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Abstract: 
 
A minority of bacterial species has been found to carry a genome divided among several 

chromosomes. Among these, all Vibrio species harbor a genome split into two 

chromosomes of uneven size, with distinctive replication origins whose replication 

firing involves common and specific factors. Most of our current knowledge on 

replication and segregation in multi-chromosome bacteria has come from the study of 

Vibrio cholerae, which is now the model organism for this field. It has been firmly 

established that replication of the two V. cholerae chromosomes is temporally regulated 

and coupled to the cell cycle, but the mediators of these processes are as yet mostly 

unknown. The two chromosomes are also organized along different patterns within the 

cell and occupy different subcellular domains. The selective advantages provided by this 

partitioning into two replicons are still unclear and are a key motivation for these 

studies.  

 
1. Introduction 
 
Bacterial genomes are composed of two types of replicons: chromosomes, which are by 

definition essential, and plasmids, which are dispensable. Most bacteria have one single 

circular chromosome, varying in size from barely 100 kb [1] for obligatory intracellular 

species to over 13 Mb [2], but bacteria with multiple chromosomes are frequent (about 

10% of bacteria with sequenced genomes) and arose in several taxa. Indeed, bacteria 

with two or more chromosomes have been identified in diverse prokaryotic phyla 

including Chloroflexi, Deinococcus - Thermus, Spirochaetes, and Proteobacteria (α-, β- 

and γ- classes), suggesting that they have arisen independently, many times in the 
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course of evolution. In general, these chromosomes are circular, but in some cases such 

as in Agrobacterium, one of the two chromosomes is linear [3]. Among the 

proteobacterial families that have been found to carry multiple chromosomes, the 

Vibrionaceae family, which includes the Vibrio, Photobacterium, Listonella, and Aliivibrio 

genera, shows the highest consistency in terms of genome structure. Indeed, all species 

characterized since the original description of this specific genome organization in V. 

cholerae and V. parahaemolyticus [4,5], have been found to carry 2 chromosomes of 

uneven sizes [6]. It is now commonly accepted that this second chromosome derives 

from the domestication of a plasmid in the ancestor of the current Vibrionaceae families, 

after transfer of essential genes from the chromosome to this replicon [7].  

Multiple chromosome maintenance and replication have been studied to a certain extent 

in bacteria from the other groups, such as Burkholderia, Rhizobium or Brucella, but most 

of our current knowledge on these topics has come from studies in V. cholerae. Like all 

Vibrionaceae, V. cholerae has one large chromosome, called the primary chromosome or 

chromosome 1 (chr1), due to the relatedness of its replication initiation machinery and 

its control with the one of other -proteobacteria such as E. coli, and one secondary 

chromosome, called chromosome 2 (chr2), which possesses a distinct replication 

initiation set-up. 

 

2. Replication initiation of V. cholerae chr1 and chr2 
 
In V. cholerae, the factors responsible for controlling replication initiation of the two 

chromosomes are distinct [8]. The minimal replication origin of V. cholerae chr1 (ori1) is 

fairly similar to the canonical E. coli chromosomal origin (oriC) [9]. Like oriC, ori1 

contains binding sites for DnaA (DnaA boxes), the main initiator of replication that 

promotes the unwinding of bacterial chromosomal origins [10]. It also carries an IHF 

binding site, and several GATC sites for methylation by DNA adenine methyltransferase 

(Dam), which regulates the timing of re-initiation through sequestration of 

hemimethylated sites by SeqA [11]. ori1 is able to functionally replace oriC in E. coli 

[12,13] suggesting that similar processes are likely to govern chr1 replication initiation 

in V. cholerae.  
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Replication initiation of chr2 is very different from that of chr1 or E. coli oriC. This 

novelty has motivated its extensive study over the past decade and an understanding of 

chr2 replication is likely to benefit understanding of how megaplasmids have been 

domesticated by bacteria to become secondary chromosomes. Replication of chr2 is 

triggered by a specific initiator, RctB, that is conserved within all Vibrionaceae but 

shares no homology with any other replication initiators [9]. RctB has several functional 

forms. RctB binds and hydrolyzes ATP but unlike DnaA, the ATP-bound form of RctB is 

inactive [14]. It binds to DNA as monomer or as a dimer [15,16]. Finally, RctB is most 

probably remodeled by chaperones DnaJ and DnaK similar to iteron-carrying plasmid’s 

Rep initiators [15,17]. 

RctB concentration is the rate-limiting component of chr2 initiation [18]. As with chr1, 

the homeostatic system that sets the copy number of chr2 and corrects over-replication 

and under-replication is based on negative-feedback control of the availability of the 

initiator. For chr2, V. cholerae has integrated a complex regulatory mechanism to control 

the level and activity of RctB. Chr2 replication control appears to be a combination of 

mechanisms similar to those found in iteron-like plasmids, which are commonly known 

as initiator autoregulation, initiator titration and origin handcuffing [19]. The origin 

region of chr2 is divided into three functional units: (i) rctB, encoding the initiator of 

replication; (ii) ori2, the minimal origin of replication; and (iii) incII, a negative 

regulatory region which contains a transcribed but non-translated ORF rctA [9] (Figure 

1). ori2 is organized similarly to iteron-bearing plasmid origins. It contains six iterons, 

which are 12-mer repeated initiator binding sites. RctB binds as a monomer to these 

iterons and promotes the unwinding of ori2 for initiation [14]. The contiguous incII 

region negatively regulates chr2 replication. It contains five regulatory iterons (11- and 

12-mers) and two 39-mer motifs, one of which is found in rctA [20]. RctB can also bind 

efficiently to 39-mer motifs where it serves as a negative regulator of ori2 initiation and 

regulates the timing of chr2 replication[15,20]. The inhibitory activity of the 39-mers is 

very powerful and is mainly conveyed through two mechanisms: initiator titration and 

origin handcuffing [15,20,21]. Structure-function studies of RctB have shown that the 

carboxy-tail of RctB is dispensable for initiation but essential for down-regulation of 

replication [15,22,23]. Iterons found outside ori2 in the incII locus have a regulatory 

function. These regulatory iterons serve as titration sites for RctB; additionally their 

precise arrangement and orientation help to restrain the strong inhibitory activity of the 
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39-mer motifs [20]. The 39-mers, conversely, enhances handcuffing of the regulatory 

iterons with themselves [20].  

Another important regulatory mechanism of chr2 replication takes place in rctA [21]. 

Transcription of rctA attenuates its own 39-mer inhibitory activity, presumably by 

interfering with RctB binding. RctB, alternatively, binds to regulatory iterons located in 

the rctA promoter region, repressing rctA transcription [21,24]. This mechanism of 

transcriptional interference participates in adjusting the level of available RctB.  

RctB also auto-regulates its own expression through binding at another RctB binding 

motif called the 29-mer in the promoter region of rctB [25]. The 29-mer functions as a 

transcription operator, from which RctB exerts a negative feedback regulation on its 

own transcription [24]. The 29-mer also participates in the control of ori2 initiation 

through handcuffing with ori2 iterons [25]. The 39- and 29-mer motifs are closely 

related. Indeed, the 29-mer is a truncated version of the 39-mer and can be functionally 

replaced by a 39-mer [15,25]. Recently, a genome-wide study of RctB bindingby 

chromatin immunoprecipitation and microarray (ChIP-chip) shows that RctB also binds 

to external sites, notably a span of 74 kb on chr2 containing six RctB binding sites (five 

iterons and one 39-mer motif) that negatively regulate ori2 replication[26]. This locus 

could be reminiscent of the E. coli datA titration locus [27,28], being able to titrate RctB 

and inhibit ori2 replication. A second site is located on chr1 and was found to enhance 

ori2 replication [26] using an as yet unknown mechanism. 

 

 

3. Cell-cycle-dependent regulation of chromosome replication 
 
The cell cycle is defined by events that occur only once per generation: chromosome 

duplication, chromosome segregation and cell division. Analogous to that of eukaryotes, 

the bacterial cell cycle is divided into three stages: cell birth to chromosome replication 

initiation (B), chromosome replication (C) and termination of replication to cell division 

(D). Chromosomes usually replicate at a fixed time once per cell cycle while plasmids 

usually initiate replication several times over the entire bacterial cell cycle [29]. In 

contrast, megaplasmids and secondary chromosomes, i.e. RepABC megaplasmids of α-

proteobacteria and chr2 of V. cholerae, replicate once per cell cycle [30,31]. In V. 

cholerae, chr1 initiates at the onset of the replication period while initiation of chr2 is 
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delayed and occurs when 2/3rd of the replication period has already been completed. 

Because chr2 is 1/3rd the size of chr1, both chromosomes terminate their replication at 

the same time which signals the end of the C period [32]. Presently, we don’t know how 

and why this termination synchrony occurs. Even if the two chromosomes are 

independently maintained, this observation indicates that chr1 and chr2 communicate 

to coordinate their replication. ori1 and ori2 are very divergent but they contain some 

common features such as a DnaA box and a binding site for IHF, suggesting that DnaA 

and IHF can be used by both chromosomes for replication initiation and could play a 

role in their coordination [9]. The DnaA box is conserved in the ori2 of other Vibrio 

species, implying an evolutionary purpose [9]. However, in V. cholerae, DnaA 

overproduction doesn’t seem to impact chr2 replication [8].  

The origin region of chr2 has an overrepresentation of Dam methylation sites (Figure 1). 

Like on ori1, the hemi-methylated state of ori2 is extended, thereby ori2 is also subjected 

to sequestration by SeqA which prevents immediate re-initiation [12]. Interestingly, 

unlike ori1, Dam methylation is strictly essential for chr2 initiation [12,33]. Indeed, all 

iterons (initiation and regulatory) contained in the origin region of chr2 have a Dam 

methylation site that needs to be fully methylated to bind RctB [12]. RctB binding to 

iterons functions, thereby, in a cell-cycle dependent manner. Alternatively, the 39-mer 

(including the 29-mer) does not need to be methylated to bind RctB [25]. Thus, there is 

interplay between methylation-dependent processes (involving RctB/iteron interaction) 

and methylation-independent processes (involving RctB/39-mer) that results in an 

equilibrium of RctB, which allows the correct timing of chr2 replication initiation. The 

plasmid iterons lack methylation sites and their replication is not linked to the cell cycle. 

Dam regulation of chr2 replication provides some clues as to how the replication is 

limited to a specific time of the cell cycle [25]. Chr2 has integrated a very sophisticated 

plasmid-derived initiation regulation system and improved it to behave in the cell like a 

chromosome in order to curb replication to once per cell cycle. Dam and SeqA together 

regulate the initiation and re-initiation of chr1 and chr2 and thus could serve as 

common regulators of chr1 and chr2 replication to help participate in the coordination 

of their replication.  

 

 

4. Chr1 and chr2 distribution and segregation in V. cholerae 
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The two chromosomes of V. cholerae are longitudinally arranged in the cell [34]. While 

chr1 seems to be spread along the entire longitudinal axis of the cell, chr2 is restricted to 

the younger half of the cell. In newborn cells, chr1 extends from the old pole to the new 

pole and chr2 extends from midcell to the new pole [34] (Figure 2).  

Most bacteria, with the notable exception of E. coli, carry parAB genes in their 

chromosome that participate in chromosome partition [35]. Each of the two V. cholerae 

chromosomes has been found to encode a specific partition system, namely ParAB1 and 

ParAB2, which recognize distinct sites exclusively carried on their cognate chromosome 

[36]. parA codes for an ATPase and parB for the sequence specific DNA binding protein 

that binds to its specific parS sites. Several parS sites are usually found within the 

chromosomal oriC region and in its vicinity [35]. The genes were initially found in low 

copy number plasmids, and were shown to facilitate their segregation into daughter 

cells. However, their role in bacterial chromosome segregation is still controversial, as 

the knockout of Par systems leads to variable phenotypes depending of the species [37-

40]. In V. cholerae, deletions of parAB1 or of parS1 sites do not affect chr1 partitioning 

[36]. Conversely, ParAB2 is essential for chr2 segregation, and its disruption leads to 

chr2 loss and cell death [41]. The location of ori1 at the old pole has been found to be 

mainly mediated by an interaction between ParA1 and a specific pole anchor protein, 

HubP [42], which is in agreement with previous observations that ParA1 is essential for 

ori1 polar location [43]. The displacement of parS1 sites at a distant loci from ori1 shifts 

the polar location to the region carrying the relocated parS1 sites, confirming ParAB1’s 

role in mediating polar location [34]. Nevertheless, in absence of ParA1, ori1 is kept in 

the old pole region, but in a less precise manner. In this case, replication was shown to 

drive the longitudinal organization of chr1 [34]. 

Deletion of parB1 causes parA1-dependent over-initiation of chr1 replication that 

appears to be mediated through direct interaction with DnaA [44] in a manner similar to 

what has been described in B. subtilis [45]. There is an analogous regulatory cross-talk 

for chr2 where ParB2 contributes to chr2 replication regulation, thereby enabling 

linkage between replication and segregation. ParB2 binding to parS2-B within the rctA 

ORF nearby the 39-mer RctB-binding motif interferes with rctA replication inhibitory 

activity [23] (Figure 1). ParB2 spreads from parS2-B into the rctA 39-mer which likely 

interferes with RctB binding [46]. ParB2 was also reported to promote replication by 
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direct binding to a more distant 39-mer contained in incII (interestingly without 

requiring spreading from parS2-B). On this 39-mer, ParB2 competes with RctB to 

restrain its activity [46]. Alternatively, binding of RctB to rctA activates parAB2 

expression [23]. These binding fluctuations underlie a regulatory network controlling 

both replication and partitioning of chr1 and chr2, demonstrating how chromosome 

replication and origin segregation are intimately intertwined.  

While replication and segregation of chr1 and chr2 origins occurs at different spatial and 

temporal points, replication and segregation of their termini are synchronous and occur 

at midcell [32,34] (Figure 2). There may be a control mechanism that coordinates chr1 

and chr2 to synchronize their termination and late stages of segregation at midcell. One 

of the last steps of chromosome segregation before cell division involves the resolution 

of dimeric chromosomes that are frequently produced by homologous recombination 

between sister-chromatids following DNA damage [47]. In V. cholerae, dimers of chr1 

and chr2 are resolved by the action of the same machinery, XerC and XerD site-specific 

recombinases at the dif sites (dif1 and dif2), located into the ter regions of chr1 and 

chr2, respectively [48]. This recombination event is controlled by FtsK, a DNA 

translocase. FtsK is associated with the division apparatus and therefore links the 

resolution of dimeric chromosomes to the end of the cell cycle, which is cell division. A 

recent study of FtsK activity in V. cholerae suggest that in addition to its role in dimer 

resolution, it also serves to facilitate the segregation of a specific region of sister 

chromosomes across the division septum [49]. 

 

 

5. Perspectives and outstanding questions 
 
 
The question of the selective advantage of multipartite bacterial genomes is still 

unsolved. However, this organization is clearly stable, especially in Vibrio species. 

Chromosome co-integrates have been observed in Sinorhizobium meliloti at low rates 

and have been found to spontaneously revert to the multiple chromosome organization 

[50]. In V. cholerae, due to its essential role in chr2 replication, Dam depletion can only 

be overcome by chromosome fusion [51].  Fusions have been observed to occur either 

by homologous recombination between identical IS copies or through recombination 
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between the dif sites of the two chromosomes, providing a possible escape route for 

chr2 replication inactivation. It has also been established that chromosome fusion 

through dif recombination occurred naturally at detectable levels, but were subjected to 

counter selection [51]. This phenomenon was further studied through the construction 

of a synthetic V. cholerae derivative possessing a single chromosome by fusing chr1 with 

chr2 in a calculated manner to conserve the “ori-ter” axial symmetry, gene synteny, 

strand bias and the polarities of the original replichores. In this strain, where the 

replication of the fused chromosome initiates at ori1 and finishes in the terminus of chr2 

near dif2, while ori2 and dif1 have been removed, the effect on the generation time is 

minimal [33]. As this difference is clearly insufficient to explain the counter selection of 

natural fusions, it could be imagined that the presence of two different replication 

origins on a single replicon deleterious to the cell.  

A second issue that is not yet understood is why bacteria with multiple chromosomes 

always carry different types of replication origins for the main and secondary 

chromosomes. A V. cholerae mutant where chr1 and chr2 are initiated at two identical 

DnaA-regulated ori1 origins is not impaired for growth [33]. This means that distinct 

replication systems are not a prerequisite for the viability of bacteria with multipartite 

genomes. Another pending question is the understanding of the mechanism which 

ensures the proper timing of chr2 replication firing to synchronize the replication 

termination of the two chromosomes. Finally, the physical organization of the two 

chromosomes, in terms of compaction and macrodomains within the cell is completely 

unknown. Vibrio species carry the same set of dam-associated genes involved in DNA 

maintenance and chromosome macrodomain (MD) organization [52], which in 

particular, organizes three of the E. coli MDs [53]. MatP, which organizes the E. coli Ter 

macrodomain, is conserved in V. cholerae, and matS binding sites are distributed in the 

ter regions of both chr1 and chr2 [54]. This suggests that each of the two chromosomes 

carries a Ter MD, but any similarity between E. coli chromosome organization and the 

organization of the two V. cholerae chromosomes has yet to be established. V. cholerae 

genomes also carry a YfbV ortholog, which in E. coli binds to two 12 bp sites called tidL 

and tidR and is essential for the left and right MD organization [55]. However, these two 

sites are not found in the V. cholerae genome, suggesting that either these MDs are 

absent in vibrios, or that YfbV recognizes an unrelated sequence. Thus, it would be very 

interesting to determine the potential MD organization and how it differs from the single 
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chromosome organization found in E. coli. In addition, the presence of specific contacts 

between different chromosome regions should be investigated, as well as any potential 

common structures involving domains of both chromosomes.  
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Figure Legends 
 
 

Figure 1: Schematic map of the origin region of V. cholerae chr2, which is divided into 

three units: rctB (gene encoding for the initiator of replication), ori2 (the minimal 

functional origin), incII (a negative regulatory region including the non-translated ORF 

rctA). RctB binding sites are indicated in red if Dam-methylation is required and in blue 

if methylation is not required for binding. The parA2 gene flanking the origin of chr2 as 

well as the parS2-B site (in rctA) are indicated to illustrate the regulatory crosstalk 

between replication and segregation of chr2. 

 

 

Figure 2: A, Model for the arrangement of chromosomal DNA in V. cholerae newborn 

cells. The two chromosomes are longitudinally arranged: Ori1 (the origin region of chr1) 

is tethered at the old pole, Ter1 (the terminus region of chr1) is at the new pole, Ori2 

(the origin region of chr2) is at midcell and Ter2 (the terminus region of chr2) is closer 

to the new pole. B, Model for the chronological order of duplication and segregation of 

the Ori and Ter regions of chr1 and chr2 (based on [34]). 
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Jha et al, 2014 (*) 

The authors show that a restricted region in the C-ter domain of RctB is sufficient for both DNA 

binding and protein dimerization. This 71-aa region contains two contiguous domains which bind 

to either iterons or 39-mers and a dimerization domain which overlaps both DNA binding 

domains. 

Baek et al, 2014 (*) 

In this work, new sites for RctB binding were found outside of the origin of chr2. On chr2, a 74 kb 

stretch of DNA containing five iterons and one 39-mer was found to inhibit ori2 replication. On 

chr1, an atypical RctB binding site not related to either iterons or 39-mers acts as an enhancer of 

ori2 initiation. 

Val et al, 2012 (**) 

In this work, large genome rearrangements were generated in V. cholerae to study the 

conserved vibrio two chromosome genome organization. Mutants with a single chromosome, 

with equally sized chromosomes and with chromosomes controlled by identical origins were 

studied to address issues about genome organization and maintenance. 

David et al, 2014 (**) 

In this work, the cellular location and segregation pattern of 19 V. cholerae genomic loci on both 

chromosomes as a function of cell length have been monitored. This work gives a precise view 

of chr1 and chr2 dynamics, demonstrating that both chromosomes follow a longitudinal mode of 

organization and that both partition and replication machineries contribute to chr1 origin polar 

recruitment.  

Yamaichi et al, 2012 (**) 

HubP, a multi-domain transmembrane protein that is anchored at the pole has been identified as 

establishing polar identity. HubP is required for the proper polar localizations of ParA1 and 

modulates the localization of ori1. HubP is also required for the proper cellular positioning of two 

other polar factors, ParC (chemotactic machinery), and FlhG (flagellum).  

Venkova-Canova, 2013 (*) 

In this work, the mechanism of two regulatory cross talks linking V. cholerae chr2 replication and 

segregation has been unraveled.  

Val et al, 2014 (*) 

list of * and ** references



This work reports the isolation of spontaneous natural mutants of V. cholerae with a single fused 

chromosome. The selective advantage of this new genome configuration is enforced by the 

depletion of the Dam methylase which is essential for chr2 replication. 

Thiel et al, 2012 (**) 

By moving large chromosomal DNA segments on the genome of E. coli, the authors have 

unraveled a new site-specific insulation system that restricts to the Ter region the consequences 

of the MatP-mediated constraining effect. Two sequences (tidL and tidR) flanking both sides of 

the Ter region and a DNA binding protein (YfbV) were found to be required to isolate the Ter 

from the other parts of the chromosome. 

 



Highlights 

 All Vibrio species species carry a genome divided in multiple 

chromosomes 

 Replication of the two V. cholerae chromosomes is temporally regulated 

and coupled to the cell cycle.  

 The two chromosomes have distinctive replication origins whose 

replication firing involves common and specific factors. 

 The two V. cholerae chromosomes are organized along different patterns 

within the cell and occupy different subcellular domains.  

 

*Highlights (for review)


