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Identification of binding sites and favorable
ligand binding moieties by virtual screening
and self-organizing map analysis
Emna Harigua-Souiai1,2,3, Isidro Cortes-Ciriano1, Nathan Desdouits1, Thérèse E Malliavin1,
Ikram Guizani2, Michael Nilges1, Arnaud Blondel1 and Guillaume Bouvier1*

Abstract

Background: Identifying druggable cavities on a protein surface is a crucial step in structure based drug design. The
cavities have to present suitable size and shape, as well as appropriate chemical complementarity with ligands.

Results: We present a novel cavity prediction method that analyzes results of virtual screening of specific ligands or
fragment libraries by means of Self-Organizing Maps. We demonstrate the method with two thoroughly studied
proteins where it successfully identified their active sites (AS) and relevant secondary binding sites (BS). Moreover,
known active ligands mapped the AS better than inactive ones. Interestingly, docking a naive fragment library
brought even more insight. We then systematically applied the method to the 102 targets from the DUD-E database,
where it showed a 90% identification rate of the AS among the first three consensual clusters of the SOM, and in 82%
of the cases as the first one. Further analysis by chemical decomposition of the fragments improved BS prediction.
Chemical substructures that are representative of the active ligands preferentially mapped in the AS.

Conclusion: The new approach provides valuable information both on relevant BSs and on chemical features
promoting bioactivity.

Keywords: Self-organizing maps, Binding site, Chemical fingerprints, Chemical fragments, Virtual screening,
Probe-mapping, Docking

Background
Identifying druggable cavities or pockets on a target pro-
tein is of high importance in the development of novel
strategies in a structure-based drug discovery process.
Binding sites (BSs), with or without ligand, are usually
referred to as cavities at the protein surface and dis-
play a large variety of size and shape [1,2]. Consequently,
in the context of drug discovery, refined criteria are
necessary to discriminate potent binding pockets. The
required properties, together referred to as “druggability”,
are the subject of active research, and many scores have
been elaborated to estimate them [3-5]. Protein-ligand
interactions that promote binding appear to be mainly
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driven by cavity shape and size, as well as by chemi-
cal complementarity between the ligand and the protein
atoms.
Existing methods and algorithms typically use evo-

lutionary, geometrical, probe-mapping or energy-based
principles for BS identification. Evolutionary methods
[6-8] make use of structure and/or sequence alignments to
identify BSs. They assume that conserved residues among
one group of functionally related proteins would vary
across different groups [9] so they constitute an “evolu-
tionary trace” of BSs. These approaches are limited by
the fact that conserved features may not be correlated
to protein activity but rather to stability or folding [10].
Moreover, as a consequence of a low degree of sequence
similarity or identity within a working dataset for a given
protein query, the obtained results may be poor [10].
Purely geometric methods [1,11-15] have the advantage
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of being fast. They assume that a BS is a cavity or a cleft
in the receptor surface and do not model the potency of
a detected cavity to bind a drug-like molecule. Conse-
quently, they can not distinguish different types of sites
(e.g., hydrophobic versus polar). Finally, probe-mapping
[16-18] and energy-based [2,19] methods are most of
the time coupled (e.g., SILCS [20]). They calculate the
energy between a probe and the target on a grid and in
this way map energetically favorable areas for binding.
Probes can be atoms (aliphatic carbon, aromatic carbon,
hydrogen, oxygen, nitrogen, sulfur, etc) [2,18] or func-
tional groups (methyl, amine, hydroxyl, cetone groups,
etc) [19,21,22]. Many studies make simultaneous use of
two types of approaches (geometric, energy-based, probe-
mapping or evolutionary methods) or are coupled with
other computational strategies. For instance, combining
geometrical and energy based principles, through the
“MetaPocket” server [23], improved the accuracy of these
methods. Bowman [24] and Meagher [25] used receptor
flexibility to successfully identify pharmacophores, used
as probes, that are highly present in known inhibitors
of the targeted protein. In a recent work, Glinca and
Klebe [26] showed that the use of exposed physico-
chemical properties on cavities is more valuable than
the use of sequence information, in the classification
of protein families with respect to inhibitor selectivity.
This stresses importance of considering protein-ligand
interactions on the energetic level to assess a pocket’s
“druggability”.
Probe-mapping and energy-basedmethods are the obvi-

ous way to model chemical complementarity between the
ligand and the protein atoms. PocketFinder [2], for exam-
ple, assesses a van der Waals potential over a grid and
identifies all pockets with a volume larger than 100Å3.
In 80.9% of the cases, 50% of the ligand overlapped the
largest pocket and 11.8% overlapped the second one.
Q-siteFinder [19] uses GRID [16] to calculate a van der
Waals potential of a methyl probe. Probes with favor-
able interaction energies are clustered. Clusters are then
ranked according to their total interaction energies and
the top 3 are considered as binding pockets. In 90% of the
cases, 25% of the active ligand atoms were within 1.6Å of
one of the top ranked pockets. An algorithm similar to Q-
SiteFinder, called SiteHound [27], uses AutoGrid from the
AutoDock 4 suite [28] for grid calculation and pocket pre-
diction instead of GRID [16]. Then, after docking a known
ligand on 77 proteins, the authors found that in 95% of the
cases, the ligand center falls within 10.0Å of at least one of
the first three predicted sites. The SiteHound success rate
varied between 80 and 84% when the criterion was set to
15% or more ligand heavy atoms within a radius of 2.0Å
from one of the first three predicted sites. Another algo-
rithm called FTSite [22] performs a global search of the
protein surface for regions that bind small organic probes

by making use of a fast Fourrier transform approach [21].
FTSite was tested on the test set used by the Q-siteFinder
authors [19] and performed at a success rate of 97%
with same parameter values (precision = 25%, radius =
1.6Å) [22].
The present work introduces a new concept for the

identification of BSs. It directly uses docking calculations,
in combination with an analysis of the results by Self-
Organizing Maps (SOMs) [29]. The SOM algorithm has
many applications and can virtually be applied on any type
of data. For example, SOMBRERO [30,31] is a SOM-based
algorithm that detects transcription factor BSs on DNA
sequences. A spherical SOM (SSOM) appeared useful in
mapping a protein surface onto a sphere to better char-
acterize its active site [32]. SOMs have a wide range of
uses in virtual screening analysis and hit selection [33-
35]. A recent paper used SOM as a tool for identifying
macromolecular targets of de-novo designed chemical
entities [36]. Digles [37] presents an interesting review
of this specific application of SOMs. We have recently
demonstrated the usefulness of SOMs in the analysis of
molecular dynamics trajectories and ligand docking poses
[38-41].
In a first step, we calibrated our method on two chal-

lenging targets from the “Database of Useful Decoys -
Enhanced” (DUD-E) [42]. The DUD-E database provides
dedicated ligand libraries for each protein target to bench-
mark docking approaches, one with the known effectors,
and one with a series of decoy compounds. We also used
an additional “generic” library, the Enamine Golden Frag-
ments (EGF) collection (www.enamine.net). It contains a
moderate number of entities, 1500 fragments, presenting
a wide chemical diversity (see Additional file 1: Figure S1).
The use of this library permits us to cover a large chemical
space with a limited computational effort. Blind dockings
of these databases were performed with two free software
packages that have been extensively used and evaluated by
others [43-47]; Dock [48] and AutoDock Vina (ADvina)
[49], and are based on different searching algorithms and
scoring functions. We identified the combination of dock-
ing program and ligand library giving the best prediction
rates in this analysis. Then, we used this combination to
assess the method accuracy in BS identification on all tar-
gets in the DUD-E (102 proteins). Docking results were
analyzed with an in-house version of the Self-Organizing
Map (SOM) applied directly to the ligand atomic coordi-
nates as descriptors. The resulting SOMs provide a simple
and intuitive representation of the spatial distribution of
the docking poses. BSs can be identified as zones of high
docking pose density and homogeneity.
In addition, we tested whether the proposed approach

could give some “a priori” information on the chemi-
cal nature of potential ligands. For that, we analyzed the
chemical structure of the docked compounds from the

www.enamine.net
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naive fragment library with Morgan fingerprints, which
provide a decomposition of the molecules into a set of
“chemical features” [50,51]. Previous studies have shown
the efficiency of circular fingerprints in drug discovery
tasks, such as the search for ligand analogues or virtual
screening [52-54]. With SOM, we analyzed how the geo-
metrical centers of these chemical features are distributed
in space upon docking. Interestingly, this analysis pro-
vided an even more accurate mapping of the BSs, thus
enhancing the interpretability of the SOMs. Furthermore,
the chemical features of the naive library that are also
present in active ligands mapped preferentially in the
active sites.

Methods
Protein targets and ligand libraries
The DUD-E database [42,55] provides 102 targets ready
for docking in pdb format. For each target, a definition of
the active site (AS) is provided by means of the co-crystal
3D structure of the target with an active ligand. Prior to
the assessment of the method’s accuracy in BS identifica-
tion, we tuned the parameters of the approach to obtain
the most accurate predictions on two specific targets.

The first target, the HIV-1 reverse-transcriptase, is a
heterodimer with two structurally distinct subunits, p51
(429 AA) and p66 (553 AA) [56]. The docking target site
defined in the DUD-E is a sub-domain (272 AA) derived
from the 3LAN PDB entry [57]. It is composed of a part
of p66 and a small portion of p51 and contains the active
site, an allosteric site and many other pockets and cavities
(Figure 1). The DUD-E provides 338 active molecules and
18880 decoys for HIV-RT.
The second target is a sub-domain (221 AA) of the

human tyrosine-protein kinase ABL1 (1130 AA) as de-
fined in the DUD-E (PDB entry: 2HZI) [58]. Similarly to
the first target, this sub-domain contains the active site, a
secondary BS and many other cavities (Figure 1). A library
of 182 actives molecules and 10745 decoys is provided for
ABL1.
In addition to the specific libraries of active and non-

active molecules provided by the DUD-E, we docked the
Enamine Golden Fragment (EGF) library, composed of
1500 fragments, (www.enamine.net). The EGF collection
follows the “Rule of Three” [59] with range of values in
slightly tighter intervals. In practice, these ranges are: (i)
molecular weight within [ 150, 300] Da; (ii) clogP within

Figure 1 Cavities detected withmkgrid andmapping of the docking outputs with SOMs for DUD-E active molecules docked with ADvina.
(a) HIV-RT represented by ribbons and pink transparent surface, with cavities labeled (1,2,3,4,5,7). Cavities 6,8 and 9 are not visible on this 2D
projection. (b) SOM representation of results. AS fits in the dark blue cavity (2) and BS2 in the big cyan cavity (3). Cavity (6), behind, is pointed out
with an arrow. (c) ABL1 represented by ribbons and light blue transparent surface, with cavities labeled (1’,3’,4’,6’,7’ and 11’). The remaining cavities
are not visible on this 2D projection. (d) SOM representation of results. AS fits in the dark blue cavity (1’) and BS2 is in cavity (6’).

www.enamine.net
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[−2, 3]; (iii) less than 3 Hbond acceptors; (iv) less than
3 Hbond donors; (v) less than 3 rotatable bonds and (vi)
polar surface area inferior to 60Å2.

Cavity identification
An in-house software based on the Lee and Richards sol-
vent accessible surface calculation algorithm [60], called
mkgrid [61] was used to detect cavities embedded in both
protein targets. The method discretizes space on a 0.5 Å
grid and calculates the solvent accessible volume with a
1.4 Å radius probe sphere (also accessing interior cavi-
ties). Bulk solvent is defined with a 10 Å radius probe
sphere. Cavities are defined as the volume accessible to
the solvent, but not to bulk solvent. Remaining void grid
points are clustered by connectivity and labeled accord-
ing to their cluster number to identify individual cavities.
Clusters having less than 96 points (12 Å3, about the vol-
ume of a water molecule) are discarded. The cavities were
graphically inspected.

Docking & virtual screening
The Dock6.0 (Dock) [48] and AutoDock Vina (ADvina)
[49] programs were used for docking. The clustering step
during pruning of the anchor and grow incremental con-
struction approach was disabled for dock. Otherwise the
default parameters were used. For Dock, receptor files
were prepared with Chimera (www.cgl.ucsf.edu/chimera)
[62]. Hydrogens were removed, Gasteiger charges cal-
culated and molecular surfaces generated. We used the

spheres, docking box and mol2 ligand files provided by
the DUD-E. For ADvina, the required PDBQT files for the
receptor and the ligands were generated from the original
mol2 files with the Open Babel converter (openbabel.org).
A maximum of 20 lowest-energy poses were kept for each
ligand.

SOM
To analyze the docked ligand poses, we used an in-house
implementation of the Self-Organizing Map (SOM)
algorithm first introduced by Kohonen [29]. We trained
a 3D non-periodic map, �ijk , with the n 3D coordi-
nate of all atoms of all retained docked ligand poses.
To set up the SOM, the whole set of n atomic coordi-
nates was analyzed by Principal Component Analysis
(PCA). This yielded a set of three normalized principal
components, Vi=1,2,3, with associated lengths Si=1,2,3,
the square roots of the eigenvalues. The dimensions
of the SOM, I, J and K, were set to integer values
approximately proportional to S1, S2, S3, with a product
I×J×K close to 153. These map dimensions are given
in the legends of the Figures 2, 3, 4 and 5 displaying
the SOM results. The maximum and minimum pro-
jection values over the n input vectors on Vi=1,2,3 were
calculated as V+

i and V−
i . The SOM was initialized

with triplets of real numbers regularly spaced along
the three eigenvectors: �ijk = (

V−
1 + i.
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(a) U-matrix (decoys) (b) U-matrix (actives) (c) U-matrix (EGF)

(d) Scores (decoys) (e) Scores (actives) (f) Scores (EGF)

Figure 2 SOM analysis of docking results obtained with ADvina on HIV-RT. Top line, (a), (b) and (c): U-matrices; bottom line, (d), (e) and (f):
docking score projections. Left column, (a) and (d): DUD-E decoys set (map dimensions (I,J,K) = (24,13,11)). Middle column, (b) and (e): DUD-E
active molecules ((I,J,K) = (21,14,11)). Right column, (c) and (f): EGF collection ((I,J,K) = (21,15,11)). Labels (2) and (3) correspond to cavity numbers
used in Figure 1. They designate the AS and BS2, respectively.

www.cgl.ucsf.edu/chimera
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(a) U-matrix (decoys) (b) U-matrix (actives) (c) U-matrix (EGF)

(d) Scores (decoys) (e) Scores (actives) (f) Scores (EGF)

Figure 3 SOM analysis of docking results obtained with Dock on HIV-RT. Top line, (a), (b) and (c): U-matrices; bottom line, (d), (e) and (f):
docking score projections. Left column, (a) and (d): DUD-E decoys set (map dimensions (I,J,K) are (23,17,8)). Middle column, (b) and (e): DUD-E
active molecules ((I,J,K) = (23,18,8)). Right column, (c) and (f)] EGF collection ((I,J,K) = (21,17,9)). Labels (2) and (3) correspond to cavity numbers
used in Figure 1. They designate the AS and BS2, respectively. Regions labeled with red stars correspond to SOM regions appearing on the HIV-RT
surface and considered as docking artifacts.

A training cycle consisted in the presentation of each
of the n input vectors in random order with an update of
the SOM after each presentation (step). Two phases, φ =
1, 2, similar to those previously used [38] were carried out.
In each phase, the radius rφ,t and the learning rate αφ,t at

step t decreased exponentially between initial (0) and final
(f ) values, rφ,0 and rφ,f respectively (rφ,t = (rφ,0 − rφ,f ) ·
exp(−t/λφ) + rφ,f ). The exponential decay, λφ , was set to
the total number of steps of the phase divided by 10. In the
first phase, one training cycle of n steps was performed

(a) U-matrix (decoys) (b) U-matrix (actives) (c) U-matrix (EGF)

(d) Scores (decoys) (e) Scores (actives) (f) Scores (EGF)

Figure 4 SOM analysis of docking results obtained with ADvina on ABL1. Top line, (a), (b) and (c): U-matrices; bottom line, (d), (e) and (f):
docking score projections. Left column, (a) and (d): DUD-E decoys set (map dimensions (I,J,K) are equal to (28,15,8)). Middle column, (b) and (e):
DUD-E active molecules ((I,J,K) = (31,14,8)). Right column, (c) and (f): EGF collection ((I,J,K) = (34,12,8)). Labels (1’) and (6’) correspond to cavity
numbers used in Figure 1. They designate the AS and BS2, respectively.
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(a) U-matrix (decoys) (b) U-matrix (actives) (c) U-matrix (EGF)

(d) Scores (decoys) (e) Scores (actives) (f) Scores (EGF)

Figure 5 SOM analysis of docking results obtained with Dock on ABL1. Top line, (a), (b) and (c): U-matrices; bottom line, (d), (e) and (f):
docking score projections. Left column, (a) and (d): DUD-E decoys set (map dimensions (I,J,K) are (18,17,11)). Middle column, (b) and (e): DUD-E
active molecules ((I,J,K) = (19,18,10)). Right column, (c) and (f): EGF collection ((I,J,K) = (28,13,9)). The label (1’) corresponds to the cavity number
used in Figure 1. It designates the AS.

with ((r1,0, r1,f ), (α1,0,α1,f )) = ((7.5, 3.75), (1, 0.5)). In the
second phase, ten training cycles were performed with the
parameters set to ((3.75, 1), (0.5, 0.1)).
As the SOMs were set up with 3D Cartesian coordi-

nates, their spatial representation on the protein struc-
tures was straightforward. The average docking score of
the atoms mapping one neuron, for example, could simply
be displayed with a color code at the position specified by
the neuron value.
An element of the Unified DistanceMatrix, or U-matrix,

formed by I×J×K elements Ui,j,k called “U-values”, is cal-
culated from the SOMs as the mean Euclidean distance of
the neuron to its 26 direct neighbors. We call areas with
low U-values: “high neuron consensus” areas.

SOM analysis and BS identification
The SOM algorithm reveals docking hotspots by the pres-
ence of areas with low U-values and generally high neuron
densities. Areas between docking hotspots appear as low
density regions on the SOM, and associated with high
U-values.
We defined a cutoff (tU ) on the U-values to distinguish

between potential BSs (consensual binding regions with
U-values ≤ tU ) from barriers between BSs (regions with
U-values> tU ). To automate the definition of tU , we fitted
a Gaussian mixture model (GMM) to the distribution of
the U-values with an algorithm implemented in the scikit-
learn python package [63]. The number of Gaussians to
fit was defined by making use of the Bayesian informa-
tion criterion (BIC) [64]. The components which had the

largest Gaussian weight were selected. The threshold on
the U-value (tU ) was then defined as:

tU = μU +
√

σ 2
U (1)

where μU and σ 2
U are the mean and the variance of the

dominant Gaussian. Neurons with U-values ≤ tU were
aggregated by connexity and defined ncc consensual clus-
ters (CCs).
A radius was then defined to assess if a ligand atom is

overlapping a given CC. This radius was automatically set
with the same strategy as used for tU . The distribution of
distances to the nearest neighbors within the CC (4 neigh-
bors per neurons except at the borders of the SOM) is
fitted with a 2 components GMM. The cutoff distance,
called radius, rCC , is then:

rCC = μd +
√

σ 2
d (2)

where μd and σ 2
d are the mean and the variance of the

dominant Gaussian. The precision is defined as the frac-
tion of ligand atoms that are within rCC distance from any
of the CC neurons.
A SOM neuron was considered to be inside a given

cavity, defined by mkgrid (see Cavity identification para-
graph), if at least one corner of the grid cube encompass-
ing its position value had the label of that cavity.

Chemical descriptors
Compounds were decomposed into chemical substruc-
tures with the circular Morgan fingerprints algorithm
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[50,51] as implemented in RDkit [65], as these Finger-
prints have proved efficient in virtual screening [52-54].
Fingerprints are calculated by decomposition of the com-
pound into substructures with a user-defined maximal
diameter (number of connected bonds). A unique integer
identifier is then assigned to these substructures accord-
ing to atom types and their neighbors.
Substructures were called “chemical features” here. We

calculated features with diameters up to 7 non-hydrogen
atoms and then filtered features with 3 to 7 non-hydrogen
atoms. The docking analysis of the features was per-
formed with SOMs by making use of the geometric center
coordinates of each chemical feature as input vectors.

Analysis of the results obtained with the “chemical
features” decomposition
We defined the following sets: (i) FEGFd is the set of chem-
ical features present in the EGF compounds which were
successfully docked at the protein surfaces, (ii) FAS is the
set of chemical features of the EGF compounds docked at
the AS, (iii) FAS is the set of chemical features of the EGF
compounds which could never dock at the AS, (iv) FA the
set of chemical features present in both the FEGFd and the
set of DUD-E active ligands of the considered target. This
represented the set of “active features”. It was used as a
validation set a posteriori.
Using |F| as the cardinal of the set F, i.e the number of

features belonging to that set, we calculated the enrich-
ment in active features for FEGFd, FAS and FAS as follows:

E(EGFd) = |FA|
|FEGFd| (3)

E(AS) = |FA ∩ FAS|
|FAS| (4)

E(AS) = |FA ∩ FAS|
|FAS|

(5)

Then, the sensitivity Se was calculated as the number of
“active features” that docked in the AS divided by the total
number of “active features”:

Se = |FA ∩ FAS|
|FA| (6)

Similarly, the specificity Sp was calculated as the num-
ber of “inactive features” that never docked in the AS
divided by the total number of “inactive features”:

Sp = |(FEGFd\FA) ∩ FAS|
|FEGFd\FA| (7)

where FEGFd\FA is the set of chemical features present in
FEGFd and not in FA, which constitutes the set of “inactive
features”.
To assess the quality of these quantities, we built a null

hypothesis by randomization of the features that dock in

the AS (FAS) 1 million times. In a perfect scenario, all the
active features (FA) would dock in the AS, giving a sensi-
tivity equal to 1. In the worst scenario, none of the active
features would dock in the AS and Se = 0. The results data
should be normally distributed N(μ, σ). The Z-score is
the distance in terms of σ between the sensitivity obtained
and the mean μ of the normal distribution of sensitivities
corresponding to a random distribution of the features.
We performed the same analysis for the specificity by ran-
domizing the features that would never dock in the AS
(FAS). We consider that any Z-score value higher than 4
for Se and Sp indicate strong significance as they could not
have been obtained randomly.

Results
Binding site identification
We used mkgrid to calculate cavities for all 102 targets
(see Additional file 1: Table S1), and classified them by
the number of cavities having a volume superior to 100Å3

(Table 1). We chose representative targets from the two
largest categories of targets, which had two or three cavi-
ties larger than 100Å3: ABL1 and HIV-RT, respectively. In
a first step of the present work, we calibrated our method
on these two targets.
We analyzed the successful docking poses with SOMs

applied on individual atom Cartesian coordinates. For
HIV-RT, 337 out of 338 DUD-E active molecules could
be docked with ADvina. Similarly, 18873 out of 18880

Table 1 DUD-E targets clustered into categories, according
to the number of cavities (detected withmkgrid) with a
volume superior to 100Å3

Nbre cav Targets

8 pa2ga

6 hmdh

5 braf

4 reni prgr pgh2 glcm esr2 dpp4 cxcr4 cp3a4

3 mk01 kpcb kith hivrt esr1 drd3 cp2c9 aofb adrb1 aces
pgh1 parp1

2

vgfr2 thrb thb tgfr1 src sahh pyrd pygm pparg ppard
ppara nram mcr
lck jak2 inha gria2 gcr fgfr1 dhi1 bace1 andr ampc
adrb2 ace abl1

1

aa2ar ada17 ada akt1 akt2 aldr cah2 casp3 cdk2 comt
csf1r def dyr
egfr fa10 fa7 fabp4 fak1 fkb1a fnta fpps grik1 hdac2
hdac8 hivint hivpr
hs90a hxk4 igf1r ital kif11 kit lkha4 mapk2 met mk10
mk14 mmp13 mp2k1
nos1 pde5a plk1 pnph ptn1 pur2 rock1 rxra try1 tryb1
tysy urok wee1 xiap

The targets HIV-RT and ABL1 used for the calibration step are shown in bold.
They belong to categories 3 and 2, respectively.
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DUD-E decoys, and 1421 out of 1500 EGF fragments
docked. With Dock, the numbers of successfully docked
molecules were 194, 12273, and 1152, respectively. For
ABL1, ADvina allowed the docking of all DUD-E active
molecules (182), all decoys (10745) and 1421 out of 1500
EGF fragments.With Dock on ABL1, 180, 10674 and 1422
molecules docked, respectively. The maps are shown in
Figures 2, 3, 4 and 5.
The distances of the input vectors to their representa-

tive neurons were calculated to evaluate the acuity of the
SOMs (see Additional file 1: Figure S2). They were nor-
mally distributed. For HIV-RT, they were 0.33 ± 0.40 Å
with ADvina and 0.50 ± 0.35 Å with Dock. For ABL1,
distance distributions were similar for ADvina and Dock
(0.33 ± 0.40 Å). Overall, the SOMs appeared fairly acute.
U-values and docking scores were projected on the

SOMs and displayed with a color gradient. The co-
crystallized ligand was also represented in licorice to
show the AS position (Figures 2, 3, 4 and 5). Lower val-
ues (dark blue) indicate regions with a large number of
docked molecules. These high neuron consensus regions
are plausible BS candidates.

HIV-RT
The SOM analyzes for HIV-RT are shown in Figure 2 for
ADVina, and Figure 3 for Dock. U-matrices are shown
in the top line (a-c) and docking score projections in the
bottom line (d-f ).
For ADvina, the U-values for the three libraries, DUD-

E decoys, DUD-E active molecules and EGF fragments,
shown in Figure 2(a) to (c), are quite similar, with the
same areas showing low U-values. One, labeled (2), con-
tains the co-crystallized ligand, and thus fits the AS as
described in the literature (PDB entry: 3LAN). The sec-
ond area, labeled (3), corresponds to an allosteric site of
HIV-RT [66] and will be referred to as the second binding
site (BS2) of HIV-RT. For the EGF library, a higher neu-
ron consensus (lower U-values) is observed at the AS than
with the DUD-E activemolecules. Inversely, the fragments
gave lower neuron consensus than the DUD-E active com-
pounds at the BS2. As regards to docking scores, they are
more favorable at the AS than at the BS2 for all three
libraries (Figure 2(a) to (c)).
The maps obtained with Dock have a different shape

(Figure 3). Five clusters could be identified. Two of them
correspond to the AS and the BS2 described above. The
remaining clusters appear at the surface of the protein
(marked by red stars on Figure 3), and did not match any
detected cavities (Figure 1). They will not be considered as
relevant BSs here.
The neuron consensus obtained at the AS with

the DUD-E active molecules and the EGF fragments
(Figure 3(b) and (c)), were higher than with the DUD-
E decoys (Figure 3(a)). The docking scores alone could

not provide any discrimination with neither of the three
libraries (Figure 3(a) to (c)).

ABL1
The SOMs obtained on ABL1 with ADvina are shown in
Figure 4. U-matrices revealed two high neuron consensus
areas. The first one is the AS of ABL1, containing the co-
crystallized ligand (PDB entry: 2HZI; Figure 4; label (1’)).
The second area matches a big pocket labeled (6’). It is
close to the AS and involves the activation loop of ABL1
[67] and will be referred to as the BS2 of ABL1.
Fragments from the EGF library yielded amore compact

map than the DUD-E molecules (Figure 4(c)). The highest
neuron consensus appeared at the AS.
The docking scores at the AS were lower than at the BS2

with the three libraries (Figure 4(a) to (c)). DUD-E active
molecules and EGF fragments had better scores at the AS
than the decoys.
The SOM analysis of Dock outputs are reported in

Figure 5. Although the spheres defining the docking area
cover the AS, BS2 and other pockets, molecules only
docked in the AS.
DUD-E active molecules (Figure 5(b)) mapped the AS

better than the decoys (Figure 5(a)), as denoted by lower
U-values. The EGF fragments yielded an even more com-
pact map (Figure 5(c)), tightly fitting the AS.

Binding site characterization
For both targets, mkgrid detected cavities corresponding
to AS and BS2, as well as other cavities (Figure 1). We
detected 9 cavities in the HIV-RT target subdomain, 3
of which had a volume larger than 100 Å3 (see Table 1
and Additional file 1: Table S2 for cavities labels). For the
ABL1 subdomain these figures were 12 and 2, respectively.
We calculated the neuron density as the number of neu-
rons inside the cavity divided by the cavity volume (see
Additional file 1: Table S2). We used the SOMs trained on
the EGF outputs for that calculation.

HIV-RT
For HIV-RT, cavities number (2) and (3) corresponding
to the AS and BS2, have volumes of 338.5 Å3 and 957.4
Å3, respectively. The EGF fragments yielded the highest
neuron densities in the AS (3.070 and 2.065 neuron/Å3

with ADvina and Dock, respectively; Table 2). DUD-E
active molecules showed lower neuron densities (1.563
and 1.731 neuron/Å3 with ADvina and Dock, respec-
tively). The lowest values were obtained with the DUD-E
decoys (1.158 and 0.718 neuron/Å3 with ADvina and
Dock, respectively).
Inversely, in the BS2 with ADvina, the highest neu-

ron density was observed with the decoys (1.692
neuron/Å3), followed by the DUD-E active molecules
(1.349 neuron/Å3), then by the EGF fragments (0.976
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Table 2 Neuron density of the active site (AS) and the
second binding site (BS2) of HIV-RT and ABL1, for all study
combinations

Decoys Actives EGF

HIV-RT

AS (338.5Å3)
ADvina 1.158 1.563 3.070

Dock 0.718 1.731 2.065

BS2 (957.4Å3)
ADvina 1.692 1.349 0.976

Dock 0.298 0.315 0.251

ABL1

AS (257.1Å3)
ADvina 1.081 1.851 3.940

Dock 1.412 3.003 6.410

BS2 (615.5Å3)
ADvina 2.587 2.244 2.600

Dock - - -

neuron/Å3). Dock outputs yielded low densities at the BS2
(Table 2).

ABL1
Cavities corresponding to ABL1’s AS (1’) and BS2 (6’)
have volumes of 257.1Å3 and 615.5Å3, respectively. Neu-
ron densities at the AS presented the same trend as that
observed for HIV-RT. The EGF fragments had the high-
est densities (3.940 and 2.677 neuron/Å3 with ADvina
and Dock, respectively), followed by the DUD-E active
molecules (1.851 and 1.254 neuron/Å3 with ADvina and
Dock, respectively), and finally the DUD-E decoys (1.081
and 0.590 neuron/Å3 with ADvina andDock, respectively;
Table 2). For the BS2, the EGF fragments yielded the high-
est densities (2.600 neuron/Å3 with ADvina). The DUD-E
decoy showed the second highest neuron density at the
BS2, followed closely by the active molecules, (2.587 and
2.244 neuron/Å3, respectively; Table 2).
Overall, the EGF fragments yielded the highest neuron

densities at the active sites regardless of the target and the
docking software. Nevertheless, ADvina performed a bet-
ter fitting of the identified BSs for both targets. Moreover,
it is much faster than Dock. In the next step, we assessed
our method performances on all targets in the DUD-E
database using the EGF collection as probe library and
ADvina as docking algorithm.

Automatic BS identification
We automated the protocol identified with HIV-RT and
ABL1: docking of the EGF collection with ADvina and
called it “SOM-BSfinder”. We applied it on the 102 tar-
gets of the DUD-E. Regions of the SOMs presenting high
U-values (see Methods section) were removed, and con-
tiguous regions remaining on the SOM defined as the
consensual clusters (CCs). The number of neurons per CC
were used to sort them. The label 1 was attributed to the
CC with the highest number of neurons, and so on.
The most populated CC, with label 1, was assumed to

predict the AS while the co-crystallized ligand position

was used to define the AS position. Hence, we calculated
the fraction of ligand atoms contained in each SOM CC
for each target. A ligand atom is considered “inside” a
CC if it is located within a distance equal or superior to
the radius of that CC (see Methods and Additional file 1:
Figure S3). The average fraction of overlapping atoms was
equal to 40% and 44% with the first CC and the first
three CCs, respectively. The maximal fraction, equal to
84%, was observed at the first CC for the target FKB1A
(Figure 6). If no precision criterion is applied on these
fractions, SOM-BSfinder was able to detect atoms of the
ligand within the most populated CC in 90% of the cases,
and within one of the three most populated CCs (Top3) in
99% of the cases (101 targets, see Additional file 1: Table
S3). SOM-BSfinder failed to detect the AS for only one
target (XIAP). The distribution of these fractions is repre-
sented in Figure 7 according to the number of identified
CCs.
To better evaluate the accuracy of SOM-BSfinder in

detecting the AS, we calculated at which frequency the lig-
and atoms were found in SOM CC number n (Figure 8).
To remain stringent, detection was considered as failed
if the ligand overlapped two or more SOM CCs (3 tar-
gets: ACE, DRD3 and PLK1) or with no SOM CC (XIAP;
hence, sum of frequency ≈ 96%). The AS was identified
within the first most populated CC in 87% of the cases,
and within the second or the third most populated CC in
less than 9% of the cases. Beyond the thirdmost populated
CC, no overlapping was observed with the ligand atoms
(Figure 8).
We calculated the success rate (SR) of SOM-BSfinder.

For that, we consider that the AS was successfully iden-
tified if the fraction of ligand atoms within the radius
rCC (see Equation (2), Additional file 1: Figure S3) from
SOM CC points was superior to a precision threshold
of 0.25. SOM-BSfinder showed SR values of 90% when
the Top3 CCs were considered, and 82% for the first
CC alone (Table 3, first line). Then, we compared SOM-
BSfinder performances to other energy-based/probe-
mapping methods (FTSite [19], Q-SiteFinder [21,22] and
SiteHound [27]), based on their success rates (SRs). For
that, we had to adapt the precision and radius cutoffs to
match those used by the authors of the concerned pro-
grams. FTSite [19] and Q-SiteFinder [21,22] consider that
the AS was successfully identified if the fraction of lig-
and atoms within 1.6 Å of SOM CC points was superior
to 0.25. In contrast, SiteHound uses a cutoff distance of
2.0 Å, a fraction superior to 0.15 and only consider heavy
atoms. The results for the different methods and SOM-
BSfinder with the respective parameters are shown in
Table 3. In this specific context and with regards to the fact
that different datasets were used by the described meth-
ods, SOM-BSfinder outperformed all three methods (see
Additional file 1: Table S4).
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Figure 6 Results obtained for the FKB1A target. A test case where the AS is detected in the first CC with the maximal precision (fraction of
overlapping atoms equal to 0.84). (a) The SOM obtained for FKB1A with the co-crystal ligand shown in pink licorice. (b) The CCs obtained are ranked
with regards to their neuron densities and represented with a color gradient going from blue (most populated) to red (less populated). The first CC
(dark blue) contains the 84% of the active ligand atoms (shown in pink licorice).

Chemical descriptors
We tested if we could use information on the ligand
chemical composition to provide information on relevant
chemical groups, in addition to the fact that they refined
the acuity of the active site identification.
Wemade this analysis on HIV-RT and ABL1, the bench-

marks used to setup the method.
We used the Morgan fingerprints as chemical descrip-

tors (see Methods). They describe the molecule chemistry
through an inventory of each atom environment, which
can be viewed as local chemical groups or moieties. Their
application gave higher neuron density and consensus for
both HIV-RT and ABL1 (Figure 9), thus refining the BS
geometrical definition.
To evaluate the insight provided with this approach,

we calculated the enrichment of known “active features”.
The latter term denotes chemical substructures observed

Figure 7 Fraction of overlapping ligand atoms with the most
populated consensual cluster (first CC). Data is displayed
according to the number of identified CCs.

in the active ligands provided by the DUD-E database.
The enrichment in “active features” in the EGF collection
E(EGFd), (Equation (3)), their presence in the AS, E(AS),
(Equation (4)), and conversely their absence in the AS,
E(AS), (Equation (5)), are reported in Additional file 1:
Table S5. For both targets, the proportion of active fea-
tures docked in AS was larger than the proportion of
active features that never docked in AS (E(AS)/E(AS) is
4.64 and 4.44 for HIV-RT AS, and ABL1, respectively).
Similarly, the proportion of active features docked in AS
was also higher than the proportion of active features in
the docked fragments (E(AS)/E(EGFd) is 2.85 and 2.87
for HIV-RT and ABL1, respectively, see Additional file 1:
Table S5).

Figure 8 Occurrence of the AS at the different CCs identified.
Cases where the AS is overlapping only one CC (98 cases, 96% of the
targets) are considered for this plot. The first CC accounts for 87% of
the cases, the second CC accounts for 6% and the third CC account
for 3%. Zero occurrence for the AS was detected beyond the third CC.
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Table 3 Success rate values for SOM-BSfinder and other probe-mappingmethods

Precision Method Atom type Radius (Å) Top3 SR Top1 SR

25% SOM-BSfinder all [0.5-0.8] 90% 82%

25%

SOM-BSfinder all 1.6 97% 88%

FTSite (∗) all 1.6 97% 80%

Q-SiteFinder all 1.6 90% 71%

15%
SOM-BSfinder heavy 2.0 98% 89%

SiteHound heavy 2.0 80-84% –

In the first section, SOM-BSfinder performances with its defaults parameters. In the second section, default parameters of FTSite [21,22] and Q-SiteFinder [19] were
used; (*) Values for FTSite were calculated on a set of 35 targets [22]. In the last section, default parameters of SiteHound [27] were used.

We calculated the sensitivity and the specificity of the
method as described in Equations (6) and (7). For both tar-
gets, the sensitivity was moderate, whereas the specificity
was high (0.49 and 0.85, respectively, for HIV-RT and
0.46 and 0.86, respectively, for ABL1 (Table 4)). The ratios
Se/(1−Sp)were higher than 1 in both cases (3.67 for HIV-
RT and 3.28 for ABL1). We also calculated the Z-score
of the sensitivity and the specificity values by compar-
ison to randomized data (see Methods). The very high
Z-score values obtained (Z-score ≥ 20, see Additional
file 1: Table S6) show that these results are significantly
away from a random distribution of the features over the
identified CCs . Interestingly, the ratios Se/(1 − Sp) are
close to 1 for both randomized tests, hence confirming
lack of information content. Se seems to be more affected
than Sp by the randomized test, suggesting that the

sensitivity is, for those targets, the factor yielding a higher
Se/(1 − Sp) ratio and, thus, the discriminating power of
the method.

Discussion
In this work, we presented and evaluated a method for the
identification of binding sites (BSs) based on docking and
Self-Organizing Maps (SOMs). Binding site identification
is essential in the process of structure-based drug discov-
ery, but remains a highly complex task and an active area
of research.
Our method bears similarities to probe-mapping

approaches, but we took advantage of existing dock-
ing algorithms [44] to directly screen small molecule
or fragment libraries. This allowed us to use entire
molecules for the analysis. In contrast, classical probe

(a) U-matrix for HIV-RT
with atomic coordinates

(b) U-matrix for HIV-RT with
coordinates of the geometric
centers of chemical features

(c) U-matrix for ABL1 with
atomic coordinates

(d) U-matrix for ABL1
with coordinates of the ge-
ometric centers of chemical
features

Figure 9 SOM analysis of docking results obtained with ADvina with atomic coordinates as input vectors for HIV-RT (a) and ABL1 (c); and
with the coordinates of the geometric centers of the chemical features as input vectors for HIV-RT (b) and ABL1 (d). Labels (2), (3), (1’) and
(6’) correspond to cavity numbers used in Figure 1. They designate the AS and BS2 of HIV-RT and ABL1, respectively.
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Table 4 Sensitivity (Se) and specificity (Sp) values
obtained for test targets HIV-RT and ABL1

Se Sp Se/(1-Sp)

HIV-RT 0.49 0.85 3.67

ABL1 0.46 0.86 3.28

mapping approaches use atoms or small chemical groups
[17,18,20,68,69] to map a protein surface. The diversity
of the probe library made it possible to take into account
simultaneously shape, volume and the chemical composi-
tion of the protein surface in a more detailed way. Impor-
tantly, our method does not require any prior knowl-
edge on active ligands, but actually identifies promising
moieties.
To calibrate the method, we used 12 different “combi-

nations” of protein targets (HIV-RT and ABL1), docking
programs (ADvina and Dock) and ligand libraries (DUD-
E active molecules, DUD-E decoys and EGF collection).
The method readily identified the experimentally known
ASs regardless of the target, the docking algorithm and the
chemical library. For both targets, we could also identify
a relevant second BS, a known allosteric site of HIV-
RT [66], and an activation site controlling ABL1 catalytic
activity [67,70]. The identified BSs appeared as dense and
homogeneous regions of the SOMs.
The consistency of the results obtained with various dif-

ferent conditions suggests that the method is robust and
applicable to different types of binding surfaces, ligands,
and docking programs. Nevertheless, some combinations
(docking algorithm, chemical library) appeared to per-
form better than others. The EGF fragments turned out
to be the best probe library for our method, surpassing
the dedicated DUD-E activemolecules. This indicates that
prior knowledge on the ligand is less important than the
relevance of the probe library, possibly its chemical diver-
sity and themoderate size of its components. ADvina gave
a finer density and homogeneity compared to Dock. The
energy grid calculation is a key step before the actual dock-
ing. ADvina uses AutoGrid [71] while Dock uses grid [72].
As far as we know, there is no study in binding site identifi-
cation based on grid [72]. By contrast, AutoGrid is used by
two successful probe-mapping/energy-based algorithms;
AutoLigand [18] and SiteHound [27]. ADvina docking
scores were the most favorable at the AS, and permitted
to better discriminate it against BS2 for both targets. Con-
versely, Dock scores were not able to differentiate AS, BS2
and regions on the protein surface for HIV-RT. Finally, the
U-values and the neuron density proved more reliable in
identifying binding sites in general.
To assess the accuracy of our BS identification method,

we automated it using EGF fragments as probe library
and ADvina as docking algorithm. We called this auto-
mated approach SOM-BSfinder. The evaluation of the

density and homogeneity of neurons on the 3D SOM
allow to directly identify consensual clusters (CCs) ranked
according to their densities. No limit to the number of
BSs is required. The user may consider all identified CCs
with respect to prior knowledge of the target, if available.
Nevertheless, SOM-BSfinder was able to detect the AS
exclusively among the Top3 CCs in 96% of the cases, and
in the first CC in 87% of the cases (Figure 8). The average
precision of the BS identification is 44% and 40% for the
Top3 CCs and the first CC, respectively.
With a precision threshold of 25% to define success in

identifying the AS, the success rate (SR) of SOM-BSfinder
was equal to 90% and 82% for the Top3 CCs and first
CC, respectively. It compared favorably with other probe-
mapping/energy-based methods. We compared it with
SiteHound [27] which also used AutoGrid for grid cal-
culation for a carbon probe. This grid is used to identify
three favorable BSs at the protein surface. These sites
are then targeted for the docking of one ligand molecule
with AutoDock 4 [28]. SiteHound achieved a success rate
between 80 and 84% for the first three BSs. Using the same
success criteria than SiteHound (radius = 2.0Å and pre-
cision = 15%), SOM-BSfinder achieved a success rate of
98%.
We also compared SOM-BSfinder to Q-SiteFinder [19]

and FTSite [21,22]. Q-SiteFinder is very similar to Site-
Hound, but used the GRID [16] algorithm for grid calcu-
lation. On a set of 35 targets, with a radius fixed to 1.6Å
and a precision threshold of 25%, it achieved 90% and 71%
of success rates for the Top3 BSs and first BS, respec-
tively. FTSite was tested on the same target set using the
same parameter values [22]. It achieved 97% and 80% of
success rates, respectively. We tested SOM-BSfinder with
these values and obtained 97% and 88% of success for
the Top3 CCs and Top1 CC, respectively. Thus, SOM-
BSfinder is either as good or better than the threemethods
used for comparison. One should note that these results
were obtained on different datasets, except for FTSite and
Q-SiteFinder.
A major difference between SOM-BSfinder and the

other methods is the probe library: SiteHound used a
carbon atom probe, Q-SiteFinder used a methyl probe
and FTSite used 16 organic probes with an average size
of 4.3 heavy atoms. FTSite achieved the best SR among
these three methods. In contrast, SOM-BSfinder used
1500 fragment molecules as probes, and achieved an SR
equal or superior to FTSite. This may be a direct result of
the diversity of the probe library used. Moreover, SOM-
BSfinder takes into account the size and shape of the
fragments during docking, which is less meaningful when
the probe accounts for less than 8 heavy atoms (FTSite).
The ABL1 target was among the 9 cases out of 102

where the AS was identified at the second CC (labeled
(6’) in Figure 4) by SOM-BSfinder. Notably, the first CC



Harigua-Souiai et al. BMC Bioinformatics  (2015) 16:93 Page 13 of 15

corresponded to the BS2 previously defined (labeled (1’)
in Figure 4). Interestingly, when the SOMs are visualized
with the docking score projections (Figure 4), it becomes
more intuitive to select the AS, thus inverting the rank-
ing of the CCs. This shows that the ranking criterion by
decreasing densities, a common way of identifying the AS
[13,73] that performs remarkably well, can still be further
refined. For example, some energy-basedmethods [19,27],
rank the BSs by the cumulative energy of their probes, and
incorporate the quality of the docking and the size of the
cluster.
Use of chemical feature positions as input for the SOMs

improved the characterization as well as the discrimina-
tion of the AS and the BS2. For both test targets HIV-RT
and ABL1, the predicted AS fits the experimentally known
one and is depicted by lowU-values that reflect the homo-
geneity of the docking poses. The BS2 is characterized by a
less distinct area in the SOM than the AS, with less favor-
able docking scores. Moreover, a larger discrimination of
“active features” is found in the ASs, and the specificity is
over 84%. This characteristic of the method could prove
useful in predicting relevant substructures, and favoring
hit discovery and optimization. It also readily provides a
set of potentially active fragments for test in a drug design
project.

Conclusions
The present work presents a new method for binding site
identification called SOM-BSfinder. It is a probe-mapping
method that uses docking of a compound library to map
the protein target surface. Atomic coordinates of the
docked molecules are clustered using a Self-Organizing
Map algorithm to generate a 3D map that reflects pref-
erential binding positions on the protein surface. These
positions constitute consensual clusters that define the
favored binding sites of the probes. The method was cal-
ibrated on two test targets to identify the best conditions
for optimal performances. In a second phase, a bench-
mark was performed on 102 proteins using AutoDock
vina for docking the Enamine Golden Fragments collec-
tion. SOM-BSfinder achieved 90% of successful detection
when the first three consensual clusters are retained, and
82% when only the first cluster is considered. Compared
to existing method, our method achieved either equal
or superior success. The last part of this work consists
in the use of chemical decomposition, using the circu-
lar Morgan fingerprints, of the probes molecules instead
of an atomic decomposition. This lead to a better fit and
descrimination of the active sites. Moreover, these results
could also be used to predict chemical moieties relevant
to bioactivity.
A further advantage of our method is its high flexi-

bility. In our hands, the combination of AutoDock Vina
and the Enamine Golden Fragments collection gave the

best predictions. Nonetheless, similar pipelines could be
implemented with other docking programs, fragment
libraries and/or clustering algorithm to better exploit the
user’s knowledge and expertise on the targeted protein.
Similarly, features other than the Morgan fingerprints can
be employed to describe the ligand chemistry.

Additional file

Additional file 1: Additional file (SupplementaryInformations.pdf)
contains figures and tables with their respective captions and
descriptions.
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