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SUMMARY

Innate lymphoid cells (ILCs) are a family of effectors
that originate from a common innate lymphoid cell
progenitor. However, the transcriptional program
that sets the identity of the ILC lineage remains
elusive. Here, we show that NFIL3 is a critical regu-
lator of the common helper-like innate lymphoid
cell progenitor (CHILP). Cell-intrinsic Nfil3 ablation
led to variably impaired development of fetal and
adult ILC subsets. Conditional gene targeting de-
monstrated that NFIL3 exerted its function prior to
ILC subset commitment. Accordingly, NFIL3 ablation
resulted in loss of ID2+ CHILP and PLZF+ ILC progen-
itors. Nfil3 expression in lymphoid progenitors was
under the control of the mesenchyme-derived hema-
topoietin IL-7, and NFIL3 exerted its function via
direct Id2 regulation in the CHILP. Moreover, ectopic
Id2 expression in Nfil3-null precursors rescued
defective ILC lineage development in vivo. Our data
establish NFIL3 as a key regulator of common help-
er-like ILC progenitors as they emerge during early
lymphopoiesis.

INTRODUCTION

The immune system is composed by myriads of cell types and

lymphoid organs that ensure immune surveillance and protective

immunity. The adaptive immune system arose late in evolution

and consists of B and T lymphocytes that express recombining

antigen-specific receptors. Naive T and B cells are activated

by their cognate antigen in secondary lymphoid organs and un-
Cell
dergo significant cell division and differentiation before exerting

their effector function. In contrast, innate lymphocytes display

rapid effector functions despite their set of limited germ-line-en-

coded receptors. Formore than three decades, natural killer (NK)

cells were the only recognized innate lymphocytes (Diefenbach

et al., 2014; McKenzie et al., 2014; Spits et al., 2013). More

recently, additional innate lymphocytes have been discovered

andwere considered to be part of a family of effector cells collec-

tively named innate lymphoid cells (ILCs) (Diefenbach et al.,

2014; McKenzie et al., 2014; Spits et al., 2013).

ILCs have a lymphoid morphology, lack rearranged antigen

receptors, and are abundantly present at mucosal surfaces,

such as the enteric lamina propria. The expression of lineage-

specific transcription factors and discrete cytokine profiles

led to the identification of three distinct ILC subsets that have

striking parallels with T helper (Th) cell subsets. Group 1 ILCs

(ILC1) resemble Th1 cells and include NK cells and other

IFNg-producing innate effectors ILC1 (Bernink et al., 2013; Die-

fenbach et al., 2014; Fuchs et al., 2013; Klose et al., 2014;

McKenzie et al., 2014; Spits et al., 2013; Vonarbourg et al.,

2010). ILC1s were shown to depend on TBX21 (T-bet), IL-7,

and IL-15 (Diefenbach et al., 2014; McKenzie et al., 2014; Spits

et al., 2013). Group 2 ILCs are similar to Th2 cells. ILC2s are

RORa (Halim et al., 2012; Wong et al., 2012) and GATA3 (Hoyler

et al., 2012; Klein Wolterink et al., 2013; Mjösberg et al., 2012)

dependent, IL-7 dependent, and produce IL-5 and IL-13 (Moro

et al., 2010; Neill et al., 2010; Spits et al., 2013). ILC2s have

been shown to play important roles in helminth infections,

asthma, and allergy contexts (McKenzie et al., 2014; Spits

et al., 2013). Group 3 ILCs (ILC3) are RORgt and partly AhR

dependent, rely on IL-7, and similarly to Th17 cells produce

IL-17 and IL-22 (Diefenbach et al., 2014; Kiss et al., 2011;

Lee et al., 2012; McKenzie et al., 2014; Qiu et al., 2012; Spits

et al., 2013). ILC3s were also shown to mediate inflammatory
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Figure 1. Nfil3 Deficiency Results in Reduced Adult and Fetal ILCs

(A) Fetal liver (FL) CLP, BMCLP and NK, BM and liver ILC1, BM and lung ILC2, gut ILC3, fetal gut (FG) CD4� LTi, FG CD4+ LTi, and B and T cells were analyzed by

quantitative RT-PCR for Nfil3 expression.

(B) Flow cytometry analysis of Nfil3GFP expression in developing BM NK cells, spleen mature NK cells, ILC1s from BM and gut, CLPs, ILC2s from BM and lung,

enteric CD4+ and NKp46+ ILC3s from Nfil3GFP mice, and FL and FG CD4� and CD4+ LTi cells from E15.5 Nfil3GFP embryos.

(C) Number of FL and BM CLPs from Nfil3+/+ and Nfil3�/� mice. BM: Nfil3+/+ n = 6; Nfil3�/� n = 6.

(D) Number of BM and gut ILC1s from Nfil3+/+ and Nfil3�/� mice. BM: Nfil3+/+ n = 9; Nfil3�/� n = 11; gut: Nfil3+/+ n = 6; Nfil3�/� n = 5.

(E) Number of BM, lung, and gut ILC2s fromNfil3+/+ andNfil3�/�mice. BM:Nfil3+/+ n = 6;Nfil3�/� n = 6, lung:Nfil3+/+ n = 8;Nfil3�/� n = 8; gut:Nfil3+/+ n = 3;Nfil3�/�

n = 3.

(legend continued on next page)
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bowel diseases (Buonocore et al., 2010; Vonarbourg et al.,

2010) and to control immune responses to attaching and

effacing enteric pathogens such as Escherichia coli and Citro-

bacter rodentium (Sonnenberg et al., 2011; Zheng et al.,

2008). Lymphoid tissue inducer (LTi) cells are the prototypical

member of ILC3s, are dependent on retinoic acid signaling,

and were shown to play a critical role in secondary lymphoid

organ (SLO) development and tissue homeostasis (Diefenbach

et al., 2014; Spencer et al., 2014; Spits et al., 2013; van de Pa-

vert et al., 2014).

ILCs express the transcriptional regulator inhibitor of DNA

binding 2 (ID2), and Id2 deficiency leads to developmental block

of ILCs (Boos et al., 2007; Moro et al., 2010). ID2 is a helix-loop-

helix factor that was shown to sequester E proteins from their

target gene promoters. Interestingly, EBF1 has been shown to

counter Id2 expression (Thal et al., 2009), and conditional dele-

tion of Ebf1 in committed pro-B cells leads to their conversion

into different ILC subsets (Nechanitzky et al., 2013), suggesting

the existence of a common ILC precursor. Interestingly, a

a4b7+PLZF+ cell was recently identified as a committed precur-

sor to ILCs with the exception of NK and LTi cells (Constanti-

nides et al., 2014) and another study demonstrated that a

a4b7+ID2high cell was the common helper-like innate lymphoid

precursor (CHILP) to all helper-like ILCs (Klose et al., 2014).

Nevertheless, the factors that control the emergence of these

recently described ILC precursors from common lymphoid

progenitors (CLPs) remain unknown. Altogether, these data

suggest the existence of additional, yet unrecognized, tran-

scriptional regulators that set the identity of the CHILP (Klose

et al., 2014).

NFIL3 (also known as E4BP4) is a basic leucine zipper tran-

scription factor that was identified by its DNA-binding activity

(Zhang et al., 1995). NFIL3 coordinates signals from several

regulatory pathways, including the circadian clock. More

recently, NFIL3 was shown to mediate several immune pro-

cesses. NFIL3 controls pro-B cell survival (Ikushima et al.,

1997), IgE class-switch (Kashiwada et al., 2010), Th2 and

Th17 cytokine expression (Kashiwada et al., 2011a; Motomura

et al., 2011; Yu et al., 2013), IL-12 regulation (Kobayashi et al.,

2011; Smith et al., 2011), and CD8a dendritic cell develop-

ment (Kashiwada et al., 2011b). Interestingly, Nfil3-null mice

have an early block in NK cell development that perturbs

ID2, GATA3, EOMES, and TBX21 expression in hematopoietic

precursors (Gascoyne et al., 2009; Kamizono et al., 2009;

Male et al., 2014); these different transcription factors critically

control NK cell differentiation and homeostasis (Spits et al.,

2013).

In this report, we show that cytokine-dependent expression

of NFIL3 promotes the development of theCHILP via direct regu-

lation of Id2. Based on our results, NFIL3 emerges as a key tran-

scription factor that orchestrates the emergence of ILC precur-

sors from CLPs.
(F) Number of gut NCR+ (NKp46+), NCR� (NKp46�CD4�), and CD4+ ILC3 popula

(G) Left: number of a4b7highRORgt+ FL cells. Nfil3+/+ n = 5; Nfil3+/� n = 9; Nfil3�/�

n = 9; Nfil3�/� n = 8.

Error bars show SE. *, **, and *** p values for Student’s t test lower than 0.05, 0.

Cell
RESULTS

Nfil3 Is Expressed byAll Helper-like ILCs and Is Required
for ILC Homeostasis
NFIL3 is an essential transcription factor for NK cell commitment

from lymphoid progenitors. Nfil3-deficient mice have a profound

defect in peripheral NK cell homeostasis, which arises from an

early block in NK cell maturation in the bone marrow (Crotta

et al., 2014; Gascoyne et al., 2009; Male et al., 2014; Seillet

et al., 2014a). As diverse ILCs are thought to arise from lymphoid

precursors via common intermediates (Constantinides et al.,

2014; Klose et al., 2014; Spits et al., 2013), we hypothesized

that Nfil3 might have generalized roles in ILC development.

We first assessedNfil3 expression in lymphoid precursors and

distinct ILC subsets from fetal and adult tissues. We found high

levels of Nfil3 transcripts in all ILC subsets, whereas adaptive B

and T lymphocytes expressed very low levels ofNfil3 (Figure 1A).

In agreement, Nfil3GFP reporter mice revealed that GFP was

clearly expressed byNK cells and their immature BMprecursors,

whereas B and T cells were GFPlo (Figures 1B and S1A). Interest-

ingly, helper ILC1, ILC2, and ILC3 subsets from diverse fetal and

adult tissue sites also expressed high levels of GFP (Figures 1B

and S1A), a finding also confirmed at the protein level using intra-

cellular staining for NFIL3 in adult NK, ILC1, ILC2, and ILC3 sub-

sets (Figure S1B). These data demonstrate that NK cells are not

the only lymphoid cell subset that strongly expresses Nfil3 but

that high constitutive Nfil3 expression is a common character-

istic of all ILC subsets.

To assess the role of NFIL3 on the development and homeo-

stasis of helper-like ILC1, ILC2, and ILC3, we analyzed mice

with a germ-line deletion of Nfil3 (Gascoyne et al., 2009). In the

absence of Nfil3, ILC1 in the BM and gut, ILC2 in the BM and

lung, and CD4+ ILC3 in the gut were all clearly reduced, whereas

CLPs were not affected (Figures 1C–1F). Germ-line deletion of

Nfil3 also resulted in a decrease of RORgt+ ILC3 subsets in the

fetal liver, gut, and lymph nodes with a clear dose-dependent ef-

fect (Figures 1G and S1C–S1F). Consequently, Nfil3 ablation re-

sulted in reduced number of minute PPs and severely diminished

fetal LN size (Figures S1G–S1I). Of note, PPs were also reduced

in Nfil3�/� adult animals, arguing against a putative PP develop-

mental delay (Figure S1G). Taken together, these data confirm

recent reports on the broad role for Nfil3 in controlling the ho-

meostasis of helper ILC subsets and NK cells in both fetal and

adult life (Geiger et al., 2014; Seillet et al., 2014b; Yu et al., 2014).

Hematopoietic-Autonomous NFIL3 Controls ILC
Development before Commitment into Discrete ILC
Lineages
Nfil3 is widely expressed by tissues from different germ layers

having significant pleiotropic effects. In order to determine

whether hematopoietic cell-intrinsic Nfil3 expression is required

for ILC homeostasis, we ablated Nfil3 in a lineage-specific
tions from Nfil3+/+ and Nfil3�/� mice. Nfil3+/+ n = 6; Nfil3�/� n = 7.

n = 8. Right: percentage of FG CD4� and CD4+ LTi cells. Nfil3+/+ n = 5; Nfil3+/�

01, and 0.001, respectively. See also Figure S1.
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fashion. Nfil3fl/fl mice were bred to Vav1-iCre mice, ensuring Cre

activity in the hematopoietic lineage (de Boer et al., 2003; Moto-

mura et al., 2011; Figure 2A). Analysis of adult Vav1-iCre.Nfil3D

mice revealed unperturbed BM CLP development, whereas

helper ILC1, ILC2, and ILC3 subsets were reduced when

compared to their Nfil3fl/fl littermate controls (Figures 2B and

2C). Consistent with observations in germ-line Nfil3�/� mice,

fetal gut ILC3 subsets were significantly reduced in E15.5

Vav1-iCre.Nfil3D/D embryos when compared to their Nfil3fl/fl

littermate controls (Figures 2D, S2A, and S2B).

Having established the important function of NFIL3 in overall

ILC homeostasis, we next assessed whether NFIL3 is still

required upon commitment into mature ILC subsets. In order

to test this hypothesis, we analyzed mice in which Nfil3 was ab-

lated after commitment into the ILC3 lineage using Rorc-Cre

mice (Eberl and Littman, 2004; Figure 2A). Strikingly, analysis

of adult and fetal Rorc-Cre.Nfil3D/D mice demonstrated normal

enteric ILC3 development (Figures 2E, 2F, and S2B), indicating

that NFIL3 exerts its hematopoietic cell-intrinsic function before

Rorc acquisition but appears dispensable once ILC3s become

lineage committed.

Further evidence that NFIL3 is required before RORgt acquisi-

tion was provided by in vitro differentiation assays. The fetal gut

harbors ILC precursors Lin�IL7Ra+a4b7+ID2+RORgt� and CD4�

Rorc-GFP+ LTi that can further differentiate to CD4+ LTi cells

when co-cultured with OP9 cells (van de Pavert et al., 2014).

Whereas these ILC precursors from Nfil3+/� failed to give rise

to committed ILC3s (Rorc-GFP+), Nfil3+/� CD4� LTi (Rorc-

GFP+) could efficiently differentiate into CD4+ LTi cells under

the same conditions (Figures 2G and 2H). Thus, hematopoiet-

ic-autonomous NFIL3 expression in uncommitted fetal ILC pre-

cursors is critical for their further maturation.

NFIL3 Regulates the Emergence of Common Helper-ILC
Precursors
Given the broad impact of NFIL3 on ILC homeostasis and the ev-

idence that NFIL3 exerted its role prior to ILC lineage commit-

ment, we hypothesize that NFIL3 may be required during the

generation of committed ILC precursors (Constantinides et al.,

2014; Klose et al., 2014). Common-helper-like ILC precursors

(CHILPs) have been defined as Lin�IL-7Ra+a4b7highID2+ cells

that express variable amounts of PLZF (Constantinides et al.,

2014; Klose et al., 2014). Using Id2 reporter mice (Rawlins
Figure 2. NFIL3 Acts in a Cell-Autonomous Fashion before Commitme

(A) Conditional Nfil3-deficient animals breeding scheme.

(B and C) Conditional Nfil3-deficient animals were bred with Vav1-iCre animals.

and total ILC3; and NCR+, NCR�, CD4+ ILC3 sub-populations from adult cond

ILC1, and BM ILC2 from Lin� cells: NK Nfil3+/+ = 8.5%, Nfil3�/� = 2%; ILC1 Nfil3+

of NCR+, NCR�, and CD4+ ILC3 from Lin�THY1+ cells: NCR+ ILC3 Nfil3+/+ = 5.3

Nfil3+/+ = 5.6%, Nfil3�/� = 2.9%.

(D) Flow cytometry analysis and percentage of CD4� and CD4+ LTi cells in E15.5

(E) Conditional Nfil3-deficient animals were bred with Rorc-Cre animals. Flow cy

(F) Conditional Nfil3-deficient animals were bred with Rorc-Cre animals. Flow cyt

Nfil3 D/D n = 5.

(G and H)Nfil3+/�mice were bred toRorcGFP animals. E15.5 CD4�LTi cells and RO

cytometry analysis and percentage of ILC3 RORgt+ (G) and CD4+ LTi (H) after 6

Error bars show SE. *, **, and *** p values for Student’s t test lower than 0.05, 0.

Cell
et al., 2009), we found that Nfil3 has a critical, dose-dependent

role in the development of fetal and adult ID2+ CHILPs (Figures

3A and 3B). Similarly, a4b7highPLZF+ progenitors were severely

reduced in the BM and fetal liver of Nfil3 germ-line-deficient

and Vav1-iCre.Nfil3D/D mice (Figures 3C, 3D, S3A, and S3B). In

line with these findings, a4b7+ ILC precursors expressed higher

levels of Nfil3 transcripts, Nfil3GFP, and NFIL3 protein when

compared to CLPs (Figures 3E and 3F).

The observation that CHILPs were strongly reduced in the

absence of Nfil3 provides an explanation for the broad effects

of Nfil3 in ILC homeostasis. Nevertheless, despite the apparent

lack of CHILPs inNfil3-deficient mousemodels, some peripheral

ILC2s and ILC3s were still present in the gut and lung (Figure 1).

This finding could suggest a CHILP-independent pathway of

ILC2 and ILC3 development. Alternatively, despite strongly

reduced CHILPs in Nfil3�/� mice, these rare CHILPs further

develop into ILC2s and/or ILC3s and expand in the periphery.

In order to address these possibilities, we performed competitive

BM reconstitution experiments using lethally irradiated hosts

(CD45.1), which received WT (CD45.2) or Nfil3�/� (CD45.2) BM

against a WT competitor (CD45.1/2) in a 1:1 ratio (Figure 4A).

Analysis of such chimeras 8 weeks after transplantation revealed

that, despite normal CLP development, a4b7high PLZF� and

PLZF+ CHILPs derived from Nfil3�/� precursors were signifi-

cantly reduced when compared to their WT counterparts (Fig-

ures 4B and S4). In line with the normal CLP development in

the absence of NFIL3, thymic T cell development from Nfil3�/�

precursors was indistinguishable from WT (Figure 4C). In

contrast, all mature ILC subsets (ILC1, ILC2, and ILC3) that

derived from Nfil3�/� precursors were consistently and severely

reduced in these chimeras (Figure 4D). Altogether, these data

further confirm that Nfil3 acts in a hematopoietic cell-intrinsic

fashion to drive ILC development. In addition, these results pro-

vide compelling evidence that NFIL3 is a critical regulator of ILC

progenitors in early lymphopoiesis as they emerge from CLPs.

Nfil3 Expression Is Modulated by the gc-Dependent
Cytokine IL7
Early studies of NFIL3 implicated its role in regulating the survival

of lymphoid cells in response to IL-3 (Ikushima et al., 1997).

Therefore, we interrogated whether NFIL3 acts downstream of

critical cytokines required for early stages of ILC development.

Lymphoid precursors were isolated from Nfil3GFP mice and
nt into Mature ILCs

Flow cytometry analysis of liver NK and ILC1; BM CLP and ILC2; enteric ILC2

itional Nfil3-deficient animals and their littermate controls. Frequency of NK,
/+ = 2.5%, Nfil3�/� = 0.3%; ILC2 Nfil3+/+ = 0.5%, Nfil3�/� = 0.03%. Frequency

%, Nfil3�/� = 0.2%; NCR� ILC3 Nfil3+/+ = 31.9%, Nfil3�/� = 5.6%; CD4+ ILC3

FG. Nfil3fl/fl n = 8; Nfil3fl/D n = 7; Nfil3D/D n = 5.

tometry analysis and number of ILC3 in gut. Nfil3fl/fl n = 3; Nfil3D/D n = 3.

ometry analysis and percentage of FG CD4� and CD4+ LTi cells. Nfil3fl/fl n = 7;

Rgt� ILC precursors fromNfil3+/+and Nfil3+/�were co-cultured with OP9. Flow

days of culture. Nfil3 +/+ n = 4; Nfil3 +/� n = 8.

01, and 0.001, respectively. See also Figure S2.
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Figure 3. NFIL3 Is Required for the Emer-

gence of CHILP and a4b7highPLZF+ ILC Pro-

genitors

(A and B) Flow cytometry analysis and number of

CHILP cells in BM and FL fromNfil3+/+ andNfil3�/�

mice. BM: Nfil3+/+ n = 4 and Nfil3�/� n = 5; FL:

Nfil3+/+ n = 5 and Nfil3�/� n = 6.

(C) Number of a4b7highPLZF+ ILC progenitors in

BM from Nfil3+/+ and Nfil3�/� mice and conditional

deficient animals and their littermate controls. BM:

Nfil3+/+ n = 6; Nfil3�/� n = 3; BM: Nfil3fl/fl n = 3;

Nfil3D/D n = 3.

(D) Number of FL CHILP PLZF+ progenitors in

E15.5 Nfil3+/+ and Nfil3�/� embryos. FL: Nfil3+/+

n = 5; Nfil3+/� n = 5.

(E) CLP and FLT3�a4b7high cells were analyzed by

quantitative RT-PCR for Nfil3 expression.

(F) Flow cytometry analysis of Nfil3GFP expression

and NFIL3 in CLPs and FLT3�a4b7high from BM

and E15.5 FL cells.

Error bars show SE. * and *** p values for Student’s

t test lower than 0.05 and 0.001, respectively. See

also Figure S3.
stimulated with IL-7.We found that GFP expression was strongly

induced by this cytokine in BM FLT3�a4b7high ILC precursors as

well as in BM CLP (Figure 5A). In line with these findings, lung

ILC2 and gut NKp46+ ILC3 also upregulatedNfil3GFP expression,

whereas mature NK cells and intestinal ILC1 did not modulate

Nfil3GFP expression (Figures 5B and 5C). Binding of IL-7 to its

cognate receptor triggers a signaling cascade, resulting in the

activation of the JAK/STAT and PI3K/Akt pathways (Demoulin

and Renauld, 1998). Thus, we asked whether IL-7 regulates

Nfil3 in a STAT5-dependent fashion. We found that GFP levels

were reduced in ILC that were cultured with STAT5 inhibitor, indi-

cating that NFIL3 functions downstream of IL-7 and that the acti-

vation of STAT5 is required for IL-7-induced Nfil3GFP expression

(Figure 5D).

As IL-7 could enhance NFIL3 expression in early lymphoid cell

precursors and especially a4b7high ILC precursors (Figure 5A),

we hypothesized that cytokine-driven NFIL3 expression might

regulate these cells as they emerge during early lymphopoiesis.

Thus, we examined ILC2 generation in vitro from single Nfil3+/+

and Nfil3�/� BM CLP. We observed that the average clone
2048 Cell Reports 10, 2043–2054, March 31, 2015 ª2015 The Authors
size of the resultant ILC2 colonies from

Nfil3�/� CLPs were significantly smaller

compared to that obtained from WT

CLP, which could not be explained by

increased apoptosis rates or defective

proliferation capacity (Figures 5E, 5F,

and S5A–S5C). Noteworthy, this finding

was also in agreement with normal pro-

liferation and cytokine production of

Nfil3�/� ILC2 (Figures S5D and S5E).

Interestingly, T cell colony sizes from

Nfil3+/+ and Nfil3�/� CLPs were similar

(Figure 5E), suggesting an ILC-specific

target for NFIL3 action. Taken together,

these data suggest a model whereby the

gc cytokine IL-7 regulates Nfil3 expression in common lymphoid

precursors that impacts on these developing progenitors.

NFIL3 Directly Regulates Id2 in the CHILP
Because Id2+ ILC precursors were strongly reduced inNfil3-defi-

cient mice (Figure 3), we hypothesized that Id2 was a relevant

downstream target of Nfil3 in CHILP. Strikingly, Id2 transcripts

were strongly decreased in both fetal and adult Nfil3�/� ILC pre-

cursors and NFIL3 impacted on Id2 levels in FLT3�a4b7high pre-
cursors, whereas Id2 levels were only moderately modulated in

CLPs and mature ILC subsets (Figures 6A, 6B, and S6A). To

gain additional insight into the regulatory mechanisms of Nfil3,

we performed chromatin immunoprecipitation with a specific

anti-NFIL3 antibody followed by quantitative PCR analysis

(ChIP) in biologically relevant ILC progenitors ex vivo. NFIL3

bound the Id2 locus in CHILP, which also displayed active dime-

thylated H3K4 in the NFIL3-binding region (Figure 6C). Interest-

ingly, whereas enrichment of NFIL3 binding was found at a re-

gion ‘‘D’’ close to the Id2 promoter in CHILP, NFIL3 bound to

the distinct region ‘‘H’’ in more mature ILC2 and ILC3 (Figures
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Error bars show SE. ** and *** p values for Stu-

dent’s t test lower than 0.01 and 0.001, respec-

tively. See also Figure S4.
6C, S6B, and S6C), which also displayed active dimethylated

H3K4 upstream of the NFIL3-binding region (Figure 6C). Note-

worthy, NFIL3 did not bind to important genes to ILC2 and IL3

development, notably Ahr, Tox, Notch2, and Rora (Figure S6D).

Despite this specific NFIL3 binding to the Id2 locus in mature

ILC subsets, Nfil3 ablation did not affect Id2 expression in these

cells (Figure S6A), in agreement with themodel thatNfil3 expres-

sion is critical prior to, but not after, ILC commitment.

To further test whether NFIL3 controls CHILP generation via

Id2, we determined whether differentiation of Nfil3-deficient

ILC in vivo could be restored by enforced Id2 expression. We

transduced Nfil3+/+ and Nfil3�/� fetal liver progenitors with retro-

viral particles expressing Id2 (pMig-Id2) or GFP only (empty vec-

tor) and generated bone marrow chimeras (Figure 6D). Retroviral

transduction of Id2 (pMig-Id2) allowed Nfil3�/� progenitors to re-

acquire their potential to differentiate into ILC1, ILC2, and ILC3

in vivo, whereas ectopic expression of Id2 in WT progenitors

had no impact in ILC lineages (Figure 6D). In agreement, retro-

viral transduction of Id2 (pMig-Id2) also allowed Nfil3�/� CLP

to develop in vitro into PLZF+ CHILP when compared to their

counterparts transduced with retroviral particles containing

GFP only (Figure S6E). Collectively, these experiments demon-

strate that NFIL3 directly regulates Id2 expression in ILC progen-

itors and orchestrates their emergence from CLPs (Figure 6E).

DISCUSSION

The development of multiple and distinct hematopoietic cell

lineages relies on tightly controlled expression of transcription
Cell Reports 10, 2043–2054
factors that promote lineage specification

and commitment while suppressing alter-

native cell fates. As an example, several

regulators induce the development of un-

committed hematopoietic progenitors

into the B or T cell lineage. In contrast to

the transcription factors that promote

generation of adaptive lymphocytes, the

factors that control ILC development are

less well understood.

Diverse ILC subsets can be generated

from CLPs, and ID2 has emerged as

a central regulator of ILC fate (Hoyler
et al., 2012;Moro et al., 2010; Yokota et al., 1999). More recently,

committed precursors to all helper ILCs (CHILPs) were identified

within the fetal and adult Lin�IL-7Ra+a4b7high progenitor cell

population (Klose et al., 2014). Committed ILC precursors

strongly express ID2 and harbor both PLZF+ and PLZF� frac-

tions (Klose et al., 2014), and NOTCH triggering could induce

PLZF expression on PLZF�a4b7high cells, suggesting a precur-

sor-product relation between these subsets (Constantinides

et al., 2014). PLZF-expressing ILC progenitors could give rise

to ILC1, ILC2, and ILC3, but not LTi cells (Constantinides et al.,

2014), whereas Id2+a4b7high ILC precursors originate all help-

er-ILC subsets, suggesting that a4b7highID2+PLZF� cells may

harbor LTi potential. Nevertheless, how the emergence of CHILP

from CLP is regulated remains elusive.

Whereas the transcriptional repressor ID2 is essential for

development of all known ILC subsets, it is not clear how Id2

expression is regulated in lymphoid progenitors (CLP) or how

titration and reduction of E-protein activity allows for emergence

of CHILP from these cells. Previous studies demonstrated that

the transcription factor NFIL3 is broad regulator of ILC homeo-

stasis (Gascoyne et al., 2009; Geiger et al., 2014; Male et al.,

2014; Seillet et al., 2014b), although the molecular basis for the

NFIL3 effect remained unclear. In this report, we demonstrate

that NFIL3 is a critical regulator of the common-helper-like ILC

progenitor (CHILP), while being dispensable for overall helper-

like ILC fate and maintenance of discrete mature ILC subsets

(Geiger et al., 2014; Seillet et al., 2014b). We demonstrate

that IL-7 regulated NFIL3 expression in the CHILP and that

NFIL3 operated via direct regulation of Id2 expression in ILC
, March 31, 2015 ª2015 The Authors 2049
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Figure 5. Nfil3 Expression Is Modulated by

the gc-Dependent Cytokine IL-7

(A–C) BM CLP and FLT3�a4b7high (A), BM ILC2

and gut ILC3 (B), and spleen NK and liver ILC1

cells (C) fromNfil3GFPmice were stimulated in vitro

with IL-7 and analyzed by flow cytometry.

(D) BM ILC2s from Nfil3GFP mice were stimulated

with IL-7 or IL-7 and STAT5 inhibitors and analyzed

by flow cytometry.

(E) Flow cytometry analysis of ILC2 differentiated

in vitro from Nfil3+/+ and Nfil3�/� BM CLPs. iCD3,

intracellular CD3.

(F) ILC2 and T cell number per colony. ILC2:

Nfil3+/+ n = 37; Nfil3�/� n = 46; T cells: Nfil3+/+ n =

49; Nfil3�/� n = 49.

Error bars show SE. **p values for Student’s t test

lower than 0.01. See also Figure S5.
precursors. In agreement, ectopic Id2 expression in vivo rescued

developmental defects of ILC1, ILC2, and ILC3 from Nfil3-null

lymphoid precursors. We further demonstrated that Id2 expres-

sion could rescue PLZF expression in Nfil3�/� CHILP, suggest-

ing a transcription factor cascade that links Nfil3, Id2, and

Zbtb16. Based on our results, NFIL3 emerges as a central regu-

lator of the common helper ILC precursor in early lymphopoiesis.

Interestingly, it was recently shown that NFIL3 could act in CLP

upstream of Tox, also directing the development of a CXCR6+

common cytotoxic and helper ILC precursor (aLP; Yu et al.,

2014). The relationship between aLP and CHILP is unclear, but

it is possible that NFIL3 may act by distinct mechanisms in

different ILC precursors. This notion is also in line with our own

findings showing that NFIL3 binding occurred at different Id2

genomic regions in the CHILP and mature ILC3 and the absence

of NFIL3 binding to Tox in ILC3 (Figures 6C and S6D).

A potent cell-intrinsic role for NFIL3 in the generation of all

recognized ILC subsets, including NK cells (Gascoyne et al.,

2009; Kamizono et al., 2009) and ILC1, ILC2, and ILC3 (this

study; Geiger et al., 2014; Seillet et al., 2014b) has recently

been reported. Our observation that NFIL3 is required for the

generation of helper-ILC precursors, namely a4b7highPLZF�

and a4b7highPLZF+ precursors (Constantinides et al., 2014;
2050 Cell Reports 10, 2043–2054, March 31, 2015 ª2015 The Authors
Klose et al., 2014), confirms a cellular

mechanism for the broad effect of NFIL3

on multiple ILC subsets (Geiger et al.,

2014). On a molecular level, we found

that NFIL3 directly regulated Id2 in

CHILP. ID2 is a transcriptional repressor

that is critically required for NK cell and

ILC development from hematopoietic

precursors (Boos et al., 2007; Moro

et al., 2010; Satoh-Takayama et al.,

2010). We found that Id2 expression in

Nfil3�/� CHILP was severely compro-

mised and that NFIL3 bound specifically

to the Id2 promoter in CHILP-remodeling

chromatin configuration as revealed

by specific enrichment of dimethylated

H3K4. Moreover, ID2 appeared upstream
of Zbtb16 expression in ILC precursors, allowing us to propose a

NFIL3 > ID2 > PLZF transcription factor cascade that regulates

ILC emergence from CLPs.

Our data indicate that cellular expansion of Nfil3�/� ILC pre-

cursors toward ILC2was less robust, although it could not be ex-

plained by reduced proliferation or increased apoptosis, and that

Nfil3-deficient fetal ILC precursors were unable to further mature

in vitro. In addition, we found that Nfil3-dependent CHILP

strongly upregulated NFIL3 expression in response to IL-7.

Thus, we propose that cytokine-dependent signalsmay promote

stabilization and/or enhancement of NFIL3, which in turn orches-

trates the emergence of CHILP via direct Id2 regulation.

Whereas our results clearly indicate an essential role for NFIL3

in early ILC precursors, NFIL3 may also play additional context-

dependent roles at later stages of ILC differentiation and for

maintenance of effector functions in mature ILC subsets. Recent

studies of conditional ablation ofNfil3 in NK cells and NCR+ ILC3

(using Ncr1-Cre mice) failed to identify a major role for NFIL3 in

NK cell proliferation following MCMV infection and maintenance

of mature ILC3, respectively (Firth et al., 2013; Geiger et al.,

2014). Similarly, our results using Rorc-Cre mice likewise sug-

gest that many critical functions associated with ILC3 subsets

(LTi and lymphoid tissue organogenesis) are intact despite
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(A) Nfil3+/+ and Nfil3�/� FLT3�a4b7high cells were analyzed by quantitative RT-PCR for Id2 expression.

(B) Mean fluorescence intensity of Id2GFP in E15.5 FL FLT3�a4b7high cells from Nfil3+/+, Nfil3+/�, and Nfil3�/� littermate controls.

(C) Id2 locus scheme (top). ChIP analysis for NFIL3 and H3K4me2 binding in the Id2 locus of BM CHILP cells (left panel) and E15.5 CD4� LTi cells (right panel).

(D) In vivo Id2 rescue scheme (top). Hematopoietic progenitor cells from Nfil3+/+ and Nfil3�/� (CD45.2) mice were transduced with pMig.Id2-IRES-GFP retroviral

vector and control, and 53 105 total cells were injected into irradiated NSGhosts (CD45.1). GFP-positive cells were analyzed by flow cytometry, and cell numbers

normalized to the transduction efficiency are displayed. Nfil3+/+ pMig-Empty n = 4; Nfil3+/+ pMig-Id2 n = 4; Nfil3�/� pMig-Empty n = 4; Nfil3�/� pMig-Id2 n = 5.

(E) NFIL3 controls helper-like innate lymphoid cell generation through regulation of the CHILP.
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Nfil3 ablation after ILC subset commitment (Figure S2B). In addi-

tion, Nfil3-deficient ILC2 displayed normal cytokine secretion

and expansion in response to IL-33 (Figures S5D–S5F). Finally,

whereas NFIL3 binding to the Id2 locus was a common charac-

teristic of ILC progenitors and mature ILC2 and ILC3, NFIL3

binding occurred at different Id2 genomic regions in the CHILP

and mature ILC, suggesting differential transcriptional activity

of NFIL3 in ILC progenitors and committed cells. Nevertheless,

detailed studies on conditional Nfil3 deletion in mature ILC sub-

sets need to be performed in order to fully address this question.

Our current data demonstrating that NFIL3 is a key regulator of

the common-helper-like innate lymphoid precursor and previous

studies establishing that cytotoxic ILC development, notably NK

cells, also rely on NFIL3 suggest that NFIL3 may be required for

the early establishment of a common helper- and cytotoxic-ILC
Cell
lineage progenitor (Figure 6E). In line with this idea, it was

recently shown that NFIL3 can direct the development of a com-

mon cytotoxic and helper ILC precursor (Yu et al., 2014). Genetic

fate-mapping studies, multiparametric reporter lines, and line-

age-targeted strategies will be central to further elucidate the ex-

istence and the fate of such global innate lymphoid progenitor

(GILP) to helper and cytotoxic ILCs (Figure 6E).

EXPERIMENTAL PROCEDURES

Mice

C57Bl/6 mice were purchased from Charles River. Nfil3GFP transgenic mice

were generated using bacterial artificial chromosomes (BACs) (obtained

from Gene Expression Nervous System Atlas) that comprise the Nfil3 gene

with upstream and downstream regulatory regions. NSG and C57Bl/6 Ly5.1

(CD45.1) mice were maintained in house at Instituto de Medicina Molecular
Reports 10, 2043–2054, March 31, 2015 ª2015 The Authors 2051



(IMM) or purchased from The Jackson Laboratories. Nfil3�/�, Vav1-iCre,Rorc-
Cre, Nfil3fl/fl, RorcGFP, and Id2GFP mice were on a C57Bl/6 background and

were previously described (de Boer et al., 2003; Eberl and Littman, 2004; Eberl

et al., 2004; Gascoyne et al., 2009; Motomura et al., 2011; Rawlins et al., 2009).

Mice were analyzed at the age of 8–12 weeks. All animal experiments were

approved by national and institutional ethical committees, Direção-Geral de

Alimentação e Veterinária, and IMM and Institute Pasteur ethical committees.

Power Analysis was performed in order to estimate the number of experi-

mental mice.

Flow Cytometry Analysis and Cell Sorting

Embryonic guts and lymph nodes were harvested and digested with collage-

nase D (5 mg/ml; Roche) and DNase I (0.1 mg/ml; Roche) in DMEM, 3% FBS

for approximately 40 min at 37�C under gentle agitation. Fetal liver and LN

cell suspensions were obtained using 70-mm strainers. Bone marrow cells

were collected by either flushing or crushing bones. Lungs were minced

and incubated 30 min at 37�C with agitation in HBSS with 5 mM EDTA,

10 mM HEPES, and 5% FBS followed by 1 hr digestion with collagenase D

(5 mg/ml; Roche) and DNase I (0.1 mg/ml; Roche) in RPMI, 5% FBS with

10 mM HEPES. Sequentially cells were purified by centrifugation 30 min at

2,400 rpm in 40/80 Percoll (Sigma) gradient. Small intestines were cut,

washed with PBS 13 5 mM EDTA 15 min at 37�C with agitation. IELs were

removed using a 100-mm cell strainer, and the remaining pieces were

digested 30 min at 37�C with agitation in RPMI with 10 mM HEPES and

5% FBS, collagenase D (5 mg/ml; Roche) and DNase I (0.1 mg/ml; Roche).

Sequentially, cells were purified by centrifugation 30 min at 2,400 rpm

in 40/80 Percoll (Sigma) gradient. Livers were smashed and cells were

purified by centrifugation 30 min at 2,400 rpm in 35% Percoll (Sigma). Intra-

cellular stainings for transcription factors were performed using the Foxp3/

Transcription Factor Staining Buffer Set (eBioscience). For cytokine produc-

tion, cells were stimulated for 4 hr with PMA (phorbol 12-myristate 13-ace-

tate; 50 ng/ml) and ionomycin (500 ng/ml) in the presence of brefeldin A

(3 mg/ml) and analyzed by intracellular staining as described (Klein Wolterink

et al., 2013). The lineage cocktail for adult BM, liver, lung, and gut included

CD3e, CD4, CD8a, CD19, B220, CD11c, CD11b, Ter119, Gr1, TCRb, TCRgd,

and NK1.1. For ILC1 staining in BM, liver, and gut, NK1.1 and CD11b were

not added to the lineage cocktail. The lineage cocktail for FL, E15.5 guts,

and LN included Ter119, TCRb, CD3e, CD19, NK1.1, CD11c, CD11b, and

Gr1. Samples were sorted on a FACSAria I or FACSAria III and analyzed

on a LSRFortessa (BD). Flow cytometry data were analyzed with FlowJo

8.8.7 software (Tree Star). Sorted populations were >95% pure. A complete

description of all populations analyzed and sorted is available in the Supple-

mental Experimental Procedures.

Bone Marrow Transplantation

BM cells were KIT+ MACS sorted from Nfil3+/+ or Nfil3�/� mice. 53 105 sorted

cells were retro-orbitally injected in direct competition with a third-part WT

competitor CD45.1/CD45.2 (1:1 ratio) into lethally irradiated NSG CD45.1

mice. Recipients were analyzed 8 weeks post-transplantation.

Cell Culture and Viral Transduction

For embryonic cell culture, ILC precursors and CD4� LTi cells were sorted

from E15.5 guts and suspended in culture medium OPTI-MEM (Invitrogen)

supplemented with 20% FBS, penicillin and streptomycin (respectively,

50 U and 50 mg/ml; Invitrogen), sodium pyruvate (1 mM; Invitrogen) and

b-mercaptoethanol (50 mM; Invitrogen), and recombinant murine RANK

ligand (rRANKL) (50 ng/ml; Peprotech). Cells were seeded into flat-bottom

96-well plates previously coated with 30,000 rad-irradiated OP9 stromal

cells for 6 days. For IL-7 stimulation, cells were sorted and stimulated

overnight (10 ng/ml), and all conditions were analyzed using a live/dead

cellular marker. STAT5 inhibitor was purchased from Santa Cruz (sc-

355979). For ILC2 differentiation, precursor cells were cultured on OP9-

DL1 cells in the presence of FLT3 ligand (10 ng/ml), IL-7 (10 ng/ml), and

IL-33 (10 ng/ml). The plating efficiency was 54% and 63% for Nfil3+/+

and Nfil3�/� CLP, respectively. For differentiation of ILC progenitors and

acquisition of PLZF, CLPs were cultured 5 days on OP9-DL1 cells in

the presence of FLT3 ligand (10 ng/ml), IL-7 (10 ng/ml), and SCF
2052 Cell Reports 10, 2043–2054, March 31, 2015 ª2015 The Author
(10 ng/ml). For retroviral transduction, cells from Nfil3�/� and WT litter-

mate controls were sorted and transduced with pMig.IRES-GFP retroviral

empty vector or containing Id2 in the presence of polybrene (0.8 mg/ml;

Sigma-Aldrich).

Quantitative RT-PCR

Total RNA was extracted using RNeasy Micro kit (QIAGEN) according to

manufacturer’s protocol. RNA concentration was determined using Nanodrop

Spectrophotometer (Nanodrop Technologies). For TaqMan assays (Applied

Biosystems), RNA was retro-transcribed using High Capacity RNA-to-cDNA

Kit (Applied Biosystems), followed by a pre-amplification PCR using TaqMan

PreAmp Master Mix (Applied Biosystems). TaqMan Gene Expression Master

Mix (Applied Biosystems) was used in real-time PCR. Gene expression

was normalized to Hprt1 and Gapdh. When multiple endogenous controls

are used, these are treated as a single population and the reference

value calculated by arithmeticmean of their CT values. Thus, we used the com-

parative CT method (2 �DCT), in which DCT (gene of interest) = CT (gene of interest) �
CT (Housekeeping reference value). When comparison or fold between samples

was necessary, the comparative DCT method (2 �DDCT), in which

DDCT (gene of interest, population of interest) = DCT (gene of interest, population of interest) �
DCT (gene of interest, reference population). Real-time PCR analysis was performed

using StepOne Real-Time PCR system (Applied Biosystems). Probes can be

found in Supplemental Experimental Procedures.

ChIP Assay

BM CHILP, E15.5 CD4�LTi, BM ILC2, and gut ILC3 cells were isolated by

flow cytometry sorting. Cells were lysed, crosslinked, and chromosomal

DNA-protein complex sonicated to generate DNA fragments ranging from

100 to 300 bp. DNA/protein complexes were immunoprecipitated, using

the LowCell# ChIP kit (Diagenode), with 3 mg of rabbit polyclonal antibody

against NFIL3 (H-300; Santa Cruz Biotechnology), rabbit control IgG

(Abcam), or H3K4me2 (07-030; Millipore). Immunoprecipitates were uncros-

slinked and analyzed by quantitative PCR using primer pairs (50-30) flanking
putative NFIL3 sites on Id2. Results were normalized to input intensity and

control IgG. Experimental controls also included NFIL3 chromatin immuno-

precipitation (ChIP) in fetal Nfil3-deficient ILC3 (Figure S6C) and NFIL3

ChIP analysis in an irrelevant non-transcribed region (segment A; Fig-

ure 6C). Primer sequences are indicated in the Supplemental Experimental

Procedures.

Statistics

Variance was analyzed using F-test. Student’s t test was performed on homo-

scedastic populations, and Student’s t test with Welch correction was applied

on samples with different variances. Mann-Whitney U test was used in sam-

ples that did not follow a normal distribution. Equality of several means was

determined by ANOVA test.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures

and six figures and can be found with this article online at http://dx.doi.org/

10.1016/j.celrep.2015.02.057.
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