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Abstract

The human bacterial pathogen Listeria monocytogenes is emerging as a model organism to study RNA-mediated regulation
in pathogenic bacteria. A class of non-coding RNAs called CRISPRs (clustered regularly interspaced short palindromic
repeats) has been described to confer bacterial resistance against invading bacteriophages and conjugative plasmids.
CRISPR function relies on the activity of CRISPR associated (cas) genes that encode a large family of proteins with nuclease
or helicase activities and DNA and RNA binding domains. Here, we characterized a CRISPR element (RliB) that is expressed
and processed in the L. monocytogenes strain EGD-e, which is completely devoid of cas genes. Structural probing revealed
that RliB has an unexpected secondary structure comprising basepair interactions between the repeats and the adjacent
spacers in place of canonical hairpins formed by the palindromic repeats. Moreover, in contrast to other CRISPR-Cas systems
identified in Listeria, RliB-CRISPR is ubiquitously present among Listeria genomes at the same genomic locus and is never
associated with the cas genes. We showed that RliB-CRISPR is a substrate for the endogenously encoded polynucleotide
phosphorylase (PNPase) enzyme. The spacers of the different Listeria RliB-CRISPRs share many sequences with temperate
and virulent phages. Furthermore, we show that a cas-less RliB-CRISPR lowers the acquisition frequency of a plasmid
carrying the matching protospacer, provided that trans encoded cas genes of a second CRISPR-Cas system are present in
the genome. Importantly, we show that PNPase is required for RliB-CRISPR mediated DNA interference. Altogether, our data
reveal a yet undescribed CRISPR system whose both processing and activity depend on PNPase, highlighting a new and
unexpected function for PNPase in ‘‘CRISPRology’’.
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Introduction

Listeria monocytogenes is a gram-positive foodborne pathogenic

bacterium that has evolved two distinct lifestyles: a saprophytic

one, primarily in decaying vegetation and a parasitic one in the

tissues of mammals and birds, causing a disease known as

listeriosis. Infection in humans starts by the ingestion of

contaminated food products that deliver the bacteria in the

intestinal lumen. In the course of the infection of susceptible

individuals e.g. elderly and pregnant women, Listeria can cross

three barriers of the organism: the intestinal, blood-brain and feto-

placental barriers, causing meningitis, encephalitis and abortion.

The main and best studied regulator that orchestrates the Listeria

infectious process is PrfA (Positive regulatory factor A), a

transcription factor that activates expression of the major known

virulence genes [1]. In addition to protein determinants contrib-

uting to infection, Listeria possesses a virulence gene repertoire that

expands to non-coding RNA (ncRNAs) molecules [2–4].

Bacterial ncRNAs are key regulatory molecules of metabolic,

physiological and pathogenic processes and can be generally

classified in four groups: a) the RNA regulatory elements located

in the 59 untranslated regions (59UTRs) which regulate the

expression of the corresponding mRNAs through the binding of

various factors, like proteins (e.g. CsrA) and small metabolites

(riboswitches) or by sensing environmental cues like temperature

(thermosensors); b) the trans-acting small RNAs (sRNAs) regulat-

ing one or several target mRNAs located elsewhere on the

chromosome; c) the sRNAs that sequester RNA-binding proteins;

and d) the antisense transcripts (asRNAs), which overlap and are

complementary to their target genes in the same genomic locus

[5]. A novel class of non-coding RNAs, named CRISPRs

(clustered regularly interspaced short palindromic repeats) has

been shown to mediate bacterial adaptive immunity against

invading bacteriophages and conjugative plasmids. A CRISPR is

defined by the alternating array of identical 20–40 nucleotides (nt)

long repeat sequences, interspaced by non-repetitive spacer
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sequences. In the proximity of the locus, are usually found gene

clusters called CRISPR-associated (cas) genes. Cas genes form 23–

45 different gene families (depending on the classification),

encoding diverse proteins with nuclease, helicase, integrase,

polymerase or nucleotide-binding activities, which are involved

in the different steps of CRISPR generation, maintenance,

processing and the interference mechanism. Analysis of the

various sets of cas genes has revealed that CRISPR-Cas system

generally cluster into three basic types (Type-I, Type-II and Type-

III) which are further divided into at least ten subtypes (Types IA–

F, Types IIA–C and Types IIIA–B) [6,7]. The first clue about

CRISPR function was brought about by the discovery that the

different spacers were homologous to bacteriophage and plasmid

sequences [8–10]. It was thus hypothesized that CRISPRs could

play a role in immunity against invading genetic elements, which

was later experimentally demonstrated in several elegant studies,

e.g. in Streptococcus thermophilus [11], Escherichia coli [12] and

Staphylococcus epidermidis [13]. The mechanism of action underlying

the whole process is still not entirely understood, but can be

roughly divided in three major stages: i) CRISPR adaptation that

occurs when bacteria first encounter the foreign invader after

transformation, conjugation or transduction. The CRISPR system

recognizes the foreign element and incorporates parts of its DNA

into what becomes a new spacer in the CRISPR locus; ii) CRISPR

expression that generates a long poly-spacer precursor RNA,

which is then cleaved by Cas proteins producing smaller, mature

RNAs (crRNAs). Each crRNA generally contains part of the

repeat and a single spacer that serves as a guide for the sequence

specific recognition of the foreign invader; iii) CRISPR interfer-

ence mediated by mature target-specific crRNAs that, with the

help of cas gene products, inactivate the foreign, bacteriophage or

plasmid nucleic acid [14,15].

In Listeria, 14 plasmids [16] and 11 bacteriophages [17] have

been sequenced so far. Bacteriophages infecting Listeria belong to

the Siphoviridae and Myoviridae families in the Caudovirales order. They

are either temperate integrating in the host genome by site-specific

recombination or virulent actively replicating and forming virion

particles that subsequently lyse the host cell. Comparative genomic

analysis of Listeria bacteriophages revealed that their genomes are

highly mosaic, characterized by interspecies homology as well as

homology to bacteriophages infecting Bacillus, Enterococcus, Clostrid-

ium and Staphylococcus [17,18]. Prophages are considered as the

major source of diversity within the Listeria genus [18] and can

constitute up to 7% of the Listeria coding genes [19,20].

Recently, CRISPR-Cas systems have started to be analyzed in

Listeria [18,21]. We previously described in L. monocytogenes strain

EGD-e, a small CRISPR RNA (RliB) exhibiting five identical

repeats interspaced by non-related spacer sequences of similar size.

Strikingly, no cas genes were found either in the proximity of RliB

or elsewhere in the L. monocytogenes EGD-e genome [22]. Despite

the absence of Cas proteins, RliB is expressed and significantly

upregulated in bacteria isolated from the intestinal lumen of

gnotobiotic mice, in bacteria grown in the human blood, or

bacteria exposed to hypoxia. More importantly, we showed that

RliB is involved in L. monocytogenes virulence [4].

Here, we characterized the cas-less RliB-CRISPR by first

determining its secondary structure and analyzing its processing.

Furthermore, we undertook a search for RliB protein ligands, to

address the molecular machinery underlying RliB processing in

the absence of Cas proteins. By using two different protein affinity

purification approaches, we showed that RliB binds and is a

substrate for polynucleotide phosphorylase (PNPase), a bi-

functional enzyme harboring a 39 to 59 exoribonuclease and 39

polymerase activities [23]. Furthermore, we performed a global

analysis of CRISPR-Cas systems in all sequenced Listeria genomes,

revealing a striking ubiquity of the RliB-CRISPRs in L.

monocytogenes strains. Surprisingly, RliB-CRISPRs are never asso-

ciated with cas gene clusters and we could demonstrate that even in

Listeria strains harboring a complete set of cas genes, RliB-

CRISPRs are processed by PNPase. Finally, we carried out a

functional assay for RliB-CRISPR and demonstrated it requires

presence of the cas genes of a second CRISPR system to lower the

acquisition frequency of a plasmid carrying the matching

protospacer. Moreover, we show that PNPase is required for this

DNA interference activity. Together, our data highlight a novel

type of CRISPR system that relies on the activity of PNPase,

highlighting a new role for this enzyme in bacteria.

Results

RliB is a CRISPR RNA expressed and processed in the
absence of Cas proteins

In L. monocytogenes EGD-e, RliB is located between the genes

lmo0509 and lmo0510 that encode a protein similar to phosphor-

ibosyl pyrophosphatase and a hypothetical protein, respectively.

Its primary sequence resembles a typical CRISPR. It is composed

of 5 identical 29 nt repeat sequences (GTTTTAGTTACT-

TATTGTGAAATGTAAAT) interspaced by four 35–37 nt long

spacer sequences (S1, S2, S3 and S4 in the Figure 1A). The spacer

3 (S3) has identity with the Listeria temperate bacteriophage B054

sequence and spacer 4 (S4) identity to Listeria virulent bacterio-

phage P70 sequence [17,24]. We analyzed the secondary structure

of the full length RliB that is detectable in vivo, using RNase V1

(specific for helical regions), RNase T2 (specific for unpaired

nucleotides with a preference for adenines) and dimethylsulfate

(which methylates N1 of adenine and N3 of cytosine) (Figure S1).

The secondary structure of RliB, that explains most of the probing

data, involves six stem-loop structures among which five contain a

GUUUU motif within the loops, followed by a hairpin terminator

at the 39 end (Figure 1B). In contrast to CRISPR systems where

the repeat sequences form independent and stable palindromic

structures [25], the RliB hairpin structures are mostly formed by

base pairings between the repeat sequences and the adjacent

spacer sequence. These data suggest that RliB structure largely

depends on the nature of the incoming spacer DNA.

Author Summary

CRISPR-Cas systems confer to bacteria and archaea an
adaptive immunity that protects them against invading
bacteriophages and plasmids. In this study, we character-
ize a CRISPR (RliB-CRISPR) that is present in all L.
monocytogenes strains at the same genomic locus but is
never associated with a cas operon. It is an unusual CRISPR
that, as we demonstrate, has a secondary structure
consisting of basepair interactions between the repeat
sequence and the adjacent spacer. We show that the RliB-
CRISPR is processed by the endogenously encoded
polynucleotide phosphorylase enzyme (PNPase). In addi-
tion, we show that the RliB-CRISPR system requires PNPase
and presence of trans encoded cas genes of a second
CRISPR-Cas system, to mediate DNA interference directed
against a plasmid carrying a matching protospacer.
Altogether, our data reveal a novel type of CRISPR system
in bacteria that requires endogenously encoded PNPase
enzyme for its processing and interference activity.

A PNPase Dependent CRISPR System in Listeria
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Figure 1. RliB in L. monocytogenes EGD-e. A) Schematic representation of the RliB locus. RliB is located between genes lmo0509 and lmo0510. It is
composed of 5 identical repeat sequences (R), 4 spacer sequences (S1 to S4) and the terminator (T). The sequence alignments between the spacers and
bacteriophage genomes are shown. B) RliB secondary structure. Repeat sequences are highlighted in red, spacers are numbered S1 to S4, the hairpin
structures are numbered I to VI and a terminator hairpin is indicated T. C) RliB processing. Northern blot on total RNAs extracted from bacteria deleted for
RliB (DrliB), wild type bacteria (WT) and bacteria overexpressing RliB (Phyper RliB). Expression of RliB was detected using P32-59 labelled probes
complementary to different parts of the RliB molecule: repeat (R), spacer 1 (S1), spacer 2 (S2), spacer 3 (S3), spacer 4 (S4), 59end and the terminator (T).
doi:10.1371/journal.pgen.1004065.g001
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We had previously noticed that RliB in L. monocytogenes EGD-e is

processed to a smaller fragment [22]. Here, we examined this

processing by Northern blot analysis of total RNA isolated from

the wild type (WT) L. monocytogenes EGD-e and bacteria expressing

RliB from a constitutive promoter (Phyper-RliB). We used probes

complementary to the repeat (R), to each unique spacer (S1, S2,

S3 and S4) and to the 39 end of the molecule including the

terminator region (T) (Figure 1C). All the probes allowed detection

of a 400 nt fragment, which corresponds to the full length RliB

molecule. The probes for S1, S2, S3 and R regions detected an

additional 280 nt long fragment. The probes for S3 and S4 regions

showed a minor 100 nt long fragment and the probe for S3 region

a fragment smaller than 50 nt.

Altogether, our data show that the RliB-CRISPR has a

secondary structure largely determined by the interactions

between each repeat and the adjacent spacer and, despite the

absence of Cas proteins, it is processed and exists under two major

forms: i) a 400 nt full length RliB molecule and ii) a shorter form of

RliB molecule, approximately 280 nt long, comprising spacers S1,

S2 and S3.

RliB interacts with the Polynucleotide Phosphorylase
(PNPase) enzyme

Considering the complete absence of cas genes in L. monocytogenes

EGD-e strain, we hypothesized that the RliB-CRISPR processing

is governed by another bacterial ribonuclease. To identify which

enzymes are involved in this process, we first searched for proteins

that interact with RliB using the affinity purification method with a

tagged RliB molecule. Given that addition of a tag may perturb

the folding of the bait-RNA molecule and/or change its

accessibility, resulting in a loss of interaction with its binding

partners, we used two strategies using two different tags added

either at the 59 or at the 39 end of the bait-RNA. The first affinity

purification was performed with the 39-biotinylated full length

RliB (RliB-B) and a control RNA, the quorum sensing induced

RNAIII from Staphylococcus aureus (Figure 2A). In the second

approach, we used as a bait RliB tagged at the 59 end with two

hairpin structures constituting the ‘‘MS2 binding sequence’’ (RliB-

MS2), i.e. the RNA binding sequence of bacteriophage MS2 coat

protein (MS2) (Figure 2B). Structure probing using enzymes show

that the MS2-tag did not change the structure of RliB (Figure S1).

The RliB-B or RliB-MS2 RNAs were bound to streptavidin or

MBP-MS2 coated beads, respectively and incubated with total

Listeria cell extracts. After extensive washing of unspecific proteins,

the bound fraction was eluted and loaded on SDS-polyacrylamide

denaturing gel. To verify the integrity of the bait-RNA, we also

analyzed the eluted tagged RNA using polyacrylamide-urea gel

electrophoresis. For both experiments, we detected a single and

major protein band of approximately 78 kDa, specific to RliB-

bound elution fractions (RliB-B and RliB-MS2) (Figures 2A,B).

The protein was identified by mass spectrometry to be the Listeria

polynucleotide phosphorylase (PNPase) encoded by gene lmo1331

(pnpA), a bi-functional enzyme that acts as 39-59 exoribonuclease

and a 39-terminal polymerase [23,26].

We then analyzed whether the interaction between RliB and

PNPase is direct or requires another binding partner. The L.

monocytogenes PNPase protein carrying 6 histidines at its C-terminal

end was purified and binding experiments were carried out using

gel retardation assays with in vitro transcribed P32-labeled full

length RliB and increasing amount of the purified PNPase.

Formation of a complex between RliB and PNPase was observed

with 400 nM PNPase, showing that the interaction is direct and

does not require another binding partner. To demonstrate the

specificity of PNPase binding, competition experiments were done

with various non-labelled RNAs. The addition of non-labelled

RliB outcompeted the interaction between PNPase and P32-

labeled RliB in contrast to the addition of a non-labelled control

RNA from S. aureus (RsaA) that did not affect the complex

formation (Figure 2C). Altogether, our results show that PNPase

specifically interacts with RliB.

RliB is a substrate for PNPase
PNPase is a bifunctional enzyme, which in vivo acts primarily as

a 39 to 59 exoribonuclease of single stranded target RNAs [26]. We

investigated if RliB is a substrate of PNPase. We first verified the

activity of the purified PNPase protein and performed an in vitro

assay where a 37 nt P32-end labeled substrate RNA (RNA37) was

incubated alone or with 200 nM purified PNPase (Figure 3A). The

presence of PNPase resulted in the degradation of the 59 end P32-

labeled RNA37 while no cleavage reaction was observed using a

P32-pCp 39 end labeled RNA37 (results not shown). These data

demonstrate that the purified protein is active and able to degrade

single-stranded RNA substrates. Three non-labeled competitor

RNAs were then added to the reaction; i) a non-labeled RliB; ii) a

non-labeled control RNA (RsaA); iii) and the non-labeled RNA37

substrate. As expected, the addition of non-labeled RNA37

substrate decreased the cleavage reaction. Strikingly, the addition

of 100 nM non-labeled RliB resulted in the loss of PNPase

mediated RNA37 degradation, whereas addition of RsaA did not

alter the degradation of RNA37, indicating that RliB acts as a

competitive inhibitor of PNPase.

To investigate further the activity of PNPase on RliB, we

incubated the full length 59 end-labeled RliB with increasing

concentrations of purified PNPase (Figure 3B). We observed on

the gel the appearance of a band migrating around 270 nt, an

RliB processing product generated by the PNPase-mediated

degradation up to the stem-loop IV. This cleavage reaction was

inhibited by the addition of the full length non-labeled RliB.

Altogether, these data suggest that in vitro, PNPase is processing

RliB until its exoribonuclease activity is stalled in the S4 repeat

region.

To study the effect of PNPase on RliB in vivo, we constructed a

pnpA deletion mutant (DpnpA) and compared by Northern blot the

size of the RliB transcript in the DpnpA mutant and WT bacteria.

In the absence of PNPase, two major bands migrating as 300 and

330 nt long RNAs, were observed. Upon complementation

(DpnpA-pnpA), the RliB processing was restored, identical to that

observed in the WT strain (Figure 3C). Our results thus strongly

suggest that RliB is a substrate for PNPase in vivo.

RliB-CRISPR is ubiquitous among Listeria strains
CRISPR arrays are thought to evolve rapidly in prokaryotic

genomes [14,27,28]. Therefore, we investigated the presence of

RliB in other Listeria strains. For this, we searched for CRISPRs in

29 complete and 17 draft Listeria genomes (Table S1). As

mentioned in the introduction, the highly diverse CRISPR-Cas

systems are classified into three main types (I, II and III) each

including several subtypes [6]. In Listeria, we found two types of

CRISPR-Cas systems: i) CRISPR-Cas systems type-I (subtype I-B)

with the cas operon composed of cas6-cas8a1-cas7-cas5-cas3-cas1,

including also in some cases cas4, associated with the repeat

sequence GTTTTAGTTACTTATTGTGAAATGTAAAT that

is almost identical to the repeat of RliB-CRISPR; ii) CRISPR-Cas

systems type-II (subtype II-A) associated with csn2-cas2-cas1-cas9

operon and the repeat sequence GTTTTGTTAGCATT-

CAAAATAACATAGCTCTAAAAC (Figure 4A).

CRISPR-I is present at the locus between lmo0517 and lmo0510

in 7 complete L. monocytogenes genomes, 10 draft L. monocytogenes

A PNPase Dependent CRISPR System in Listeria
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genomes, in Listeria seeligeri and Listeria ivanovii (Figure 4B and Table

S1) and it is always associated with a type-I cas operon located in

close proximity. The CRISPR-II was detected between lmo2591

and lmo2596 in 6 complete L. monocytogenes genomes, 9 draft

genomes and in Listeria innocua (Figure 4B, Table S1). The

CRISPR-II is also found exclusively associated with type-II cas

operon. The tight association of CRISPR-I and CRISPR-II with

type-I and type-II cas genes, suggests that the function of those

CRISPRs is dependent on the activity of the corresponding Cas

protein machinery.

In contrast to CRISPR-I and CRISPR-II that are found in

about 30% of the complete Listeria genomes, the RliB-CRISPR is

present at the same genomic locus in all analyzed complete and draft

L. monocytogenes genomes as well as in other Listeria species (Figure 4B,

Table S1). This suggests a stronger selective pressure on this element

relative to the cas-associated CRISPRs. In silico structure prediction

performed on three representative RliB-CRISPRs carrying different

number of repeats revealed a putative secondary structure that is

highly similar to that experimentally determined in L. monocytogenes

EGD-e strain (Figure S2). Cas operons have not been detected in the

close proximity to the RliB-CRISPRs. Furthermore, 14 complete

Listeria genomes completely lack cas genes. The number of repeats in

RliB-CRISPRs range from 1 to 11 and does not correlate with the

presence or absence of cas genes elsewhere in the genome (Table S3).

Together, the conservation of RliB-CRISPRs among Listeria strains

suggests that they may have a function despite the absence of Listeria

Cas proteins.

Although RliB-CRISPR and CRISPR-I have different pattern

of conservation the two systems share almost identical repeat

sequences (Figure 4A). To investigate the correlation between the

two systems, we compared their putative leader and upstream

sequences. Multiple alignments of the DNA fragment preceding

the identified RliB-CRISPR and CRISPR-I systems revealed a

striking homology (Figure S3A). More interestingly, the putative

Figure 2. RliB interacts with PNPase. A) Protein affinity purification using 39 biotinylated RliB. Two biotinylated bait RNAs were used: full length
RliB (RliB-B) and a control RNA (S. aureus RNAIII). Coomassie stained SDS-PAGE gel of the two elution fractions is shown. B) Protein affinity purification
using 59 MS2 tagged RliB. Two MS2 tagged bait RNAs were used: full length RliB (RliB-MS2) and a control RNA (S.aureus RsaA). Coomassie stained SDS-
PAGE gel of the fractions is shown. C) Interaction between purified PNPase and in vitro transcribed RliB. Gel retardation assay performed with P32-59
labelled RliB (RliB) and increasing concentrations of the purified PNPase protein (lane 1, no PNPase added; lane 2, 100 nM PNPase; lane 3, 250 nM
PNPase; lane 4, 400 nM PNPase). Competition experiments were performed in the presence of non-labelled RliB (lane 5, 400 nM RliB) and non-
labelled RsaA (lane 6, 400 nM RsaA). In these experiments, the concentration of PNPase was 400 nM.
doi:10.1371/journal.pgen.1004065.g002
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leader sequences harbour a highly conserved sequence homolo-

gous to RpoD dependent promoter, that was previously reported

upstream of RliB in the L. monocytogenes EGD-e strain [22] (Figure

S3B). High homology of the repeats and the leader sequences of

RliB-CRISPR and CRISPR-I systems suggest a possible close

relationship between the two systems.

RliB-CRISPRs in Listeria strains carrying cas genes are also
substrates for PNPase

To investigate if the PNPase-mediated processing of RliB-

CRISPR is specific to L. monocytogenes EGD-e strain or is more

general, we examined if PNPase is also involved in RliB-CRISPR

processing in Listeria strains containing a complete set of cas genes.

We constructed a pnpA deletion mutant in the L. monocytogenes

Finland strain (DpnpA-Fin), which carries a complete CRISPR-Cas

system type I and in the L. monocytogenes EGD strain (DpnpA-EGD),

which has a complete CRISPR-Cas system type II. We also

constructed the deletion mutants for the RliB-CRISPR in the

same strains (DrliB-CRISPR-Fin and DrliB-CRISPR-EGD, respec-

tively). The RliB-CRISPR processing was examined by northern

blot in the corresponding strains (Figure 5).

The RliB-CRISPR in EGD strain (RliB-CRISPR-EGD) is

composed of 11 identical repeats and 10 spacer sequences among

which spacers S2, S6, S7 and S8 share similarity to Listeria

temperate bacteriophages B054, B025 and A006 (Figure 5A, 6). In

the WT EGD strain, RliB-CRISPR is expressed as a 750 nt long

RNA that is processed into shorter fragments with the major

processed form being 280 nt long. In the absence of PNPase, the

total amount of full-length RliB-CRISPR-EGD increased and the

transcript processing changed compared to the WT bacteria, i.e.

we observed additional bands with a major one of 700 nt

(Figure 5B).

The RliB-CRISPR in the Finland strain (RliB-CRISPR-Fin) is

composed of 12 identical repeats and 11 spacer sequences among

which 8 spacers are shared with RliB-CRISPR-EGD. Spacers S1,

S3, S5, S7, S8 and S9 show high similarity to sequences in Listeria

bacteriophages P70, B025, B054 and A006 (Figure 5A, 6). The

full-length RliB-CRISPR-Fin is expressed in the WT bacteria, as a

780 nt long RNA that it is processed to several shorter fragments

with the 280 nt being again the most abundant form. In the

absence of PNPase, RliB-CRISPR-Fin processing changed as

additional bands are observed compared to the WT bacteria

(Figure 5B).

Together, our results suggest that PNPase contributes to the

RliB-CRISPR processing in vivo, independently of the presence of

either CRISPR-Cas system type I in the L. monocytogenes Finland

strain, or the presence of CRISPR-Cas system type II in the L.

monocytogenes EGD strain.

Figure 3. RliB is a substrate for PNPase. A) In vitro PNPase activity assay. A 37 nt short P32-labeled substrate RNA (RNA37*) was incubated alone
(lane 1) or with 200 nM purified PNPase (lane 2). Three types of non-labeled competitor RNAs were then added: non-labeled RliB (lanes 3, 100 nM;
lane 4, 200 nM; lane 5, 400 nM), non-labeled control RNA RsaA (lane 6, 100 nM; lane 7, 200 nM; lane 8, 400 nM) and non-labeled RNA37 substrate
(lane 9, 100 nM; lane 10, 200 nM; lane 11, 400 nM). B) In vitro PNPase-mediated processing of RliB. On the left are indicated ladders T1 (RNase T1
hydrolysis) and L (alkaline hydrolysis). The full length P32-59 labeled RliB (RliB*) was incubated with increasing concentrations of purified PNPase (lane
1, no PNPase; lane 2, 25 nM; lane 3, 100 nM; lane 4, 400 nM). Competition experiments were performed in the presence of 400 nM non-labelled RliB
(lane 5). C) In vivo PNPase-mediated processing of RliB. Northern blot performed on the total RNAs extracted from the L. monocytogenes EGD-e wild
type bacteria (WT), strain deleted for pnpA (DpnpA), complemented strain (DpnpA-pnpA) and strain deleted for RliB (DrliB). Expression of RliB was
detected by the P32 labeled in vitro transcribed RNA probe complementary to the full length RliB. The membrane was reprobed with P32 labeled in
vitro transcribed RNA probe complementary to the tmRNA.
doi:10.1371/journal.pgen.1004065.g003
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Figure 4. CRISPR-Cas systems in L.monocytogenes genomes. A) The three types of CRISPR-Cas systems found in L.monocytogenes. The
sequences of the repeats are given. Points (.) indicate sites of repeat variability among Listeria strains. B) CRISPR-Cas systems in complete and draft L.
monocytogenes genomes of the lineages I, II and III. For two strains indicated by an *, the sequencing results are too preliminary with a high number
of contigs and RliB was not detected. However, these strains were included in the spacer analysis.
doi:10.1371/journal.pgen.1004065.g004
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Spacers of the RliB- CRISPRs are directed against Listeria
bacteriophages

We analyzed CRISPR spacers to compare the putative functions

of cas-less RliB-CRISPR and cas-associated CRISPR-I and

CRISPR-II. In total, we identified 978 spacers that correspond to

348 unique sequences (Table S2). These were used to search for the

similarity with the sequences of all complete prokaryote, plasmid

and virus genomes available in the Genbank as well as the sequences

of integrated temperate bacteriophages (prophages) identified in

complete Listeria genomes (Figure 6, Table S3).

We identified 142 (41%) spacers that share identity to

bacteriophages known to infect Listeria species (Figure 6). They

match sequences detected in 6 temperate (B054, B052, A118,

A500, A006, PSA), 4 virulent phages (A115, P35, P70, P100) as

well as 35 distinct prophages found in complete Listeria genomes

(Figure S4). Overall, we found matching protospacers for 33%

RliB-CRISPR spacers, 41% CRISPR-I spacers and 42%

CRISPR-II spacers (Figure 6, Table S3). RliB-CRISPR and

CRISPR-I systems share an identical protospacer adjacent motif

(PAM) CCA at the 59 of the protospacer, in contrast to CRISPR-II

harboring NGG at the 39 of the protospacer (Figure S5).

Numerous spacers showed 100% identity with viral sequences

(14% RliB-CRISPR spacers, 15% CRISPR-I spacers and 24%

CRISPR-II spacers). None of the spacers matched bacterial

(excluding prophages) or plasmid sequences. The high abundance

of spacers perfectly matching bacteriophages in the RliB-

CRISPRs and in the CRISPR-I and CRISPR-II, suggests that

both cas-less and cas-associated CRISPR-Cas systems have a role

in the immunity against bacteriophages.

Figure 5. RliB-CRISPRs in EGD and Finland L. monocytogenes strains. A) Schematic representation of the loci harbouring RliB-CRISPR in
L.monocytogenes EGD-e, EGD and Finland strains. In all three strains, RliB-CRISPR is located between genes lmo0509 and lmo0510. Spacers that are
identical between the strains are connected with black lines (S1EGD = S4Fin, S2EGD = S5Fin, S5EGD = S6Fin, S6EGD = S7Fin, S7EGD = S8Fin,
S8EGD = S9Fin, S9EGD = S10Fin and S10EGD = S11Fin) and the sequence alignments between the spacers and bacteriophage genomes are shown
below. B) Processing of the RliB-CRIPSRs. On the left is shown a northern blot performed on the total RNAs extracted from the wild type L.
monocytogenes EGD strain (WT) and its isogenic mutants deleted for pnpA (DpnpA-EGD) or RliB-CRISPR (DRliB-EGD). On the right is shown a northern
blot performed on the total RNAs extracted from the wild type L. moncytogenes Finland strain (WT) and its isogenic mutants deleted for pnpA (DpnpA-
Fin) or RliB-CRISPR (DRliB-Fin). Expression of RliB-CRISPR was detected with the P32 labeled in vitro transcribed RNA probe complementary to the
spacers S5 to S10 in EGD, and S6 to S11 in the Finland strain. The membranes were reprobed with P32 labeled in vitro transcribed RNA probe
complementary to the tmRNA.
doi:10.1371/journal.pgen.1004065.g005

Figure 6. Spacer composition of CRISPR arrays in L. monocytogenes. CRISPR systems present in complete and draft L. monocytogenes
genomes are represented. For each L. monocytogenes strain spacers belonging to RliB-CRISPR, CRISPR-I and CRISPR-II are shown. Boxed numbers
represent individual spacers conserved within an CRISPR array among the represented strains (for the RliB-CRISPR: 1-32, for the CRISPR-I: 1-70, for the
CRISPR-II: 1- 92). Unique spacers are represented as not numbered boxes. Spacers matching bacteriophage sequences available in the Genbank are
coloured according to the type of bacteriophage they target. The color code and corresponding bacteriophages are represented in the bottom part
of the figure. Spacers matching prophages are highlighted as gray boxes. Self-targeting spacers, identified in complete Listeria genomes are
highlighted with red box and the strain carrying the spacer is highlighted (.).
doi:10.1371/journal.pgen.1004065.g006
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To investigate the nature of the phage nucleic acid potentially

targeted by the RliB-CRISPR, CRISPR-I and CRISPR-II

systems, we first examined the orientation of the protospacers in

respect to the corresponding spacers and then the function of the

phage genes where the protospacers are located. Protospacers

targeted by CRISPR-I and CRISPR-II systems originate both

from sense and antisense DNA strand and are equally distributed

along the phage genome, which suggests that these systems target

phage DNA (Table S4, S5, Figure S6). Among 13 protospacers

targeted by RliB-CRISPR, 9 protospacers are in the antisense

orientation, 3 are positioned in intergenic regions and 2 are in the

sense orientation. Moreover, among 11 protospacers for which the

function of the targeted gene is known, 10 protospacers are located

in the late phage genes encoding DNA packaging and structural

proteins (Table S6, Figure S6). The occurrence of both sense and

antisense oriented protospacers suggests RliB-CRISPR most

probably targets DNA. However, higher occurrence of the

antisense oriented protospacers and more interestingly, specificity

for the function of the targeted bacteriophage gene suggests that

RliB-CRISPR could potentially have a function in RNA

interference.

Furthermore, we identified genomes containing a number of

spacers matching their own prophages. For example, L. monocy-

togenes strain EGD has prophage B025 (our unpublished data) and

carries one RliB-CRISPR spacer (S7) and three CRISPR-II

spacers (S21, S22, S23) that match the same prophage with up to

97% identity (Figure S4A,B). We also identified two RliB-CRISPR

spacers, three CRISPR-I spacers and two CRISPR-II spacers in 9

Listeria genomes that correspond to prophages in the same genome

with 100% identity. In two cases, the strains (L. monocytogenes 08-

5578 and 08-5923) lack the cas genes and in one case the repeat

flanking the self-targeting spacer carries a point mutation (L.

monocytogenes J0161), suggesting that in three instances the spacers

are presumably inactive (Table S7, Figure 6). The remaining

spacers are either in cas-associated CRISPRs or in the RliB-

CRISPR. Furthermore, the PAMS corresponding to self-targeted

protospacers do not significantly deviate from the consensus (Table

S7). These results show that spacers matching the protospacer

located in the same bacterial chromosome do not necessarily have

strong negative fitness effects.

RliB-CRISPR DNA interference activity relies both on
PNPase and trans encoded Cas proteins

To test if the cas-less RliB-CRISPR might provide Listeria with

DNA interference activity, we designed an experiment using a

conjugation system and two plasmids that differ in the presence or

absence of protospacer: i) a protospacer plasmid (P) and ii) the

control plasmid (C), as previously done by Almendros et al. [29]

(Figure 7). The plasmid P carries a protospacer matching spacer 3

(S3) of the RliB-CRISPR in the L. monocytogenes EGD-e strain and

spacer 5 (S5) of the RliB-CRISPR in the Finland strain. The

plasmid C is identical to the plasmid P, but the protospacer

sequence is shuffled in silico (C) and does not correspond to any

known sequence in the NCBI database.

Listeria is not naturally competent and the plasmid transforma-

tion efficiency in this bacterium is very low in comparison to other

bacteria such as Bacillus or Streptococcus. Moreover, the Dpnp genetic

background has a severe effect on bacterial growth, and plasmid

transformation is even more difficult than in the WT strain.

Therefore, the plasmids P and C were conjugated simultaneously

via Escherichia coli S17 strains to L. monocytogenes EGD-e and Finland

WT strains and their isogenic mutants deleted for RliB (DrliB) and

PNPase (DpnpA). Quantitative PCR (Q-PCR) was used to

determine the identity of the plasmids distributed among the

transformants (see materials and methods). We then calculated for

each individual strain the ratio (R) of the number of colonies

carrying plasmid P and the number of colonies carrying plasmid C

(R = nP/nC) (Figure 7B). The proportion of the transformants

carrying the plasmid P for each experiment is an indication of the

interference activity driven by the spacer, a lower proportion of

transformants with the plasmid P (R,1) suggesting interference

activity.

In the L. monocytogenes EGD-e in which no cas genes was

identified, there is no significant difference in the R values between

the strains carrying the RliB-CRISPR (WT) and the strains lacking

either the RliB-CRISPR (DrliB-EGDe) or PNPase (DpnpA-EGDe),

demonstrating that both plasmids are equally acquired and that

the system is not able to provide any detectable DNA interference

in the tested experimental conditions (Figure 7B). In contrast, in

the L. monocytogenes Finland that bears an additional CRISPR-Cas

Type-I system, the R ratio is significantly smaller than 1 in the WT

strain whereas it reaches 1 in the strains lacking either the RliB-

CRISPR (DRliB-Fin) or the PNPase (DpnpA-Fin). Thus, RliB-

CRISPR can lower the plasmid P acquisition in the strain carrying

the CRISPR-I system, suggesting that the RliB-CRISPR is able to

use the trans encoded Cas proteins encoded by the CRISPR-I and

confer to Listeria a DNA interference activity. Interestingly,

PNPase is required for this process.

Discussion

Since the initial discovery that CRISPR-Cas systems function as

an adaptable prokaryotic immune system, the CRISPR research

has been flourishing and biochemical insights into the CRISPR-

Cas systems have increased dramatically over the past few years.

However, these systems are extremely diverse and the function

and molecular mechanism of many of them are still unknown. In

particular, little is known about CRISPR-Cas type I-B, I-C, and I-

D systems [30]. Here, we studied RliB-CRISPR that has an

unusual secondary structure comprised of basepair interactions

between the repeat sequence and the adjacent spacer. We showed

that RliB-CRISPR is expressed and processed even in the

complete absence of Cas proteins, and demonstrated this event

occurs under the guidance of PNPase. The RliB-CRISPR spacers

match numerous temperate and virulent Listeria bacteriophages

and in the presence of CRISPR-Cas system Type-I, RliB-CRISPR

lowers the frequency of a plasmid carrying a matching proto-

spacer. In addition, we show that this DNA interference is

dependent on the presence of PNPase. Overall, our data

demonstrate that PNPase is involved in Listeria RliB-CRISPR

processing and its DNA interference activity.

Secondary structure of RliB
In silico analysis of the secondary structures of CRISPR repeats

across bacterial and archaeal CRISPR-Cas systems suggested that

some CRISPR repeats can form stable stem-loops due to the

palindromic nature of their repeats, but that other lack any

detectable conserved structure [25]. RliB repeats are only weakly

palindromic and unlikely form a stable stem-loop structure. Here,

we experimentally determined the secondary structure of RliB and

surprisingly, discovered that RliB contained 6 hairpin structures

formed mostly by base-pair interactions between the spacer

sequences and the adjacent repeats, and with GUUU-rich apical

loops (Figure 1B). The structure of RliB is thus dependent on the

nature of the acquired spacer. In silico analysis of other

representative RliB-CRISPRs showed their putative structures

rely on the same principle, suggesting that base-pair interactions

between the repeat and the spacer could be a common structural
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motif among RliB-CRISPRs (Figure S2). It is tempting to

hypothesize that successful acquisition of a new spacer requires

some degree of complementarity with the repeat. Spacer

acquisition is the least understood step of CRISPR-Cas system

function [31] and our data potentially highlight new aspects of the

integration mechanism via homology with the repeat sequence.

RliB-CRISPR processing by PNPase
It is generally accepted that CRISPR arrays require Cas

proteins for their processing and activity. A first example of

CRISPR-Cas system that does not rely solely on the Cas proteins

but requires also the activity of endogenously encoded enzymes

has been recently reported in Streptococcus pyogenes. In this case, a

CRISPR array type-II is processed by the widely conserved

endoribonuclease III and a small trans-acting RNA tracrRNA [32].

In addition, a recent study of Zhang et al [33] revealed a CRISPR

in Neisseria meningitidis, where crRNAs are transcribed from

promoters that are present within each repeat and require RNase

III and trans-encoded tracrRNA-mediated processing for their

maturation. Surprisingly, the maturation processing is dispensable

for the CRISPR interference [33].

Here, we characterized a CRISPR array that is processed in a

bacterium completely devoid of cas genes. In contrast to other

CRISPRs, RliB-CRISPR is present in all sequenced strains of L.

monocytogenes, even in other members of the genus and never co-

localizes with cas operons. We demonstrated that RliB binds to and

is a substrate for endogenously encoded PNPase, both in cas-less

Listeria strains and in those encoding a complete set of cas genes

elsewhere in the genome. Generally, PNPase degrades single-

stranded RNA in a processive manner along the substrate until it

stops, stalled by a stable RNA structure [23]. For instance, a

hairpin structure in a bacteriophage mRNA can block the

Figure 7. CRISPR DNA interference activity assay. A) Design of the plasmids. Two types of plasmids were used: i) protospacer plasmid (P)
carrying the protospacer (highlighted in red) matching the spacer 3 in L. monocytogenes EGD-e strain RliB-CRISPR and spacer 5 in L. monocytogenes
Finland strain RliB-CRISPR; ii) control plasmid (C) carrying the DNA fragment corresponding to the shuffled protospacer (highlighted in green). Black
box marks the position of the protospacer adjacent motif (PAM). Position of the specific oligonucleotides used for the Q-PCR screening is indicated
(P-fw, P-rev, C-fw, C-rev) B) Ratio (R). The number of colonies carrying plasmid P and the number of colonies carrying the plasmid C in the different
Listeria strains and genetic backgrounds is represented as the ratio (R = n (colony P)/n (colony C). Shown are the mean and the standard deviation of
five experiments performed for each bacterial strain. Two statistical tests were used: i) a t-test measuring if the ratio in the given strain is significantly
different from 1 (*** - p = 0,0008; ns- not significant); ii) a t-test comparing the ratios of the WT strain and the DrliB and DpnpA strains (**- p = 0,0025;
*- p = 0,0334).
doi:10.1371/journal.pgen.1004065.g007
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processivity of PNPase to protect the RNA against degradation

[34]. It remains to be understood at the molecular level how

PNPase specifically recognizes the RliB-CRISPR and how the

progression of the enzyme stops.

In the three analyzed L. monocytogenes strains, RliB-CRISPRs is

expressed as a full length molecule that is processed to several

fragments out of which a 280 nt fragment is the most abundant

form. The consistency of processing that is independent of the

number of the repeat/spacer units suggests that the molecular

mechanisms guiding the processing in the tested CRISPRs is

conserved. Interestingly, in the bacteria deleted for pnpA (Dpnp-

EGDe, Dpnp -EGD, Dpnp -Fin), some processing still occurs,

indicating there are other endogenously encoded ribonucleases

contributing to this mechanism, particularly in the EGD-e strain

that is devoid of cas genes (Figures 3C and 5B). Listeria encodes at

least 17 different putative RNases identified by homology with

closely related Bacillus subtilis [35]. Future work will have to

determine which enzymes might function together with PNPase

and also contribute to the CRISPR processing.

The DNA interference activity of the RliB-CRISPRs
We showed that cas-less RliB-CRISPRs are rich in spacers

matching virulent and temperate bacteriophages. In addition, a

large fraction of those spacers have 100% matches with phages,

strongly suggesting a function for RliB-CRISPR even in the

absence of cas (Figure 6, Table S3). Accordingly, we showed that

cas-less RliB-CRISPR lowers the acquisition of a plasmid carrying

the corresponding protospacer, provided a CRISPR-I system is

present (Figure 7). The RliB-CRISPR and CRISPR-I share many

similar features; almost identical repeat sequence (Figure 4),

homologous putative leader sequences (Figure S3) and identical

PAM motifs (Figure S5), indicating that these two systems are

closely related and are possibly functionally linked. It is thus not

surprising that RliB-CRISPR can share the Cas machinery with

the CRISPR-I to acquire the DNA interference activity, however

future analysis will be required to establish the exact mechanism

by which this crosstalk occurs.

More interestingly, the DNA interference activity of the RliB-

CRISPR is also dependent on the presence of PNPase (Figure 7),

indicating that the processing by this enzyme is important for the

activity of the RliB-CRISPR. PNPase is a highly complex enzyme

with 39 to 59 exoribonuclase and RNA polymerase activities being

the most studied up to date. However, it was recently shown that

PNPase can degrade single stranded DNA (ssDNA) and also

catalyze template independent polymerization of dNDPs into

39ends of ssDNA, which established a molecular model for the role

of PNPase in DNA repair [36,37]. In Escherichia coli, PNPase affects

the stability of several regulatory sRNAs [38,39]. Here, we

hypothesize that Listeria PNPase, potentially with other endoge-

nously encoded enzymes, may contribute to the RliB-CRISPR

maturation. Alternatively, PNPase may affect the RliB-CRISPR

RNA stability and turnover, and hence, regulate the levels of its

mature form. Finally, PNPase dependent processing of the RliB-

CRISPR and the DNA interference might be uncoupled activities.

Hence, this complex enzyme could use different enzymatic

activities to contribute to different processes. It will be also

important to determine if PNPase is involved in other CRISPR-

Cas system activities, such as new spacer acquisition. Currently,

our data do not provide evidence on which form of RliB molecule

is active in the DNA interference. These and other mechanistic

details, such as the role of PAMs are to be determined in the

future.

Noticeably, the RliB-CRISPR mediated DNA interference is

not 100% effective. This might be the consequence of our

experimental design or this CRISPR-Cas system did not evolve to

eradicate the bacteriophage from a population but rather to fine-

tune its copy number in the bacterial cytoplasm.

The potential function of RliB-CRISPRs in the absence of
Cas

Our functional assay showed that the RliB-CRISPR in the

L.monocytogenes EGD-e strain that completely lacks cas genes,

although processed by PNPase, is not able to provide DNA

interference activity against a plasmid carrying a matching

protospacer. This lack of activity is probably due to the absence

of trans encoded CRISPR-I system required for RliB-CRISPR

DNA interference activity, as shown in L. monocytogenes Finland

strain. However, the conservation of the RliB-CRISPRs in Listeria

is independent on the presence of CRISPR-I, strongly suggesting

that it is a functional element with an important function even in

the absence of Cas Type-I, as sequences lacking selection pressure

for their maintenance are quickly lost in bacterial genomes [40].

Interestingly, RliB-CRISPRs in average possess a smaller number

of repeats and the variability of their spacers is lower compared to

the spacer content of the CRISPR-I and CRISPR-II. Have they

evolved a new function? It is to be kept in mind the remarkable

finding that all RliB-CRISPRs accumulate as a 280 nt fragment,

which might be the functional form. In support for a functional

role of RliB, our recent RNA-seq analysis has shown that RliB-

CRISPR is not only conserved but also expressed in the more

distant L. innocua species that also lacks CRISPR-I [41].

Although RliB-CRISPRs share many similarities with cas-

associated CRISPR-I system, the identified RliB-CRISPR proto-

spacers are more often in the antisense orientation with respect to

the corresponding spacer and in addition they are mostly located

in the late phage genes encoding DNA packaging and envelope

proteins. It is tempting to speculate that ‘‘the’’ RliB-CRISPRs cas-

independent activity might be RNA interference. In this scenario

RliB-CRISPR would not destroy the bacteriophage DNA but

would rather control the bacteriophage late gene expression i.e., it

would prevent the formation of viral particles and lysis of the

bacterial cell. RliB-CRISPR interference could be also based on

transcription-dependent DNA targeting, as recently described in

Sulfolobus islandicus REY15A [42]. Alternatively, RliB-CRISPR

might have evolved a broader function relevant for Listeria

physiology that is not related to the immunity. Such examples

have been described in Pseudomonas aeruginosa, where a CRISPR

appear to be involved in lysogeny dependent biofilm formation

[43], in myxobacteria where CRISPR has been implicated in

swarming motility [44] and more recently in Francisella novicida

where a tracrRNA was shown to regulate an endogenous

transcript encoding a lipoprotein important for the bacterial

infection [45].

The interaction between bacteriophages and bacteria is mostly

seen as a parasitic interaction where the virus exploits the host

resources for its own benefit. However, there are some viruses that

have a beneficial effect on their host [46]. In case of pathogenic

bacteria, bacteriophages often carry virulence factors required for

successful infection [47]. More recently, a study by Rabinovich et

al. (2012) showed that during Listeria intracellular infection, a

temperate prophage is excised, which reconstitutes a function of

the gene where the bacteriophage was integrated, and promotes

bacterial escape from macrophage phagosomes. Remarkably, the

excision event does not lead to propagation and release of the

progeny virions neither to the subsequent lysis of the bacterial cell.

Hence, the virion production is actively aborted [48]. This

example highlights an important crosstalk between the phage and

the pathogenic bacteria during the infection of the mammalian
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cell, and more importantly, it emphasizes the conditional

advantage for a bacterium to maintain a bacteriophage and

control its virulence. Our previous studies have shown that RliB

expression is upregulated in the bacteria grown in human blood

and in the intestine of gnotobiotic mice and is important for Listeria

virulence [4]. Whether RliB-CRISPR expression and prophage

excision followed by aborted virion production are linked

processes, remains to be examined. Our study thus paves the

way for new regulatory studies on the interactions between

bacteriophages and bacteria during saprophytic life or during

infection.

Materials and Methods

Strains and plasmids
Strains used in this study are L. monocytogenes EGD-e (BUG1600)

and its isogenic mutants DrliB(BUG2621) and DpnpA(CMA751), L.

monocytogenes EGD (BUG600) and its isogenic mutant, DpnpA-EGD

(BUG3415) and DrliB-EGD (BUG3243), L. monocytogenes Finland

1998 (BUG3297, CLIP2012/00396, FE49845/IHD42536) and its

isogenic mutants DpnpA-Fin (BUG3465) and DrliB-Fin (BUG3466).

Mutants were obtained by deletion of the corresponding ORF or

non-coding RNA by PCR-ligation and amplicon cloning in the

suicide vector pMAD as previously described [49]. Overexpression

of RliB was obtained by cloning the rliB gene into the pAD vector

carrying Phyper constitute promoter [50], resulting in the strain

Phyper-RliB (BUG2987). PNPase complementation was obtained

by cloning the PnpA ORF into the pPl2 vector [51] resulting in

the strain DpnpA+pnpA (CMA752).

Bacterial growth
Bacteria were grown overnight in Brain heart infusion (BHI)

medium (Difco) at 37uC with shaking at 200 rpm. Cultures were

subsequently diluted 1/500 into 100 ml BHI and grown at 37uC
until mid-exponential phase (OD600 = 1.0). When required,

erythromycin and chloramphenicol were used at 5 mg/ml and

20 mg/ml, respectively as final concentration. For RNA extraction,

bacteria were pelleted, by centrifugation at 10,000 X G for five

minutes, flash frozen in liquid nitrogen and stored at 280uC.

RNA isolation
Bacterial pellets were resuspended in 400 ml solution A (K

volume Glucose 20%+K volume Tris 25 mM pH 7.6+EDTA

10 mM) to which an additional 60 ml of 0.5M EDTA was added.

Bacteria were lysed in FastPrep homogenizer (Bio101) and RNA

was subsequently extracted using TRI reagent (Invitrogen) as

described previously [4]. RNA integrity was verified using the

Experion Automated Electrophoresis system (Biorad).

Northern blot analysis
10–20 mg of total RNA was mixed with two volumes of

Formaldehyde Loading Buffer (Ambion) followed by denaturation

at 65uC for 15 min. Samples were separated by electrophoresis on

5% TBE-Urea polyacrylamide gels (Criterion-Biorad) at 100 V for

2 hours in 16 TBE running buffer at RT, followed by an

overnight transfer at 4uC/100 mA to Nytran membranes (Sigma).

Membranes were UV-crosslinked and probed with RNA probes or

DNA oligo probes. Briefly, RNA probes were synthesized and

a32P-UTP labelled using the Maxiscript T7RNA polymerase kit

(Ambion) with PCR generated templates according to the

manufacturer’s instructions. Oligonucleotide DNA probes were

59 labelled with c32P-ATP using the T4 Polynucleotide Kinase

according to the manufacturer’s protocol (New England Biolabs).

Membranes were prehybridized for 60 min in Ultrahyb buffer

(Ambion) and hybridizations were performed overnight at 64uC
for RNA probes and at 37uC for oligonucleotide probes. Following

hybridization, membranes were washed twice for 5 min with 26
SSC, 0.1% SDS at room temperature. When hybridized with

RNA probes, membranes were additionally washed twice for

15 min in 0.16SSC, 0.1% SDS at 60uC. The size marker was a

50-bp ladder (Invitrogen), which was 59 end labelled with c32P-

ATP.

Affinity chromatography using MS2-RliB or biotinylated
RliB

We first have optimized an affinity purification assay using 39-

biotinylated RliB and streptavidin sepharose modified as described

in Jestin et al. [52]. As a negative control, we used the regulatory

RNAIII from S. aureus. Total cell extract prepared from 500 ml of

culture of L. monocytogenes DrliB mutant strain was first incubated

with streptavidin sepharose beads to remove proteins unspecifi-

cally bound to the beads. The beads were first incubated with the

39 biotinylated RNA and the pre-cleaned crude extract was passed

through the column and washed with the binding buffer

containing 50 mM Hepes-NaOH pH 7,5, 5 mM MgCl2, 1 mM

DTT, and 150 mM KCl. The elution of the proteins was done

with the same buffer containing 6 M urea, 2 M thiourea and

30 mM d-biotin. The fractions were then analyzed by 4–15%

gradient SDS-PAGE, and the proteins were identified by mass

spectrometry.

A second approach was used to purify proteins associated with

RliB carrying at its 59 end two hairpin motifs recognized by the

coat protein of the MS2 bacteriophage. As a control we used the

untagged RliB. Both RNAs were transcribed in vitro using

homemade T7 RNA polymerase. The experimental conditions

were as previously described [53]. The MS2 coat protein fused to

Maltose binding protein was expressed in E. coli and purified on an

amylose column followed by a monoQ column. The MS2-MBP

coat protein was first immobilized on the amylose resin, and the

tagged-RNA was loaded on the column, which was washed with

2 ml of the Binding Buffer. Subsequently, the pre-cleared bacterial

lysate was loaded onto the column, followed by three washes with

2 ml Binding Buffer, and the proteins were eluted with the binding

buffer containing 10 mM maltose. The fractions were loaded on a

SDS-PAGE and the proteins were identified by mass spectrom-

etry.

RNA structure probing
Enzymatic hydrolysis was performed with 1 pmol of RliB in

10 ml of a buffer containing 50 mM NaOH-Hepes pH 7.5,

10 mM MgCl2, 150 mM KCl, in the presence of 1 mg carrier

tRNA at 20uC for 5 min: RNase T2 (0.01 units), RNase V1 (0.5

units). Chemical modifications were performed on 2 pmol of RliB

at 20uC in 20 ml of the same buffer containing 2 mg of carrier

tRNA. Methylation of C(N3) and A(N1) positions was done with

1 ml DMS (diluted 1/8 and 1/16 in ethanol) for 2 min at 20uC.

Modification of U(N3) and G(N1) was performed with 2,5 ml and

5 ml of CMCT (40 mg/ml) for 20 min at 20uC. The cleavage or

modification sites of unlabeled RNAs were detected by primer

extension. Details for hybridization conditions, primer extension,

and analysis of the data have been previously described [54].

PNPase cleavage assays
PNPase cleavage assays were done using a 59 end-labelled RliB

or RNA37. Reaction was performed in 10 ml of TMK buffer

containing 20 mM Tris-HCl pH 7.5, 10 mM magnesium-acetate,

100 mM KCl, 1 mM DTT at 37uC for 15 min in the presence of
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PNPase 200 nM in the presence of 1 mg of carrier tRNA.

Competition experiments were carried out in the presence of

200 nM, 400 nM of cold RliB and its derivatives (RliB-39 domain

or RliB-59 domain). Reactions were stopped by phenol extraction

followed by RNA precipitation. The assays were loaded on a

denaturing 12% polyacrylamide-urea gel electrophoresis. The

PNPase cleavage sites were assigned by running in parallel RNase

T1 ladder and an alkaline ladder on a denatured end-labelled

RNA [54].

Gel retardation assays
To perform gel retardation assays, 59 end-labelled transcript

(20000 cpm, ,1 nM) was incubated in the presence of increasing

concentrations of PNPase (100 to 800 nM) in TMK buffer

containing 20 mM Tris-HCl pH 7.5, 10 mM magnesium-acetate,

100 mM KCl at 37uC for 15 min. At the end of the binding

reaction 6X loading dye (30% glycerol, 0.25% bromophenol blue

and 0.25% xylene cyanol) was added to the samples and they were

analyzed on a 6% polyacrylamide gel under non-denaturing

conditions.

CRISPR activity assay
Plasmid design. The DNA fragment of the protospacer

plasmid (P) was reconstituted using two complementary, 59-

phosphorylated oligonucleotides with the flanking BamH-I restric-

tion sites P-A (GATCCGGTCGTCCTGCGATTTTTGTCAA-

AGGGACAGCGATGGGTTACAAGGAATACG) and P-B-

(GATCCGTATTCCTTGTAACCCATCGCTGTCCCTTTGA-

CAAAAATCGCAGGACGACCG) whereas the DNA fragment of

the control plasmid was reconstituted using the oligonucleotides C-A

(GATCCGGTCGTCCTTAAGTTTTATAACCATGGAAGTT-

GGAGCGAGCCCGGGAATACG) and C-B (GATCCGTATT-

CCCGGGCTCGCTCCAACTTCCATGGTTATAAAACTTAA-

GGACGACCG). 45 ml (c = 100 mM) of each oligonucleotide was

added to 10 ml NEB buffer 3. The mixture was heated to 95uC and

then slowly cooled down to room temperature. The reconstituted

DNA fragments were cloned to Ppl2 integrative vector [51] using the

BamH-I restriction site. Obtained clones were isolated and

sequenced in order to verify the sequence integrity and the

orientation of the cloned fragment. Plasmids with only one

orientation of the fragments P and C were used for all the performed

experiments.

Conjugation. Plasmids P and C were heat shock transformed

to a donnor E. coli S17 to create E.coli-P and E.coli-C strains.

Overnight cultures of E. coli and L. monocytogenes strains were

diluted 1/20 in 5 ml LB media supplemented with 35 mg/ml

chloramphenicol and 5 ml BHI media, respectively. The cultures

were grown until mid exponential phase (OD = 1.0). 1 ml of each

E. coli culture was washed 3X with 1 ml BHI media to remove the

remaining antibiotic. The equal amount of E. coli-P and E. coli-C

cultures were mixed. Subsequently, 200 ml of E. coli-P/C mixture

was added to 200 ml L. monocytogenes culture and placed on the

milipore filter (0.45 mm) on top of the agar plate and incubated

overnight at 37uC. The next day, the cultures were removed from

the filter, resuspended in 1 ml of BHI and plated on BHI plates

supplemented with 7 mg/ml chloramphenicol, 50 mg/ml nalidixic

acid and 100 mg/ml colistin. The plates were incubated 72 h at

37uC.

Quantitative PCR (Q-PCR). Colonies were picked on a new

BHI plate supplemented with 7 mg/ml chloramphenicol and

incubated overnight at 37uC. The next day, each colony was

resuspended in 50 ml water and heated to 95uC during 20 min. After

centrifugation, supernatant was used as the template for the Q-PCR.

Oligonucleotides were used to specifically amplify the fragments in

the P plasmid (P-fw CAGGGCAGGGTCGTTAAATAG and P-rev

AGCGATGGGTTACAAGGAATAC) and C plasmid (C-fw

CGACTCACTATAGGGCGAATTG and C-rev CGCTCC-

AACTTCCATGGTTAT). As the control, we used oligonucleotides

corresponding to the chloramphenicol gene present in both plasmids

(Cm-fw CACTCATCGCAGTACTGTTGTA and Cm-rev

CAAACGGCATGATGAACCTG). The reaction was based on

Sso Fast Eva Green Supermix (Biorad) using the CFX384 Real-

Time System (Biorad). The Ct values corresponding to P or C

specific amplification were compared to deduce the plasmid identity

of each individual colony. To evaluate the E.coli-P/C conjugation

mix and the levels of the plasmids P and C at the beginning of the

experiment, the plasmids from the E.coli-P/C mix were extracted

using the MiniPrep Kit (QIAGEN) and their relative quantity was

compared using the Q-PCR with the aforementioned oligonucleo-

tides. To calculate the ratio (R = n(P)/n(C)), at least 32 colonies of

each strain were screened. Each experiment was repeated multiple

times on independent conjugation reactions. Results were statistically

analyzed using t-tests.

Bioinformatic analysis
We analyzed 45 Listeria genomes taken from GenBank, available

at the time of analysis. These include 28 complete genomes and 17

draft genomes with less than 800 contigs (Table S1). We also

added the genome of L. monocytogenes EGD strain (unpublished

data). We used GenBank annotations, excluded genes with stops in

phase and with lengths not multiple of three. We re-annotated the

prophages in the genomes using a methodology described

previously [55].

Cas gene identification. The Hidden Markov models

(HMMs) for the Cas protein families described previously [6]

were obtained from the TIGRFAM database, version 6.0 (http://

www.tigr.org/TIGRFAMs/). To identify cas genes, all coding

sequences within each complete and draft genomes were searched

with the 57 Cas HMMs profiles using hmmpfam [56] (e-value

,0.001) (Table S1). To identify cas pseudogenes, all Cas proteins

previously detected were searched in all the genomic sequences

using tblastn (e-value ,0.001).

Identification of the core genome. A preliminary set of

orthologs was defined by identifying unique pairwise reciprocal

best hits, with at least 60% similarity in amino acid sequence and

less than 20% of difference in protein length. The list was then

refined using information on the distribution of similarity of these

putative orthologs and data on gene order conservation (as in

[57]). The analysis of orthology was made for every pair of L.

monocytogenes and L. innocua genomes. The core genome was defined

as the intersection of pairwise lists of positional orthologs and was

used to build the phylogenetic tree (see below). We used L. innocua

as out-group to root the tree of L. monocytogenes.

Phylogenetic analysis. The reference phylogenetic tree for

the core genome of the 43 complete/draft genomes was

reconstructed from the concatenated alignments of 513 proteins

of the core genome obtained with muscle v3.6 [58] then back-

translated to DNA, as is standard usage. We used Tree-puzzle 5.2

[59] to compute the distance matrix between all genomes using

maximum likelihood under the HKY+G(8)+I model. The tree of

the core genome was built from the distance matrix using BioNJ

[60]. We made 100 bootstrap experiments on the concatenated

sequences to assess the robustness of the topology. The topology of

this tree is congruent with previous

CRISPR array identification. CRISPR arrays were identi-

fied using CRT (CRISPR Recognition Tool) with default

parameter values [61], in all the Listeria complete/draft genomes

publicly available at the time of analysis. In the complete genomes,
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loci bordered by the same core genes were identified as RliB-

CRISPR (bounded by the core genes: lmo0509-lmo0510),

CRISPR-I (lmo0517-lmo0518) and CRISPR-II (lmo2951-lmo2596)

(Figure 4). For each array, the repeats were extracted and were

aligned using Muscle [58]. Then we used Cons (http://bioweb.

pasteur.fr/docs/EMBOSS/cons.html) to obtain consensus se-

quences from these multiple sequence alignments of the three

arrays. In all cases, the consensus sequence corresponds to the

most frequent sequence within a particular array. We used the

sequence of the repeats as patterns to identify additional, smaller

and/or degenerate repeat clusters in all available complete and

draft genomes. This analysis was done with Fuzznuc (http://

bioweb2.pasteur.fr/docs/EMBOSS/fuzznuc.html).

Protospacer identification. Blastn was used for similarity

searches between CRISPR spacer sequences and all the complete

prokaryote genomes (3703 replicons), complete plasmid genomes

(2930), and virus genomes (1153) available in GenBank. Matches

showing an E value lower than 1025 and less than 10% difference

in sequence length between query and hit were retained. Matches

to sequences found within CRISPR loci were ignored.

Supporting Information

Figure S1 Structure probing of RliB using chemicals and

enzymes. The secondary structures of the full-length RliB (RliB)

and RliB carrying the MS2 tag at its 59 end (RliB-MS2) were

probed using reverse transcription after chemical modification and

enzymatic hydrolysis. Lane 1: incubation controls; lane 2: DMS

modification to probe position N1 of adenines and N3 of cytosines;

lanes 3–4: CMCT modifications to probe position N3 of uridines

and N1 of guanines; lanes 5–6: RNase V1 hydrolysis to map

double-stranded regions of RNA; lanes 7–8: RNase T2 hydrolysis

to map the unpaired regions of RNA (with a preference for

adenines). Lanes A, U, G, C: dideoxy-sequencing reactions

performed on RliB-MS2 mRNA.

(EPS)

Figure S2 Putative secondary structure of representative RliB-

CRISPRs. The secondary structure of the full length RliB-

CRISPR containing different number of repeats (red) and spacers

(black): A) RliB-CRISPR containing 10 spacers conserved in L.

monocytogenes EGD, 10403S, SLCC5850 strains, B) RliB-CRISPR

containing 6 spacers conserved in L. monocytogenes F6900, J2818,

F6854, J0161, C) RliB-CRISPR containing 3 spacers conserved in

all analyzed L. monocytogenes strains belonging to lineage I.

(EPS)

Figure S3 Comparison of the putative leader sequences of RliB-

CRISPR and CRISPR-I. A) Multiple alignments of putative

leader sequences preceding identified RliB-CRISPRs and

CRISPR-I among analyzed L. monocytogenes strains. The transcrip-

tion start site of the RliB-CRISPR in L. monocytogenes EGDe strain

is indicated and the beginning of the repeat sequence. B) Logo and

the consensus sequence generated from the multiple alignment.

Highlighted is conserved putative RpoD dependent promoter.

(EPS)

Figure S4 Listeria prophages. A) 29 complete Listeria genomes are

represented. In the line with each genome is indicated presence of

a prophage. The prophages are positioned on the vertical grid

according to their integration site in the Listeria genome (tRNA-

Lys, tRNA-Ser, tRNA-Arg, 678, EF-Ts, 1041, comK, tRNA-Arg,

tRNA-Thr, 1681). Prophages were identified according to their

similarity with the bacteriophage sequences available in the

Genbank. A prophage is assigned with a name if it shares at least

40% similarity with a known phage and is highlighted as a dot

with the corresponding colour (red-B054, blue-B025, green-A118/

A500, yellow-A006, purple-PSA). B) Sequence alignments be-

tween the RliB/CRISPR spacer (S7) and three CRISPR-II

spacers (S21, S22, S23) in the L. monocytogenes EGD strain that

match B025 prophage integrated in the EGD chromosome. The

numbers on the left indicate the exact position of the protospacer

within the EGD genome whereas match and identity percentage

are highlighted above.

(EPS)

Figure S5 Protospacer-adjacent motifs (PAMs) of RliB-

CRISPR, CRISPR-I and CRISPR-II. Protospacer-adjacent

motifs (PAMs) were generated by multiple alignments of the

regions flanking the identified protospacers. The analysis was done

separately for each CRISPR system (RliB-CRISPR, CRISPR-I

and CRISPR-II) distinguishing those derived from prophages

identified among Listeria strains and bacteriophages present in the

GenBank. Above each PAM motif is indicated a number of

protospacers used for the Logo production.

(EPS)

Figure S6 Position of the protospacers along the bacteriophage

genomes. The positions of the protospacers along the Listeria

bacteriophage genomes are shown. The colours correspond to

different homologous gene families. Two proteins were considered

as homologous if they have at least 60% of similarity in amino acid

sequence and less than 20% of difference in protein length. Arrows

indicate position of protospacers identified by the similarity to the

spacers composing RliB-CRISPR (green), CRISPR-I (blue) and

CRISPR-II (red). A) Genomes of 6 temperate bacteriophages

(B054, B025, PSA, A500, A118 and A006) are shown. Bacterio-

phage genes encoding proteins involved in DNA packaging and

structural proteins are highlighted. B) Genomes of 4 virulent

bacteriophages (P70, P35, P100 and A115) are shown.

(EPS)

Table S1 Presence of the CRISPR/Cas system in available

complete and draft Listeria genomes (provided as an Excel table).

(XLSX)

Table S2 List of spacers analysed in this study (provided as an

Excel table).

(XLSX)

Table S3 Summary of the spacer composition of CRISPR

arrays in Listeria (provided as an Excel table).

(XLSX)

Table S4 Description of the unique spacers of the CRISPR-I

targeting phage and prophage regions (provided as an Excel table).

(XLSX)

Table S5 Description of the unique spacers of the CRISPR-II

targeting phage and prophage regions (provided as an Excel table).

(XLSX)

Table S6 Description of the unique spacers of CRISPR RliB

targeting phage and prophages regions (provided as an Excel

table).

(XLSX)

Table S7 Self-targeting spacers (provided as an Excel table).

(XLSX)
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35. Lehnik-Habrink M, Lewis RJ, Mäder U, Stülke J (2012) RNA degradation in

Bacillus subtilis: an interplay of essential endo- and exoribonucleases. Mol

Microbiol 84: 1005–1017.

36. Cardenas PP, Carrasco B, Sanchez H, Deikus G, Bechhofer DH, et al. (2009)

Bacillus subtilis polynucleotide phosphorylase 39-to-59 DNase activity is involved

in DNA repair. Nucleic Acids Res 37: 4157–4169.

37. Cardenas PP, Carzaniga T, Zangrossi S, Briani F, Garcia-Tirado E, et al. (2011)

Polynucleotide phosphorylase exonuclease and polymerase activities on single-

stranded DNA ends are modulated by RecN, SsbA and RecA proteins. Nucleic

Acids Res 39: 9250–9261.

38. Andrade JM, Pobre V, Matos AM, Arraiano CM (2012) The crucial role of

PNPase in the degradation of small RNAs that are not associated with Hfq.

RNA 18: 844–855.

39. De Lay N, Gottesman S (2011) Role of polynucleotide phosphorylase in sRNA

function in Escherichia coli. RNA 17: 1172–1189.

40. Kuo C-H, Ochman H (2010) The extinction dynamics of bacterial pseudogenes.

PLoS Genet 6: e1001050.

41. Wurtzel O, Sesto N, Mellin JR, Karunker I, Edelheit S, et al. (2012)

Comparative transcriptomics of pathogenic and non-pathogenic Listeria species.

Mol Syst Biol 8: 583.

42. Deng L, Garrett RA, Shah SA, Peng X, She Q (2013) A novel interference

mechanism by a type IIIB CRISPR-Cmr module in Sulfolobus. Mol Microbiol

87: 1088–1099.

43. Zegans ME, Wagner JC, Cady KC, Murphy DM, Hammond JH, et al. (2009)

Interaction between bacteriophage DMS3 and host CRISPR region inhibits

group behaviors of Pseudomonas aeruginosa. J Bacteriol 191: 210–219.

44. Viswanathan P, Murphy K, Julien B, Garza AG, Kroos L (2007) Regulation of

dev, an operon that includes genes essential for Myxococcus xanthus

development and CRISPR-associated genes and repeats. J Bacteriol 189:

3738–3750.

45. Sampson TR, Saroj SD, Llewellyn AC, Tzeng YL, Weiss DS (2013) A

CRISPR/Cas system mediates bacterial innate immune evasion and virulence.

Nature 497: 254–257.

46. Roossinck MJ (2011) The good viruses: viral mutualistic symbioses. Nat Rev

Microbiol 9: 99–108.

47. Boyd EF, Brussow H (2002) Common themes among bacteriophage-encoded

virulence factors and diversity among the bacteriophages involved. Trends

Microbiol 10: 521–529.

48. Rabinovich L, Sigal N, Borovok I, Nir-Paz R, Herskovits AA (2012) Prophage

excision activates Listeria competence genes that promote phagosomal escape

and virulence. Cell 150: 792–802.

49. Arnaud M, Chastanet A, Debarbouille M (2004) New vector for efficient allelic

replacement in naturally nontransformable, low-GC-content, gram-positive

bacteria. App Environ Microbiol 70: 6887–6891.

50. Balestrino D, Hamon MA, Dortet L, Nahori MA, Pizarro-Cerda J, et al. (2010)

Single-cell techniques using chromosomally tagged fluorescent bacteria to study

Listeria monocytogenes infection processes. App Environ Microbiol 76: 3625–

3636.

A PNPase Dependent CRISPR System in Listeria

PLOS Genetics | www.plosgenetics.org 16 January 2014 | Volume 10 | Issue 1 | e1004065



51. Lauer P, Chow MY, Loessner MJ, Portnoy DA, Calendar R (2002)

Construction, characterization, and use of two Listeria monocytogenes site-

specific phage integration vectors. J Bacteriology 184: 4177–4186.

52. Jestin JL, Dème E, Jacquier A (1997) Identification of structural elements critical

for inter-domain interactions in a group II self-splicing intron. EMBO J 16:

2945–2954.

53. Said N, Rieder R, Hurwitz R, Deckert J, Urlaub H, et al. (2009) In vivo

expression and purification of aptamer-tagged small RNA regulators. Nucleic

Acids Res 37: e133.

54. Chevalier C, Geissmann T, Helfer A-C, Romby P (2009) Probing mRNA

structure and sRNA-mRNA interactions in bacteria using enzymes and lead(II).

Methods Mol Biol 540: 215–232.

55. Bobay L-M, Rocha EPC, Touchon M (2013) The Adaptation of Temperate

Bacteriophages to Their Host Genomes. Mol Biol Evol 30: 737–757.

56. Eddy SR (2011) Accelerated Profile HMM Searches. PLoS Comput Biol 7:

e1002195.
57. Touchon M, Hoede C, Tenaillon O, Barbe V, Baeriswyl S, et al. (2009)

Organised genome dynamics in the Escherichia coli species results in highly

diverse adaptive paths. PLoS Genet 5: e1000344.
58. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy

and high throughput. Nucleic Acids Res 32: 1792–1797.
59. Schmidt HA, Strimmer K, Vingron M, von Haeseler A (2002) TREE-PUZZLE:

maximum likelihood phylogenetic analysis using quartets and parallel comput-

ing. Bioinformatics 18: 502–504.
60. Gascuel O (1997) BIONJ: an improved version of the NJ algorithm based on a

simple model of sequence data. Mol Biol Evol 14: 685–695.
61. Bland C, Ramsey TL, Sabree F, Lowe M, Brown K, et al. (2007) CRISPR

recognition tool (CRT): a tool for automatic detection of clustered regularly
interspaced palindromic repeats. BMC Bioinformatics 8: 209.

A PNPase Dependent CRISPR System in Listeria

PLOS Genetics | www.plosgenetics.org 17 January 2014 | Volume 10 | Issue 1 | e1004065


