephalitis were considered
and near significant when all cases (meningeal and nonmeningeal
cryptococcosis) were considered.

In a multivariate analysis on the entire database (unique and
mixed infections), parameters independently associated with my-
cological failure (based on cerebrospinal fluid [CSF] sterilization)
were a high serum antigen titer, lack of flucytosine during induc-
tion therapy, and mixed infection, while infection with AD hy-

brids was more often associated with mycological cure (Table 4).
Overall survival at 3 months was not different in patients infected
by hybrids compared to the others. Ten patients (1 with AD hy-
brids and 9 with serotype A) had neurological sequelae.

DISCUSSION

We used clinical data and isolates collected during the nationwide
surveillance on cryptococcosis and the CryptoA/D study to fur-
ther analyze Cryptococcus biology and the disease it causes. Parts of
the data sets have been used in other studies (5, 36, 37). However,
the discovery of AD hybrid isolates among those previously clas-
sified as serotype A or D allowed us to analyze here how the disease
caused by AD hybrids in humans differed from that caused by A or
D (5). Likewise, expanding our search for mixed infections to the
entire data set of the CryptoA/D study allowed us to confirm the
high incidence of mixed infections during cryptococcosis but also
to include it with the data for AD hybrids in the model of multi-
variate analysis studying the parameters influencing outcome of
infection. We thus confirmed previous findings but also extended
our understanding of the biology of an important fungal pathogen
and of parameters potentially useful for the management of cryp-
tococcosis.

The diversity of the French C. neoformans clinical isolates was
higher than previously reported (5), with a proportion of AD hy-
brids (20%) and a distribution of mating type profiles similar to
European data (9). Cogliati et al. and Li et al. found that 71% of
AD hybrids harbored the MATa allele (73% here), suggesting that
AD hybrids could be a reservoir preserving the MATa mating type,
rarely found outside Africa for serotype A (9, 11). The hypotheti-
cal African origin of AD hybrids (7) was further supported by the
similar proportion of AD hybrids among patients born in Africa
and in other continents in our study.

The difference in the population structures of serotypes A and
D was striking. Serotype A is considered more virulent than sero-
type D, and its clonal expansion (at least for MAT�) could con-

TABLE 1 (Continued)

Patient
Origin
isolate

Serotype, mating
type, and ploidy

Single-colony
isolate

ST of serotype:

Type of mixed infection Probable origin of mixed infectionA D

177a AD4-20 A�, n AD9-73 63 Serotypes � ploidies Coinoculation � in vivo endoreplication
D�, n AD10-32 114

AD4-21 D�, 2n 114

188a AD1-12 A�, n 63 Serotypes � genotypes Coinoculation
AD1-36 A�, n AD8-34 32

D�, n AD2-78 121

197 AD3-57 A�, n 63 Genotypes Coinoculation or microevolution
AD3-58 A�, n 58

198a AD4-58 �ADa, 2n AD10-66 Serotypes Coinoculation
AD5-14 A�, n AD10-49 46

199 AD5-15 A�, n AD11-98 46 Serotypes � ploidies Coinoculation � in vivo endoreplication
A�, 2n AD11-99 46

AD5-16 �ADa, 2n AD11-68

217 AD3-17 A�, n AD11-42 40 Serotypes Coinoculation
D�, n AD11-43 133

a Mixed infection that was described in our previous study (36).
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tribute to maintain genomic markers associated with virulence.
Our data (low genetic diversity, lack of MATa, linkage disequilib-
rium, values of recombination parameters, and low allelic com-
patibility) confirmed the hypothesis of clonal expansion for sero-
type A in France. The presence of both mating types can facilitate

recombination in a population, and high genetic diversity within a
population is often associated with sexual reproduction (11, 38).
It is known that sexual reproduction of serotype D is robust and
not strain specific (39), whereas 50% of clinical and environmen-
tal isolates of serotype A are fertile (40). Despite linkage disequi-

FIG 1 Minimum-spanning trees for isolates of serotype A and D. Minimum-spanning trees were constructed with the ST allelic profiles of the 7 MLST loci for
the 97 isolates of serotype D and the 121 serotype A isolates. Green nodes, serotype A MAT�; red nodes, serotype D MAT�; blue nodes, serotype D MATa. The
denomination of the sequence type (ST) is indicated for each node. The size of the node is proportional to the number of isolates sharing the same ST, whereas
the lines between STs indicate inferred phylogenetic relationships and are in bold black, plain black, discontinuous black, bold grey, or plain grey depending on
the number of allelic mismatches between profiles (1, 2, 3, 4, or more than 4, respectively). Clusters are in grey and correspond to partition of nodes that differ
by a maximum of two loci.
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librium, our results (high proportion of MATa and diploid iso-
lates, high genetic diversity, higher proportions of indels in coding
regions, high allelic compatibility, and values of recombination
tests) suggest that recombination events can occur among sero-

types D isolates. Despite the possibility of recombination (31), no
geographic specificity was observed, with the limitation that only
clinical isolates were analyzed.

The possible speciation of serotypes A and D has been the sub-

FIG 2 Maximum-parsimony trees for isolates of serotypes A and D. Maximum-parsimony trees were constructed with concatenate sequences of the 7 MLST
loci for the 97 serotype D isolates and the 121 serotype A isolates. Green nodes, serotype A MAT�; red nodes, serotype D MAT�; blue nodes, serotype D MATa.
The denomination of the sequence type (ST) is indicated for each node. The size of the nodes increased with the number of isolates sharing similar sequences. The
size of the lines between nodes increased with the number of differing nucleotides. Logarithmic scaling for branches was used.
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ject of debate for many years (3, 6). Known differences between
the two serotypes include geographical distribution (41), host-
related susceptibility and type of disease produced (5), skin tro-
pism (41), maximal growth temperature (42), proportion of
MATa (16), monokaryotic fruiting for MATa (43), and overall

genome differences (85 to 90% nucleotide sequence identity be-
tween JEC21 and H99 genomes [44, 45]). Here, we found major
differences in population structure and 8 to 19% nucleotide dif-
ference over 4,000 bp. Reproductive isolation has been considered
the main mechanism of speciation (46). Even if serotype A di-

TABLE 2 Comparison of population structure of Cryptococcus neoformans serotype D and serotype A

Parameter Serotype D (97 patients) Serotype A (118 patients)

% (no.) of patients infected with MATa isolates 13.4 (13) 0 (0)
% (no.) of patients infected with diploid isolates 9.3 (9) 5.1 (6)
No. of STs 44 19
No. of combination with significant congruence/total of pairwise

combinations
10/21 8/21

No. of graphs with allelic compatibility/total (Fig. 3 and Fig. S1) 19/21 6/21
Gene diversity (H) 0.95 0.86
Average no. of alleles per locus (N) 11.57 5.57
Index of association standardized (IA) 0.00356 (44 STs); 0.1736 (97 isolates) 0.2537 (19 STs); 0.2958 (121 isolates)
No. of segregating sites (S) 76 81
No. of recombination events (R) 116 0.3
Minimum no. of recombination events (Rm) 16 8

FIG 3 Comparison of allelic compatibility tests generated for serotype A and serotype D. An hourglass shape (red lines) indicates the presence of all four possible
pairs of alleles and serves as evidence of recombination. A selection of 6 out of the 21 tests is shown, demonstrating allelic compatibility in 1/6 tests for serotype
A and 6/6 tests for serotype D. All graphs are provided in Fig. S1 in the supplemental material.
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verged from the serotype D lineage about 18.5 million years ago
(8), incomplete intervarietal sexual cycles occurred at different
times (0 to 3.2 million years ago), leading to introgression of
C. neoformans var. grubii into C. neoformans var. neoformans and
to the origins of AD hybrids (9, 44). AD hybrids seem to be locked
in the diploid state because of genomic differences preventing
progression through meiosis. Furthermore, basidiospores gener-
ated from intervarietal matings have a low viability and low pro-
pensity to germinate (39). On the basis of reproductive isolation
already described and phylogenetic distance confirmed by our re-
sults, both varieties could be classified into different species (6,
47). In their new study, Hagen et al. (3) propose recognition of
both varieties of C. neoformans as new species (C. neoformans for
serotype A and the newly proposed Cryptococcus deneoformans for
serotype D). This is based on the phylogenetic analysis of 11 ge-
netic loci and on biochemical, physiological, and matrix-assisted
laser desorption ionization–time of flight (MALDI-TOF) mass
spectrometry profiles. Our results are thus in agreement with this
new taxonomic classification (3).

A fascinating discovery of the systematic screening of original
isolates was the high proportion of mixed infections (21.5%), con-
firming and extending with 181 patients the results obtained with
49 (36). As reported, these mixed infection were the results of

either coinoculation or in vivo evolution (transitions in ploidy or
microevolution). However, we did not uncover hybridization that
could explain the simultaneous presence of A, D, and AD hybrids
in the same patient. It was important to expand the sample size to
the entire population of the CryptoA/D study to ensure that our
original finding was not due to some selection bias. This study also
allowed us to determine by univariate analysis that patients in-
fected with AD hybrids differed from those infected with serotype
A or D (Table 4), especially in terms of type of infection (less
frequent dissemination based on culture and serum antigen titers
and less frequent lung involvement) and in terms of response to
induction treatment (more CSF sterilization). Multivariate anal-
ysis showed that parameters independently associated with a lack
of CSF sterilization at week 2 after initiation of treatment were a
high serum antigen titer (�512), the lack of flucytosine during
induction therapy (as reported before [5]), and the occurrence of
mixed infection, while infection with AD hybrids was more often
associated with CSF sterilization. Nevertheless, differences in CSF
sterilization do not prove differences in virulence in humans. We
should keep in mind that the AD hybrids identified in patients
diagnosed in France are different from those found in Africa, and
indeed, Wiesner et al. found no survivors among the 8 Ugandan
patients infected by AD hybrids (48), whereas survival was similar

TABLE 3 Characteristics of the 155 patients with single infection due to one of the three serotypes of C. neoformans

Characteristic Serotype A (n � 98.0) Serotype D (n � 26.0) Serotype AD (n � 31.0) P

No. of males/total (%)a 79/98 (80.6) 21/26 (80.8) 24/31 (77.4) 0.957
Age (yr) (mean � SD) 41.2 � 11.9 45.8 � 12.5 42.7 � 12.5 0.217
No. born in Africa/total (%) 31/98 (31.6) 0/26 (0) 6/31 (19.4) 0.001
No. HIV infected/total (%) 79/98 (80.6) 16/26 (61.5) 27/31 (87.1) 0.063
Mean CD4/mm3 � SD for HIV-infected patients 50 � 82 44 � 56 41 � 54 0.866
No. with abnormal neurology/total (%) 40/98 (40.8) 10/26 (38.7) 15/31 (48.4) 0.733
No. with meningoencephalitis/total (%) 82/95 (86.3) 19/23 (82.6) 26/28 (92.9) 0.545
No. with fungemia/total (%) 42/94 (44.7) 11/25 (44.0) 11/28 (39.3) 0.888
No. with dissemination/total (%) 60/98 (61.2) 16/26 (61.5) 12/31 (38.7) 0.081
No. with high serum antigen titer (�512)/total (%) 47/89 (52.8) 8/23 (34.8) 9/28 (32.1) 0.083
No. with high CSF antigen titer (�512)/total (%) 40/85 (47.1) 6/17 (35.3) 8/24 (33.3) 0.398
No. with abnormal brain imaging/total (%) 28/80 (35.0) 2/18 (11.1) 11/27 (40.7) 0.084
No. with abnormal lung imaging/total (%) 48/97 (49.5) 11/23 (47.8) 8/30 (26.7) 0.088
No. with AMB � 5FC as induction therapy/total (%)b 54/98 (55.1) 7/26 (26.9) 14/31 (45.2) 0.031
No. with fluconazole as induction therapy/total (%) 24/92 (26.1) 11/24 (45.8) 12/29 (41.4) 0.086
No. with mycological failure at day 15/total (%)c 33/77 (42.9) 7/22 (31.8) 4/24 (16.7) 0.059
No. with CSF mycological failure at day 15/total (%)d 31/66 (47.0) 6/17 (35.3) 3/23 (13.0) 0.013
No. who died within 90 days after diagnosis/total (%) 21/82 (25.6) 7/22 (31.8) 7/25 (28.0) 0.812
a Total number of patients evaluated or for whom the information was available.
b AMB, amphotericin B; 5FC, flucytosine.
c Persistence of viable cryptococci in cultured samples.
d Persistence of viable cryptococci in cerebrospinal fluid samples.

TABLE 4 Independent parameters associated with mycological failure at week 2 for 123 patients

Parameter

Univariate analysis Multivariate analysisa

% with mycological failure
(no./total)

% with mycological cure
(no./total) P value OR (95% CI) P

Male sex 92.2 (47/51) 77.8 (56/72) 0.046
Disseminated infection 74.5 (38/51) 59.7 (43/72) 0.122
Mixed infections 21.6 (11/51) 8.3 (6/72) 0.061 5.6 (1.4–22.6) 0.015
Lack of 5FC 54.9 (28/51) 34.7 (25/72) 0.029 5.8 (2.0–17.2) 0.001
Infection by AD hybrid 7.8 (4/51) 31.9 (23/72) 0.002 0.1 (0.02–0.46) 0.003
Serum antigen titer � 512 63.8 (30/47) 40.9 (27/66) 0.022 5.0 (1.7–14.4) 0.003
a OR, odds ratio; CI, confidence interval.

Desnos-Ollivier et al.

8 ® mbio.asm.org May/June 2015 Volume 6 Issue 3 e00311-15

mbio.asm.org


whatever the infecting serotype for the patients enrolled in the
CryptoA/D study. Virulence of AD hybrids has been assessed in
experimental infections using relatively few strains (12, 32, 34).
The mating type, the inoculation route, and the presence of the A�
allele have been associated with enhanced virulence. A recent
study, however, demonstrated a significantly lower virulence only
for the aADa hybrids, providing evidence for negative epistatic
interactions between Aa and Da alleles (49). This was not assessed
here because of the small number of patients involved for some of
the allele combinations. A higher DNA content does not explain
differences in virulence for AD hybrids because genetically related
haploid and diploid isolates exhibit similar virulence (36, 49).
However, diploid cells are thought to be larger than haploid cells,
and cell size can have an impact on phagocytosis (described for
titan cells [50]). Chromosomal composition (proportion of sero-
type A or D genomes) in AD hybrids varies with partial and/or
complete chromosome deletion and/or duplication (11, 12, 35),
with an impact on capsule structure, as shown here by the differ-
ence in serotype assignment achieved with a monoclonal antibody
(51).

Our study again highlights the importance of combining clin-
ical and molecular data on original isolates for the study of
cryptococcosis and most probably other fungal infections. This
approach could be essential to identify putative species- and clade-
specific risk factors and possible associations between particular
strain types and host microenvironment and could lead to opti-
mized recommendations for the management of the patients.

MATERIALS AND METHODS
Ethics statement. The CryptoA/D study is a prospective multicenter ob-
servational study that enrolled 230 patients with cryptococcosis in France
between 1997 and 2001 (5). The CryptoA/D study was approved by the
ethical committee and reported to the French Ministry of Health (regis-
tration number DGS970089). Patients enrolled in the CryptoA/D study
gave their written informed consent for a systematic workup. Data were
analyzed anonymously. Clinical data and isolates were collected. The
cryptococcosis surveillance program is approved by the Institut Pasteur
Internal Review Board (2009 –14/IRB).

Cryptococcus neoformans isolates. Molecular characterization was
performed for 400 isolates obtained from 380 original isolates recovered
from 181 patients (CryptoA/D isolates) and for 53 serotype D isolates
collected from 53 patients during the surveillance program implemented
at the National Reference Center for Invasive Mycoses and antifungals
(CNRMA) (52). Reference strains JEC21 (serotype D, MAT�), JEC20
(serotype D, MATa), H99 (serotype A, MAT�), KN99a (serotype, A
MATa), and KN99� (serotype A, MAT�) were used.

Molecular characterization. (i) Determination of ploidy. Cells were
prepared for flow cytometry (53). Data were acquired from 30,000 cells
using the FL2 channel of a BD FACScan flow cytometer (Becton, Dickin-
son Company, Franklin Lakes, NJ, USA). Analysis was performed using

CellQuest software version 3.3 (BD Biosciences, San Jose, CA, USA) using
the profile of H99� as a reference for haploidy.

(ii) Determination of mating type and serotype. Yeasts were grown
for 24 h at 28°C on solid YNB medium. DNA was extracted using the
High-Pure PCR template preparation kit (Roche Applied Science, India-
napolis, IN). PCR were performed on an iCycler thermocycler (Bio-Rad,
Hercules, CA) using primers specific for the serotype and the mating type
(SXI1�/SXI2a and STE20�/a) (12). Serotype-specific primers for the
PAK1 and GPA1 genes were also used for all original cultures and selected
single colonies (12). For some isolates, other STE20 primers were used
(Table 5) because of a deletion in the STE20 sequences.

(iii) MLST. Multilocus sequence typing (MLST) was performed on all
serotype A and D isolates using the published scheme (CAP59, URA5,
GPD1, SOD1, LAC1, IGS1, PLB1) (19) with slightly different conditions
for serotype D (36). Of note, LAC1 and URA5 loci are both localized on
chromosomes 8 and 7 for serotypes A and D, respectively, whereas the
other five loci are on different chromosomes. Sequences were edited with
Chromas Pro version 1.41 (Technelysium Pty. Ltd., Helensvale, Queens-
land, Australia) and Mega version 5.1 (54). Concatenate sequences of the
7 MLST loci were aligned to construct a similarity matrix using Bio-
Numerics version 6.6 (Applied Maths, NV). The MLST allelic sequences
and sequence type (ST) are available online (http://mlst.mycologylab.org/
defaultinfo.aspx?Page�CN).

Discriminatory power was determined by using Hunter coefficient
(55). Frequency of each ST was calculated by using START software ver-
sion 2 and LIAN3.5 software (56). Gene diversity (H) was calculated as
[n/(n � 1)](1 � �p2

i), where n is the number of samples and pi is the
relative frequency of the ith allele. Average number of alleles per locus was
determined as (1/k)�ni, where k is the total number of loci and ni is the
number of alleles for one locus.

Genotypes for AD hybrid were determined for 5 loci (PLB1, GPD1,
SOD1, IGS1, and LAC1) by using serotype-specific primers (11, 36). We
were not able to design serotype-specific primers for the CAP59 and URA5
loci due to high sequence similarity between A and D alleles.

Phylogenetic analysis. For the population genetics analysis, only one
isolate per patient was used except when different genotypes were ob-
served in a given patient. A total of 97 isolates from 97 patients was studied
for serotype D and 121 isolates from 118 patients for serotype A.
Minimum-spanning trees were constructed with MLST alleles using
BioNumerics. Clusters were defined as partitions of nodes having a max-
imum distance of two loci. Isolates located in the same cluster were con-
sidered related. Maximum-parsimony trees were constructed using
BioNumerics, with concatenate sequences of the 7 MLST loci aligned
using ClustalW.

An allele compatibility test was performed from ST global isolates by
generation of 21 graphs. This test calculates the proportion of loci that
show phylogenetic compatibility when compared in pairwise combina-
tions. In the simplest case of phylogenetic compatibility, for two loci with
two alleles each, if all four possible genotypes are found in the population,
these two loci are called phylogenetically incompatible. An hourglass
shape thus indicates the presence of all four possible pairs of alleles and
serves as evidence for recombination (57).

TABLE 5 New primers specific of the serotype and mating type used for amplification of STE20

Serotype/mating type Primer 5=–3= sequence Amplicon size (bp) Reference or source

D� JOHE21312 AGCACCAGCCTATGGAGTCCGTCT 668 60
JOHE21322 TCAAAAGGTTGTCAGACTTGATGT

Da JOHE21313 CACATCTCAGATGCCATTTTACCA 526 60
JOHE21323 TCATCACAATGATCTCATTCACAA

Aa JOHE21314 CTAACTCTACTACACCTCACGGCA 457 11
JOHE21324 CGCACTGCAAAATAGATAAGTCTG

A� JOHE21691 AGCATCAGCTTTTGGAGTCTAC 413 Wenjun Li (Duke University)
JOHE21692 AGCATCAGCTTTTGGAGTCTAC
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The index of congruence (Icong) was calculated using online calcula-
tion (58) (http://mobyle.pasteur.fr/cgi-bin/portal.py#welcome) for test-
ing topological similarity between haplotypes trees by comparing pairwise
combination (here, 21 combinations for 7 MLST loci) and calculating the
P value for each combination. Congruence between trees can suggest co-
evolution of genes, i.e., no recombination events.

The index of association (IA) and linkage disequilibrium were deter-
mined by using START software version 2 and LIAN3.5 software (56). IA

is the ratio of the observed variance in the association of alleles among loci
to the corresponding expected variance based on random associations.
Significant associations among alleles at different loci are inconsistent
with random recombination but consistent with clonality.

DnaSP software version 5.10 was used to calculate recombination pa-
rameters, with S representing the number of segregating sites, R the num-
ber of recombination events, and Rm the number of recombination
events that can be parsimoniously inferred from the sequences (59).

Statistical analysis. Correlations between clinical and molecular data
were analyzed for the CryptoA/D patients (Stata 10.0; Stata Corporation,
College Station, TX). Comparisons between groups were done using chi
square or Fisher exact tests for categorical variables, and Student’s t test or
one-way analysis of variance for continuous variables. For the multivari-
ate analysis, logistic regression was used to determine factors associated
with mycological failure (lack of CSF sterilization) at week 2. Odds ratios
(OR) and 95% confidence intervals (CI) were determined by means of
logistic regression analysis. Variables that were clinically relevant with P
values of 0.25 were entered simultaneously into the initial model. Vari-
ables were removed following a backward-stepwise selection procedure,
leaving only variables with P values of 0.05 in the final model. We esti-
mated overall survival (cumulative survival probabilities and their 95%
CIs) by the Kaplan-Meier method, and comparison of survival between
groups was performed by log rank tests.

SUPPLEMENTAL MATERIAL
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