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ABSTRACT 

 

 Phosphoinositides control key cellular processes including vesicular trafficking and actin 

polymerization. Intracellular bacterial pathogens manipulate phosphoinositide metabolism in order 

to promote their uptake by target cells and to direct in some cases the biogenesis of their 

replication compartments. In this chapter, we review the molecular strategies that major pathogens 

including Listeria, Mycobacterium, Shigella, Salmonella, Legionella and Yersinia use to hijack 

phosphoinositides during infection.  

 

 

 

 



 

 

 

 

INTRODUCTION 

 

 Of an estimated 58.8 million annual deaths worldwide, approximately 15 millions are 

believed to be caused by infectious diseases [1], and bacterial pathogens contribute significantly to 

these numbers. Pathogens such as Mycobacterium tuberculosis are passively phagocytosed by 

macrophages, but others including Listeria monocytogenes, Shigella spp. or Salmonella enterica 

actively promote their internalization within epithelial cells by hijacking specific host signaling 

cascades that lead to pathogen engulfment via actin cytoskeleton polymerization and plasma 

membrane rearrangements (Figure 1) [2]. After host cell entry, bacterial pathogens may occupy 

different intracellular compartments (Figure 1): Listeria and Shigella disrupt their internalization 

vacuole and multiply in the cytoplasmic space; the proliferation of Mycobacterium, Salmonella and 

Legionella pneumophila mostly occurs in early phagosomal-, late endosomal- and endoplasmic 

reticulum-related compartments, respectively; however, recent reports indicate that these three 

pathogens may also reach the cytoplasmic space after rupture of their membrane-bound 

replication compartments. As reviewed in the chapters of this issue, phosphoinositides play key 

roles in the regulation of membrane trafficking events as well as in the tight control of actin 

polymerization, and therefore their metabolism is subverted by intracellular bacterial pathogens to 

favor cellular invasion or to modify the properties of their replication compartments [3,4]. 

Regulation of phosphatidylinositol (PtdIns)(4,5)P2 and PtdIns(3,4,5)P3 levels at the plasma 

membrane plays a critical role for the entry of some bacterial pathogens in host cells: while 

PtdIns(3,4,5)P3 positively stimulates actin rearrangements at bacterial entry sites, some pathogens 

lower interactions between the plasma membrane and the actin cytoskeleton by inducing a 

decrease in PtdIns(4,5)P2 levels, favoring plasma membrane detachment from the underlying 

cortical actin cytoskeleton and bacterial engulfment in massive macropinocytic structures. 

PtdIns(3)P levels are also tightly controlled at intracellular stages of bacterial infection: some 

pathogens hamper PtdIns(3)P production or function on their replicating compartments to block 

their fusion with lysosomes, while other pathogens use the fusogenic properties of PtdIns(3)P to 

remodel their vacuoles. Strikingly, it is through the study of their role in controlling entry or survival 

of bacterial pathogens in host cells that the functions of PtdIns(4)P and PtdIns(5)P as bona fide 

second messengers have been recently expanded. Here we discuss each specific situation for 

several well studied pathogens. 

 

Listeria monocytogenes 

 

 The Gram positive bacterium Listeria monocytogenes, one of the ten species of the genus 

Listeria, is the agent of a food-borne disease that may lead to meningitis in immunocompromised 

individuals, and abortions in pregnant women. Listeria is able to traverse the intestinal, blood-brain 

and fœto-placental barriers by engaging host cell receptors with bacterial surface proteins and 

promoting bacterial intracellular uptake in target tissues [5-7]. 

 



 

 

 Two major invasion signaling cascades have been described for Listeria: the interaction of 

InlA with its receptor E-cadherin leads to bacterial internalization within polarized epithelial cells, 

while interaction of InlB with the hepatocyte growth factor receptor Met leads to bacterial entry 

within many non-polarized epithelial cells in vitro [8,9]. InlB interaction with Met, which is a tyrosine 

kinase receptor, leads to its auto-phosphorylation and to the recruitment of the protein adaptors 

Gab1, Shc, Cbl and CrkII which contribute to the translocation/activation of the class IA PI 3-kinase 

to L. monocytogenes entry foci [10-12]. PtdIns(3,4,5)P3 produced by the class IA PI 3-kinase is a 

major effector of actin rearrangements in eukaryotic cells [13] and during Listeria infection, the 

distribution of PtdIns(3,4,5)P3 within cholesterol-rich membrane micro-domains is critical for 

activation of Rac1 in Vero cells [14] and of the WASP-related complexes WAVE1 and WAVE2, 

leading to actin polymerization by the Arp2/3 complex [15,16]. A recent RNA interference (RNAi)-

based screen identified several PtdIns(3,4,5)P3-binding molecules which modulate Listeria entry 

including the regulators of small GTPases of the Arf family ARAP2, GIT1 and ARNO or the Rac1 

activator SWAP70 [17]; the timing and specific contribution of these molecules to the bacterial 

entry process remains to be precisely established. 

 PtdIns(4)P produced by PI 4-kinases is another major cellular phosphoinositide which has 

been traditionally regarded as a signaling molecule of the Golgi, or as a precursor of PtdIns(4,5)P2 

at the plasma membrane [18]. We have shown that the activity of a class II PI 4-Kα (and to lesser 

extent of a β isoform) is required for Listeria cell invasion downstream of the tetraspanin molecule 

CD81 in a pathway independent of the PI 3-K pathway [19,20]: indeed, inactivation of class II PI 4-

Kα impairs bacterial entry but does not perturb plasma membrane PtdIns(4,5)P2 or PtdIns(3,4,5)P3 

levels, suggesting that PtdIns(4)P could play a signaling role on its own at the plasma membrane 

of host cells. Strikingly, the development of a novel PtdIns(4)P biosensor using the PtdIns(4)P-

binding module of the protein SidM from Legionella pneumophila confirms that this 

phosphoinositide is present on multiple pools not only at the Golgi but also at the plasma 

membrane and in late endosomes/lysosomes, confirming our previous observations and 

suggesting a broader function of PtdIns(4)P as a scaffold molecule in mammalian cells [21,22]. 

 The host protein OCRL is a 5-phosphatase which preferentially dephosphorylates 

PtdIns(4,5)P2 and also PtdIns(3,4,5)P3 [23]. It possesses a clathrin-binding domain, participates in 

early steps of the endocytic pathway [24], and promotes actin depolymerization required for 

successful cytokinesis [25,26]. We found recently that Listeria invasion is controlled by OCRL, 

precisely by down-regulating the cellular levels of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 and limiting 

actin polymerization at bacterial entry sites [27]. Knock down of OCRL by siRNA increases entry. 

As detected by correlative light-electron microscopy, OCRL and clathrin coated vesicles colocalize 

around Listeria-containing vacuoles (Figure 2), suggesting a functional interaction between clathrin 

and OCRL during Listeria infection.  

 Interestingly, Listeria expresses several enzymes which display a lipid phosphatase activity 

and are critical for bacterial survival. LipA, in addition to its tyrosine phosphatase activity, 

dephosphorylates PtdIns(3)P, PtdIns(5)P and PtdIns(3,5)P2 in vitro, and bacteria lacking this 

effector are severely attenuated in virulence in vivo [28], but the cellular functions affected by LipA 

have not been identified yet. As shown below, Mycobacterium also expresses a dual protein/lipid 



 

 

phosphatase, MptpB, which is an homologue of LipA [29]. PlcA and PlcB are two phospholipases 

known to be involved in Listeria escape from vacuoles: PlcA cleaves phosphatidylinositol and 

glycosylphosphatidylinositol anchors [30] while PlcB expresses lecithinase activity and hydrolyzes 

phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine and sphingomyelin but not 

phosphatidylinositol [31]. Recently, it has been proposed that these phospholipases, particularly 

the phosphatidylinositol specific PlcA prevents pre-autophagosomal maturation by reducing the 

cellular PI concentration and therefore PtdIns(3)P levels. This mechanism was further shown to 

protect cytoplasmic Listeria from autophagy, induced by LLO-dependent amino acid starvation 

[32].  

 Following escape from the internalization vacuole, Listeria proliferates in the host cell 

cytoplasm where the bacterial surface protein ActA activates the Arp2/3 complex to promote actin 

polymerization and bacterial motility [33,34]. It has been proposed that  PtdIns(4,5)P2 and 

PtdIns(3,4,5)P3 originating from the inner leaflet of the plasma membrane may associate with 

cytoplasmic Listeria and promote actin-based motility [35]. However, the signaling cascades 

triggered downstream of these phosphoinositides are unknown. 

 In summary, bacterial manipulation of the host phosphoinositide metabolism, and in 

particular of class IA PI 3-kinases is critical for actin polymerization and successful Listeria 

invasion of host cells. Regulation of cytoskeletal rearrangements during infection is tightly 

regulated: actin polymerization is initially required to remodel the plasma membrane around 

invading bacteria, but actin depolymerization is also necessary to disassemble the actin-rich 

meshwork underlying the phagocytic cup to complete the invasion process [15]; sustained local 

actin depolymerization by the host phosphatase OCRL, which down-regulates PtdIns(4,5)P2 and 

PtdIns(3,4,5)P3 levels produced at the bacterial entry foci, limits infection [27]. Listeria secretes 

several lipid phosphatases which modulate bacterial vacuolar escape and other steps of the 

infection cycle [28,32]. 

 

Shigella spp. 

 

 The genus Shigella spp. harbors 4 species or groups (Group A: S. dysenteriae, Group B: S. 

flexneri, Group C: S. doydii, and Group D: S. sonnei). S. dysenteriae and S. flexneri are the 

etiological agents of bacillary dysentery, a severe bloody diarrheal disease prevalent in developing 

countries [36]. A type III Secretion System (T3SS) encoded by a large virulence plasmid allows 

Shigella spp. to inject virulence factors into host colonic epithelial cells, leading to bacterial 

invasion of the epithelial lining, associated with the elicitation of an intense inflammatory response 

leading to the destruction of the mucosa [37].  

 Following Shigella capture by filopodia [38], the T3SS effectors IpaB and IpaC form a 

translocon within the plasma membrane of host epithelial cells which is required for the injection of 

additional T3SS effectors into the cytoplasm of epithelial cells [39,40]. Among them, IpgD is a PI 4-

phosphatase that de-phosphorylates PtdIns(4,5)P2 into PtdIns(5)P, thus decreasing the membrane 

tether forces and favoring membrane blebbing at bacterial entry sites [41]. IpaC also fosters the 

formation of membrane ruffles through activation of the Src tyrosine kinase [42], leading to the Crk-



 

 

dependent recruitment of the Src substrate cortactin [43]. Interestingly, Shigella is known to 

interact with T cells and decrease in membrane tether forces by IpgD has also been proposed to 

inhibit T cell migration [44]. 

 Upon invasion, Shigella disrupts its internalization vacuole and proliferates in the host cell 

cytoplasm. Prolonged survival of infected cells and efficient bacterial replication is sustained by the 

biological activities of PtdIns(5)P produced by IpgD during the early invasion stages: using the 

probe GFP-PHDx3, it has been shown by microscopy that PtdIns(5)P concentrates at bacterial 

entry sites and endosomes, triggering a class IA PI 3-kinase/Akt pathway that leads to 

phosphorylation of the anti-apoptotic effectors FKHR and GSK3, favoring infected cell survival [45]. 

PtdIns(5)P also modifies vesicular trafficking and prevents EGFR degradation in late endocytic 

compartments, prolonging EGFR signaling and survival of Shigella infected cells [46]. Finally, 

production of PtdIns(5)P prevents ATP release from infected cells through hemichannels of 

infected cells, thereby dampening inflammatory responses in the intestine, and prolonging bacterial 

survival [47]. 

 

Mycobacterium tuberculosis 

 

 Mycobacterium tuberculosis is the agent of a severe pulmonary disease characterized by 

bacterial chronic survival in macrophages [48]. Internalization within professional phagocytes is 

mediated for the most part by complement receptors and complement opsonization of 

mycobacteria [49]; the presence of plasma membrane cholesterol-rich micro-domains has been 

reported to be critical for the entry step [50]. Mycobacterium survival in host cells has been 

traditionally associated to proliferation within a phagosome that fails to acidify [51] and which is 

enriched in the early endosomal small GTPase Rab5 but is devoid of the late endosomal Rab7 

[52]. Recent reports indicate that Mycobacterium is actually able to translocate to the cytosol of 

infected cells [53] resulting in toxicity and cell death [54]. Crosstalk between Mycobacterium and 

the phosphoinositide metabolism has been until now reported essentially for the replicative early 

phagosomal stages.  

 Phagosomal maturation arrest at an early stage is in part favored by the bacterial 

phosphatidylinositol mannoside (PIM), which is actively released from internalized Mycobacterium 

and integrates into phagosomal membranes [55], promoting homotypic fusion of early 

phagosomes in a Rab 5-dependent and PI 3-kinase-independent manner [56]. However, a major 

proposed mechanism for phagosomal remodeling involves the down-regulation of PtdIns(3)P 

levels from mycobacterial-containing compartments [57], leading to the exclusion of key fusion-

promoting molecules such as EEA1 or Hrs [58,59], which bind PtdIns(3)P through their FYVE 

domains and link type III PI 3-kinase activity to endosomal/phagosomal maturation [60-62]. Two 

pathways have been reported to down-regulate PtdIns(3)P levels on Mycobacterium-containing 

phagosomes: blocking type III PI 3-kinase hVPS34 activity is achieved by the mannose-capped 

lipoarabinomanan (ManLAM), another mycobacterial phosphatidylinositol analogue which, through 

a still non-identified mechanism, interferes with the increase of intracellular Ca2+ and hampers a 

phagosomal maturation cascade involving the Ca2+-sensing protein calmodulin and the calmodulin 



 

 

kinase II (CaMKII) upstream of hVPS34 [63,64]. Secretion of the bacterial secreted PtdIns(3)P 

phosphatase SapM contributes to further decrease PtdIns(3)P levels on the Mycobacterium-

containing compartment [65], completely inhibiting phagosomal maturation. An additional 

mycobacterial secreted enzyme, MptpB (a Listeria LipA homologue), has been shown in vitro to 

exhibit phosphatase activity towards phosphotyrosine, phosphoserine/threonine as well as 

PtdIns(3)P, PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P2 [29], and it is required for Mycobacterium 

survival in macrophages [66] but its potential contribution to phagosomal remodeling remains to be 

established. How Mycobacterium effectors reach their targets on the cytosolic side of vacuoles has 

not been fully documented: the use of the membrane-impermeant molybdate inhibits the activity of 

SapM on PtdIns(3)P, suggesting that membrane translocation is an important determinant for 

SapM function [65], but the potential mechanism for cytosolic export is unknown for SapM and also 

MptpB; ManLAM, as PIM, integrates into phagosomal membranes [55] but as mentioned above, its 

actual target and precise mechanism of action has not been elucidated. Of note, Mycobacterium 

secretes actively vesicles which contain many immunologically active molecules [67] and which act 

as potential vehicles to deliver effectors to diverse cellular locations including the cytosolic side of 

vesicles. 

 While Mycobacterium subverts phosphoinositide metabolism to promote its intracellular 

survival and replication, specific phosphoinositide species are also involved in the regulation of 

cellular mechanisms that limit mycobacterial infection. Redirection of the bacterial-containing 

compartment to autophagy was shown to overcome the mycobacterial-induced block of 

phagosome maturation, counteracting intracellular survival of the pathogen [68] and the GTPase 

Irgm1 was implicated in the generation of large LC3-II-positive autophagosomes in which 

Mycobacterium is degraded [69]. Irgm1 targeting to bacterial containing-phagosomes has been 

shown to be dependent on the class IA PI3-kinase, the phosphoinositide phosphatase SHIP1 and 

their respective phosphoinositide products PtdIns(3,4)P2 and PtdIns(3,4,5)P3 [70]. The host cell-

derived PtdIns(3,4,5)P3 phosphatase PTEN has recently been shown to limit intracellular 

mycobacterial replication in diverse human cell types by inhibiting PI3K/AKT signaling to mTOR 

through an autophagy-independent mechanism [71].  

 

 

Salmonella enterica 

 

 The genus Salmonella comprises two species, S. bongori and S. enterica, the latter 

comprising more than 2000 serovars including S. enterica Typhi and S. enterica Paratyphi, 

responsible of the systemic typhoid and paratyphoid fevers [72] as well as S. enterica 

Typhimurium, the agent of typhoid fever in mice [73]. Salmonella invades epithelial cells and 

survives within macrophages in modified late endosomal compartments [74]. While translocation to 

the host cell cytoplasm has been reported for Salmonella [75,76], interactions with 

phosphoinositides have been described for the early invasion stages and for the maturation of the 

Salmonella-containing vacuole. 



 

 

 The Salmonella pathogenicity islands (SPI) 1 and 2 encode two independent T3SSs which 

control cell invasion and maturation of the Salmonella vacuole [77-79]. The SPI-1 effector 

SigD/SopB is a homologue of IpgD from Shigella, for which divergent biological activities have 

been proposed to date, both at early and late stages of the infection process. Hydrolysis of 

Ins(1,3,4,5,6)P5 and production of Ins(1,4,5,6)P4 via SigD/SopB-dependent and -independent 

mechanisms leads to host cytoskeletal rearrangements required for Salmonella entry within host 

cells in a Cdc42-dependent manner [80]; however, the host signaling targets regulated by 

Ins(1,4,5,6)P4 upstream of Cdc42 have not been identified yet. During bacterial internalization, 

detachment of the newly formed Salmonella vacuole from the plasma membrane requires the 

hydrolysis of PtdIns(4,5)P2 by SigD/SopB, reducing the membrane tension through removal of 

actin and associated proteins [81]; this PtdIns(4,5)P2 dephosphorylation plays an additional role 

during phagosomal maturation as it reduces the vacuolar membrane surface charge, inhibiting the 

recruitment of several members of the Rab family and preventing fusion events with degradative 

lysosomal compartments [82]. Maturation of the Salmonella vacuole is characterized by the on/off 

cyclic accumulation/dissociation of PtdIns(3)P from its surface [83,84], produced in part by the 

class III PI 3-kinase Vps34 in a SigD/SopB and Rab5-dependent manner [85,86]. The PtdIns(3)P 

effector sorting nexin 1 governs the tubular-based remodeling of the Salmonella-containing 

compartment, which is critical for bacterial intracellular proliferation [87]. Sustained survival of 

Salmonella infected cells is achieved through the SigD/SopB-dependent hydrolysis of 

PtdIns(3,4,5)P3 and production of PtdIns(3,4)P2 which activates Akt [88,89].  

 Enteritis induced by non-typhoid Salmonella is characterized by fluid secretion and 

inflammatory responses in the infected ileum; in the case of Salmonella dublin infection, it has 

been proposed that SigD/SopB promotes fluid secretion by invaded intestinal cells by hydrolyzing 

Ins(1,3,4,5,6)P5 to yield Ins(1,4,5,6)P4, a molecule which increases chloride secretion, as well as 

by hydrolyzing PtdIns(3,4,5)P3, which inhibits chloride secretion [90,91].  

 

 

Legionella pneumophila 

 

 Legionella pneumophila was discovered in 1977 as the agent of a pneumonia known as the 

„legionnaires disease„ [92,93]. In the environment, Legionella is normally associated to soil amoeba 

[94]. Upon inhalation in humans it multiplies intracellularly within blood monocytes and alveolar 

macrophages [95], causing respiratory problems. The dot/icm genes encode a type IV secretion 

system (T4SS) that translocates bacterial effectors into host phagocytes and controls the 

biogenesis of the Legionella-containing compartment [96,97] and its stability, as mutants of this 

system are found in the cytoplasm of host cells [98,99]. 

 Legionella manipulates phosphatidylinositol metabolism to promote not only evasion from 

the endocytic pathway, but also to foster interactions with the endoplasmic reticulum and secretory 

pathways [100]. For example, the T4SS effector RidL localizes to the bacterial vacuole and binds 

the Vps29 retromer as well as PtdIns(3)P to block trafficking from endosomes towards the Golgi 

[101]. The T4SS secreted phosphatase SidP, which hydrolyzes PtdIns(3)P and PtdIns(3,5)P2 in 



 

 

vitro [102], may contribute to bacterial evasion of the endocytic/phagocytic pathway by depletion of 

PtdIns(3)P levels on the bacterial-containing compartment, inhibiting the recruitment of molecules 

such as EEA1, Hrs of SNX1 which would foster endosomal fusion [103]. Accumulation of 

PtdIns(4)P on the Legionella vacuole [103] on the other hand, may be achieved by the T4SS 

effector SidF, which displays 3-phosphatase activity towards PtdIns(3,4)P2 and PtdIns(3,4,5)P3 in 

vitro [104], and by the activity of a host cell class IIIβ PI 4-kinase [105]. This PI4P pool recruits 

SdcA and SidC, which promotes the recruitment of endoplasmic reticulum vesicles to Legionella 

vacuoles [106,107] as well as SidM/DrrA, which presents both guanosine exchange factor (GEF) 

and guanosine dissociation inhibitor (GDI) activities for the small GTPase Rab1 [108-110] and 

would also contribute to the tethering of vesicles during the endoplasmic reticulum-to-Golgi 

transport. LidA, another T4SS effector, may bind PtdIns(4)P but interacts preferentially with PI3P 

and also ampylated Rab1 [105,111] and favors additional interactions of the Legionella vacuole 

with the endoplasmic reticulum. 

 The host cell PI 5-phosphatase OCRL binds to the Legionella vacuole in association with 

the T4SS effector/PI3P-ligand LpnE, and it restricts bacterial intracellular growth [112] via a still 

non-identified mechanism.  

 

 

Yersinia 

 

 The genus Yersinia harbors 17 species of Gram-negative bacteria, among which two food-

borne pathogens, Y. enterocolitica and Y. pseudotuberculosis, responsible for gastrointestinal 

infections [113], and an arthropod-borne pathogen Y. pestis, the etiologic agent of the plague 

[114]. Yersinia spp. are able to induce their internalization into non-professional phagocytes, but 

during infection the bacterium is essentially extracellular as it is able to block macrophage 

phagocytosis through injection of T3SS effectors [115]. 

 Interaction between the Yersinia surface protein invasin and β1 chains from integrins allows 

bacterial internalization in epithelial cells [116,117]. Downstream of β1-integrins, class IA PI 3-

kinase activity is required for entry (Schulte et al 1998) and actin rearrangements are promoted by 

Rac1 via the Arp2/3 complex in a N-WASP-independent manner [118]. It has been initially 

proposed that Rac1, together with Arf6, favors the surface recruitment of a PIP5Kα and the focal 

production of PtdIns(4,5)P2 at bacterial entry sites, which will act as a scaffold for actin-remodeling 

proteins [119]. More recently, Sarantis et al. have shown that the PtdIns(4,5)P2-rich compartment 

surrounding invading Yersinia is not fully separated from the plasma membrane, and the activity of 

class IA PI 3-kinase is necessary to promote the recruitment of Rab5 and of the host 5-

phosphatases OCRL and Inpp5b, which cleave the PtdIns(4,5)P2 and allow vacuolar fission from 

the plasma membrane [120]. 

 

 

 



 

 

 

 

 

CONCLUSIONS 

 

 As demonstrated in this overview, bacterial intracellular pathogens exploit  host cell 

phosphoinositides in many various ways. While the study of pathogen interactions with host 

signaling cascades, and in particular phosphoinositide signaling pathways, allows to understand 

the molecular basis of infection, bacterial intracellular pathogens can also be considered as 

molecular tools to discover novel cellular processes: this is the case, for example, of the 

Ca2+/calmodulin/calmodulin kinase II cascade involved in control of the type III PI 3-kinase hVPS34, 

which was discovered by studying the adaptation of Mycobacterium to the intracellular 

environment [121]. Novel signaling functions for PtdIns(5)P in the inhibition of receptor degradation 

have been also uncovered by investigating the early events triggered by Shigella during host cell 

entry [46]. Novel tools for cell biology are also generated through these studies: the secreted 

Legionella T4SS effector SidM displays an unconventional PtdIns(4)P-binding motif that could be 

used to follow PtdIns(4)P dynamics in living cells [105]. It is probable that novel cellular functions 

for phosphoinositides will be discovered through the study of host-pathogen interactions. 
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FIGURE LEGENDS 

 

Figure 1. A. Internalization pathways of major intracellular bacterial pathogens in macrophages 

(Mycobacterium, Legionella), or in epithelial cells (Salmonella, Shigella, Listeria, Yersinia). 

Bacterial factors (colored) or cellular effectors (gray) related to phosphoinositides, required for 

intracellular invasion and replication, are depicted next to each bacterial internalization pathway 

(see main text for details). B. Phosphoinositide metabolism flowchart and host/bacterial enzymes 

(color-code according to A) modulating the production of different phosphoinositide species. 

Listeria PlcA cleaves phosphatidyl-inositol; Listeria also promotes the activity of class II PI4K to 

produce PtdIns(4)P and of class IA PI3K to produce PtdIns(3,4,5)P3. Mycobacterium ManLAM 

blocks PI3K activity involved in the production of PI(3)P and SapM as well as MptpB cleave 

PtdIns(3)P on the bacterial phagosome; MptpB has also reported phosphatase activity for 

PtdIns(4)P, PtdIns(5)P and PtdIns(3,5)P2 in vitro. According to different research groups, 

Salmonella SopB dephosphorylates PtdIns(3,5)P2, PtdIns(4,5)P2 and PtdIns(3,4,5)P3, while the 

SopB homolog in Shigella, IpgD, presents mainly PtdIns(4,5)P2 phosphatase activity. The 

Legionella effector SidP dephosphorylates PtdIns(3)P and PtdIns(3,5)P2, while SidF displays 

phosphatase activity towards PtdIns(3,4)P2 and PtdIns(3,4,5)P3. Yersinia requires the production 

of PtdIns(4,5)P2 and PtdIns(3,4,5)P3 for efficient entry into host cells. Adapted from [122]. 

 

 

Figure 2. Colocalization between OCRL and clathrin-coated pits at Listeria entry sites. HeLa cells 

transfected with GFP-tagged OCRLA were infected with Listeria for 15 min and were fixed and 

processed first for fluorescence microscopy, and afterwards for transmission electron microscopy. 

Bacterial-containing compartments are decorated with OCRL-GFP (a, b) at locations that are also 

enriched for clathrin-coated pits (e-g). 

 

 

 

 

 

 


