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Abstract

Mycobacterium tuberculosis DNA gyrase, an indispensable nanomachine involved in the regulation of DNA topology, is the
only type II topoisomerase present in this organism and is hence the sole target for quinolone action, a crucial drug active
against multidrug-resistant tuberculosis. To understand at an atomic level the quinolone resistance mechanism, which
emerges in extensively drug resistant tuberculosis, we performed combined functional, biophysical and structural studies of
the two individual domains constituting the catalytic DNA gyrase reaction core, namely the Toprim and the breakage-
reunion domains. This allowed us to produce a model of the catalytic reaction core in complex with DNA and a quinolone
molecule, identifying original mechanistic properties of quinolone binding and clarifying the relationships between amino
acid mutations and resistance phenotype of M. tuberculosis DNA gyrase. These results are compatible with our previous
studies on quinolone resistance. Interestingly, the structure of the entire breakage-reunion domain revealed a new
interaction, in which the Quinolone-Binding Pocket (QBP) is blocked by the N-terminal helix of a symmetry-related molecule.
This interaction provides useful starting points for designing peptide based inhibitors that target DNA gyrase to prevent its
binding to DNA.
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Introduction

Type II topoisomerases are essential and ubiquitous nucleic acid-

dependent nanomachines involved in the regulation of DNA

topology and especially in the regulation of DNA supercoiling [1].

Type II topoisomerases act by an ATP-dependant double-stranded

DNA break [1]. Except archaeal topoisomerase VI [2,3], they all

belong to a single protein superfamily, the type IIA topoisomerases,

sharing homologous sequences and overall structures [4]. However,

they have acquired distinct functions during evolution [1]. Bacterial

genomes usually encode two type IIA enzymes, DNA gyrase and

topoisomerase IV. DNA gyrase facilitates DNA unwinding at

replication forks and topoisomerase IV has a specialized function in

mediating the decatenation of interlocked daughter chromosomes

[5]. Mycobacterium tuberculosis, the aetiologic agent of tuberculosis, is

unusual in possessing only one type II topoisomerase, DNA gyrase

[6]. Consequently, the M. tuberculosis DNA gyrase exhibits a different

activity spectrum as compared to other DNA gyrases, namely it

supercoils DNA with an efficiency comparable to that of other DNA

gyrases but shows enhanced relaxation, DNA cleavage, and

decatenation activities [7].

DNA gyrase and topoisomerase IV consist of two subunits

(GyrA and GyrB in DNA gyrase, ParC and ParE in topoisomerase

IV), which form the catalytically active heterotetrameric complex

(i.e. A2B2 and C2E2, respectively). Subunit A consists of two

domains, the N-terminal breakage-reunion domain and a carboxy-

terminal domain, termed CTD. Subunit B consists of the ATPase

domain followed by the Toprim domain. The GyrB Toprim and

GyrA breakage-reunion domains come from separate subunits and

cooperatively form the enzyme core (Figure 1A). The breakage-

reunion domain contains the catalytic tyrosine responsible for the

cleavage and religation of the DNA double helix. Although the

structure of a fully intact, active type IIA topoisomerase has yet to

be determined, structural and biochemical studies of the individual

fragments have led several authors to propose a model of its global

quaternary structure and a catalytic mechanism of the holoenzyme

[8]. The breakage-reunion domain binds a DNA segment termed

the ‘gate’ or G-segment at the DNA-gate. The N-terminal ATPase

domains dimerize upon ATP binding, capturing the DNA duplex

to be transported (T-segment). The T-segment is then passed

through a transient break in the G-segment opened by the

breakage-reunion domains, the DNA is resealed and the T-

segment released through a protein gate, the C-gate, prior to

resetting of the enzyme to the open clamp form.

Quinolones, which target the two bacterial type II topoisom-

erases, exert their powerful antibacterial activity by interfering

with the enzymatic reaction cycle. Specifically, they bind to the

enzyme-DNA binary complex, thereby stabilizing the covalent

enzyme tyrosyl-DNA phosphate ester. The resulting ternary

complexes block DNA replication and lead to cell death [9].
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Quinolones are one of the most effective second-line drugs in the

treatment of multidrug-resistant tuberculosis (MDR-TB; strains

resistant to the two main antituberculous drugs, rifampicin and

isoniazid) [10] and are currently under study for shortening

treatment duration of drug-susceptible tuberculosis [11]. Tuber-

culosis still remains the leading cause of death from a curable

infectious disease causing millions of deaths annually (http://www.

who.int). Unfortunately, due to the long and complex nature of

TB treatment, inappropriate use of first line antituberculous drugs

is common, leading to the emergence of drug-resistant bacilli,

especially MDR strains. Widespread dissemination of these bacilli

poses a serious threat to global TB control [12]. Compared with E.

coli, the ‘‘intrinsic resistance’’ of M. tuberculosis to quinolones is

relatively high, mainly due to the primary structure of DNA

gyrase. Namely, amino acids at positions 81 and 90 in GyrA and

482 in GyrB have been demonstrated to be involved in ‘‘intrinsic

quinolone resistance’’ [13]. Nonetheless, quinolones, and in

particular fluoroquinolones, are essential antibiotics for MDR-

Figure 1. Domain organization and structures of the individual domains from the M. tuberculosis DNA gyrase catalytic core. A.
Domain organization of the M. tuberculosis DNA gyrase. The catalytic core is composed by the Toprim domain and the breakage-reunion domain. B.
Three orthogonal views of the dimeric Toprim domain from M. tuberculosis colored by regions. The crystal structure of the complete Toprim domain
(TopBK) encompasses residues T448 to E654. The schematically represented primary sequence is colored as in the structure. The N-terminal residue
numbers of the regions (Toprim, tail and hinge) and the TopBK C-terminal residue number are indicated. The Toprim region, constituted by
discontinuous N- and C-terminal sequence segments and containing the magnesium-binding site (E459, D532 and D534) and the QRDR-B (Quinolone
Resistance Determining Region in GyrB) is colored in yellow, the Tail region in purple and the hinge between the two regions in blue. The second
monomer generated by a crystallographic two-fold axis is represented in grey. C. Three views of the dimeric breakage-reunion domain from M.
tuberculosis colored by regions. The crystal structure of the complete breakage-reunion domain (GA57BK) extends from D9 to A501. The N-terminal
helix is colored in red, the DNA-gate containing the catalytic residues R128 and Y129 and the QRDR-A in blue, the ‘tower’ in green, the helix-bundle in
orange and the C-gate in purple.
doi:10.1371/journal.pone.0012245.g001

M. tuberculosis DNA Gyrase
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TB [13,14]. However, M. tuberculosis develops ‘‘acquired resis-

tance’’ to quinolones following prolonged exposure, leading to the

emergence of extensively drug-resistant (XDR) strains (MDR-TB

strains resistant to any fluoroquinolone and to at least one of three

injectable second-line anti-TB drugs) [15,16,17]. This ‘‘acquired

resistance’’ is mainly a result of mutations in the DNA gyrase

sequence [18,19]. Mutations conferring bacterial resistance to

quinolones occur in two short discrete segments termed the

quinolone resistance-determining regions (QRDR) [20] located in

the breakage-reunion domain of GyrA subunit (QRDR-A) and less

frequently in the Toprim domain of GyrB (QRDR-B) [20,21,22].

Among the described mutations, we have unequivocally demon-

strated that the nature of the amino acids at positions 88, 90 and

94 in GyrA plays a crucial role in the ‘‘acquired resistance’’ to

quinolones (Table 1) [21,23].

The challenge of better understanding the complex mechanism

of quinolone resistance in M. tuberculosis requires high-resolution

structures of the antibiotic targets. Following our previous results,

the aim of this work was to obtain a 3-dimensional understanding

of the relationships between a given amino acid mutation and

quinolone resistance phenotype in M. tuberculosis. Simultaneously

to our results, two structures of M. tuberculosis DNA gyrase domains

were published last year, the low resolution GyrB’ structure (PDB

code 2ZJT, [24]) and the truncated MtGyrA59 domain (PDB code

3ILW, [25]). The first picture of the enzyme-quinolone interac-

tions was given by the low resolution structures of Streptococcus

pneumoniae ParC breakage-reunion and ParE Toprim domain in

complex with DNA and quinolones (PDB codes 3FOF and 3K9F,

[26]). Moreover, other efforts to develop new potent catalytic

inhibitors of bacterial DNA gyrase were illustrated by the crystal

structure of E. coli DNA gyrase in complex with the bifunctional

antibiotic simocyclinone D8 [27]. Its mode of action is unique in

that it directly interacts with DNA gyrase to prevent its binding to

DNA.

In this work, we combined X-ray crystallographic studies,

sedimentation velocity experiments and activity assays of the two

domains that form the enzyme core of M. tuberculosis DNA gyrase,

the GyrB Toprim and GyrA breakage-reunion domains. We

solved two high resolution structures of the Toprim domain

displaying two different conformations of the metal-binding site, to

2.1 and 1.95 Å resolution, respectively. The crystal structure of the

breakage-reunion domain we solved to 2.7 Å resolution, revealed

a promising interaction that will be further exploited for drug

design. This interaction involves the N-terminal helix, which is

anchored in the active site of a symmetry-related molecule.

Additionally, using the crystal structures of both domains, we

modeled the catalytic reaction core in complex with DNA and a

quinolone. This study brings the first structural explanation on

quinolone resistance mechanism of M. tuberculosis DNA gyrase.

Results

Crystal structures of the Toprim and breakage-reunion
domains are biologically relevant

The C-terminal GyrB domain (Toprim domain, residues 448–

654) and the entire N-terminal GyrA domain (breakage-reunion

domain, known as GyrA59 in E. coli, residues 1–502), hereafter

named TopBK and GA57BK, respectively, were overproduced

and purified. DNA cleavage activity assays show that TopBK is

able to catalyze DNA breaks when associated to the full-length A

subunit. Similarly, GA57BK is able to catalyze DNA breaks when

associated with the full-length B subunit (Figure 2A and B).

Interestingly, the GA57BK-TopBK complex has DNA cleavage

activity, showing that these domains possess all determinants for

DNA cleavage and confirming that these two domains form the

catalytic reaction core of the M. tuberculosis DNA gyrase (Figure 2A

and B). In addition to DNA cleavage, some nicking is also

observed when TopBK is associated either with the full length

GyrA, or with GA57BK (Figure 2B). This could be the result of a

decrease in the complex stability when TopBK is used in the

activity assays.

TopBK was crystallized in presence of magnesium (crystal I) and

calcium (crystal II) and the structures were solved at 2.1 Å and

1.95 Å resolution, respectively, with one monomer in the

asymmetric unit in both cases. Slight modifications of the

previously described crystallization conditions [24,28], e.g. mod-

ifying the pH value and adding divalent cations, led to a space

group change and a substantial increase in the resolution (2.8 to

1.95 Å). A crystallographic two-fold axis generates a dimeric

structure, similar to the dimer observed in the asymmetric unit of

the GyrB’ structure (2ZJT). GA57BK corresponds to the entire N-

terminal domain with a molecular mass of 57 kDa. The crystals

belong to space group C2, with a dimer in the asymmetric unit.

Clear electron density was observed for the N-terminal fragment

that could be built either entirely (chain A) or partially (chain B)

because of different crystal contacts. Consequently, the final model

spans residues 9 to 499 for chain A and 29 to 501 for chain B.

Both TopBK and GA57BK display a dimeric structure in the

crystal (Figure 1B and C). The biological relevance of these

dimeric forms was investigated using analytical ultracentrifugation.

Sedimentation experiments reveal that TopBK and GA57BK

exhibit different behaviour in solution. In the case of TopBK, two

species are observed with a 50/50 distribution when using a

protein concentration corresponding to the crystallization condi-

tions (Figure 2C). The two species display a sedimentation

coefficient of 2.360.1 S and 3.660.2 S, corresponding to the

monomer and the dimer, respectively, according to the theoretical

sedimentation coefficient values calculated from the crystallo-

graphic structure (2.2 and 3.5 S, respectively). In contrast,

GA57BK is mainly dimeric in solution (Figure 2C). Sedimentation

experiments showed that one species was observed with a

sedimentation coefficient of 5.460.2 S, compatible with the value

calculated from the crystallographic dimer structure (5.6 S). The

good agreement between these experimental and theoretical

values indicates that the dimeric conformation of GA57BK is

stable in solution. These results suggest that the biological unit is a

dimer.

Table 1. Mutations described in M. tuberculosis strains
implicated in ‘‘acquired’’ resistance to quinolones.

Mutation
Effect on quinolone
susceptibility Reference

GyrA GyrB

G88A resistance 13

A90V resistance 21

D94A, G, N resistance 21

N499D resistance 21

T80A no effect 21

T80A+A90G hypersusceptibility 21

Summary of mutations described in M. tuberculosis strains (e.g. clinical strains or
strains cultured in vitro in presence of quinolone in order to select a resistant
strain), which have been unequivocally demonstrated as implicated in
‘‘acquired’’ resistance.
doi:10.1371/journal.pone.0012245.t001

M. tuberculosis DNA Gyrase
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The crystal structure of the isolated Toprim domain is a
dimer

The overall fold of the TopBK structure is very similar in both

crystal forms, and also similar to the previously published GyrB’

structure (2ZJT) [24] and to the Toprim domain of the known

eukaryotic counterpart, the yeast topoisomerase II [29]. The

structure displays a two-domain organization, a globular domain

constituted by discontinuous segments (residues 448–564 and 633–

654) and the Tail domain (residues 565–608) connected by a loop-

helix-loop hinge region (residues 609–632) (Figure 1B). The

globular domain, organized in a Rossmann-like fold, contains the

Toprim domain described by Aravind and collaborators [30] and

the QRDR-B (residues 461–499) (Figure 3A and S1). The Tail

domain comprises a three-stranded antiparallel b-sheet and an a-

helix. In the globular domain, the conserved acidic triad (E459,

D532, D534), which constitutes the signature of the Toprim

domain, binds the magnesium ion essential for the catalysis of

the cleavage-ligation reaction. In the structure of crystal I, the

magnesium ion is not visible, despite being present in the

crystallization condition. However, side chains of the catalytic

triad are in conformations which would allow ion coordination, as

observed in the yeast topoisomerase II in complex with DNA

(Figure 3B). Presumably, the ion is not bound due to the absence

of the DNA. When magnesium is substituted in the crystallization

conditions by calcium (TopBK crystal II), side chains of the triad

are observed in an inactive conformation similar to the one

observed for the low resolution M. tuberculosis Toprim domain

structure [24].

The Toprim domain forms a dimer with a symmetry related

molecule in both crystal structures (crystal I and II), burying

1017 Å2 at the protein-protein interface, indicative of a biologi-

cally relevant interaction. The two species observed in sedimen-

tation experiments with a 50/50 distribution are identified as the

monomeric TopBK domain and the crystallographic dimer

suggesting that this crystallographic dimer exists in solution

outside the context of the full-length subunit.

Surprisingly, the high resolution structures of TopBK, revealed

two disordered regions, between b1 and b2 (residues 460–474) and

between b2 and a2 (residues 484–492) (Figure 3A). These regions

are structured in the context of the catalytic core or in presence of

DNA. The first disordered region corresponds to the a1-helix [30],

as observed in the three structures of the yeast topoisomerase II

[29,31,32] and in the structure of the S. pneumoniae reaction core

[26]. Interestingly, this region is located at the dimer interface and

placing an a-helix would generate steric hindrance between the

two helices of the crystallographic related monomers (Figure 3C).

The second disordered region, the loop between b2 and a2, is

exposed to the solvent explaining its high flexibility. In the

structures of type II topoisomerases in complex with DNA, this

loop (hereafter named DBL for DNA-Binding Loop) constitutes

the interface between the Toprim domain and DNA and is

stabilized through protein-DNA interactions.

The breakage-reunion domain is in a closed
conformation

GA57BK forms a biological dimer in the asymmetric unit,

generating a heart-like shaped structure with outer dimensions of

1006100690 Å (Figure 1C) and a central hole of 30 Å diameter

allows the passage of the T-segment from the DNA-gate to the C-

gate. GA57BK forms a biological dimer in a ‘closed’ conformation

in the asymmetric unit, as the C-gate, which constitutes the so-

called primary dimer interface, and the DNA-gate, the secondary

protein-protein interface, are both closed (Figure S2). This closed

conformation is observed in all isolated breakage-reunion domain

structures, the MtGyrA59 from M. tuberculosis [25], GyrA59 from

E. coli and of the two topoisomerase IV structures from S.

pneumoniae [33] and from S. aureus [34]. This shows that the closed

conformation is stable and energetically favorable. This stability is

Figure 2. Activity assays and oligomerization of the TopBK and
GA57BK domains. A. The quinolone-mediated DNA cleavage activity
test measured on supercoiled pBR322 DNA (0.4 mg) as a substrate in the
presence of moxifloxacin (50 mg/ml) and 2.5 mg of each subunit alone:
full length subunit A (ABK), full length subunit B (BBK), GA57BK and
TopBK. Lanes a and b are supercoiled pBR322 DNA and control of
cleavage activity with WT M. tuberculosis DNA gyrase (ABK and BBK),
respectively. B. The quinolone-mediated DNA cleavage activity test
measured on supercoiled pBR322 DNA (0.4 mg) as a substrate in the
presence of moxifloxacin (50 mg/ml) with various amounts (indicated by
values in mg) of GA57BK associated with the full length subunit B (BBK,
1 mg), various amounts of TopBK with the full length subunit A (ABK,
1 mg), and various amounts (indicated by values in mg) of the binary
complex constituted by GA57BK and TopBK. Lanes M, a and b are DNA
size markers, supercoiled pBR322 DNA and control of cleavage activity
with WT M. tuberculosis DNA gyrase (ABK and BBK), respectively. N, L and
S denote nicked, linear and supercoiled DNA, respectively. C. Sedimen-
tation experiments of GA57BK and TopBK. The single peak of GA57BK
corresponds to the dimer, with a sedimentation coefficient of 5.460.2 S.
The two peaks observed for TopBK correspond to the monomeric and
dimeric form, with sedimentation coefficients of 2.360.1 S and 3.460.2 S,
respectively. c(s) on the y-axis designates the distribution of the
sedimentation coefficients observed for the experiment.
doi:10.1371/journal.pone.0012245.g002

M. tuberculosis DNA Gyrase
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essential to generate the interface needed to trap the DNA G-

fragment in order to start the topoisomerase cycle. This is in

agreement with FRET experiments showing that the DNA-gate of

the Bacillus subtilis DNA gyrase is predominantly in the closed

conformation during the DNA relaxation and supercoiling

reactions [35]. When comparing all five protein-protein interfaces

(sum of DNA- and C-gate interfaces), the highest value is observed

for both structures of M. tuberculosis DNA gyrase (Table S1).

Whereas the C-gate displays similar values, ranging from 1029 to

1120 Å2, differences in interface area are observed at the DNA-

gate with a value of more than 800 Å2 for M. tuberculosis,

representing nearly one half of the total interface. Both structures

confirm that the M. tuberculosis breakage-reunion domain has a

compact closed conformation, especially at the level of the DNA-

gate, whatever the crystal environment.

Each monomer of GA57BK contains five distinct regions, the

N-terminal fragment (residues 9–41), deleted in MtGyrA59 and

disordered in the homologous structures, and the four typically

observed regions in breakage-reunion domains of all type II

topoisomerases (Figure 1C and S3). In this way, GA57BK

resembles the type II topoisomerase structures in complex with

Toprim, namely the yeast topoisomerase II or the structure of the

complex between ParC, ParE, DNA and a fluoroquinolone (see

below). The next four domains, the DNA-gate (residues 42–169),

the ‘tower’ (residues 170–355 and 491–501), the C-gate (residues

401–444) and the three-helix bundle (residues 356–400 and 445–

490) (Figure 1C), exhibit an overall structural fold similar to that

observed for other bacterial type II topoisomerases [33,34,36] and

the yeast topoisomerase II [29,31,32]. The DNA-binding helix-

turn-helix motif (a3 and a4 helices), the QRDR-A (residues 74–

113) and the catalytic residues involved in DNA cleavage, namely

R128 and Y129, are localised in the DNA-gate.

The active site is blocked through crystal contacts
established by the N-terminal helix

In contrast to other structures of the breakage-reunion domain

alone (i.e. E. coli DNA gyrase, S. aureus and S. pneumoniae topoisomerase

IV), the N-terminal segment of GA57BK (residues 9–41) is ordered

and is organized in two distinct secondary structures (Figure 4A).

Residues D9 to E16 form a loop whose B factors indicate high

flexibility, followed by a 24-residue long a-helix (Figure 4B). Until

now, this helix was only observed when the Toprim domain is also

present, whether DNA is complexed (in the structure of the S.

pneumoniae topoisomerase IV catalytic core in complex with DNA,

3FOF [26] and the yeast topoisomerase II catalytic core-DNA

complex, 2RGR [29]) or not (in the two structures of the yeast

topoisomerase II catalytic core, 1BJT [32] and 1BGW [31]).

A previously unobserved feature of our crystal structure of

GA57BK is the interaction between this N-terminal region with

neighbouring molecules in the crystal packing. As shown in

Figure 4, the N-terminal fragment residues of chain A in a given

asymmetric unit clearly establish direct contacts with the active site

residues of its nearest neighbour (chain A’) in the adjacent

asymmetric unit. As these two molecules are related by the

crystallographic two-fold axis, this interaction is reciprocal. The a-

helix is deeply anchored in the active site of its neighbouring

molecule. Several hydrogen-bonding interactions link E23 from

the a-helix to the a3–a4 region, namely D89, A90 and S91 from

the symmetry-related molecule (Figure 4C). R26 links the main

chain carbonyl-group of H87 via a water molecule. In addition,

D30 establishes hydrogen bonds with the hydroxyl group of the

catalytic tyrosine (Y129) and a salt bridge with the catalytic

arginine (R128). Finally, on the opposite face of the N-terminal

helix, S27 and Y31 form an H-bonding network with R39 and

R54 from the symmetry-related molecule (Figure 4C). This

arrangement buries a surface area of 1227 Å2, indicating a stable

interaction. The resulting tetramer could explain the small peak

observed in sedimentation experiments (Figure 2B). Further

studies exploiting this interaction for drug design will be

investigated. A peptide of 16 amino acids corresponding to

residues 15 to 30 of the M. tuberculosis breakage-reunion domain

will be used as an inhibitor for M. tuberculosis DNA gyrase in

activity and binding assays in order to develop structure-activity

relationships. Combined docking and molecular dynamics simu-

Figure 3. The TopBK magnesium-binding site. A. Overall view of the dimeric structure of the Toprim domain from M. tuberculosis. One
monomer constituting the asymmetric unit is represented in green, the second monomer generated by a crystallographic two-fold axis in grey. The
secondary structures are indicated by black labels. The locations of the two disordered regions, the DNA Binding Loop (DBL) and the a1-helix, are
indicated by the red labels ‘‘DBL’’ and ‘‘a1’’, respectively. B. The magnesium-binding site of both M. tuberculosis TopBK structures, TopBK crystal I
(3IFZ, in green) and TopBK crystal II (3M4I, in purple) with the conserved residues, E459, D532 and D534. The active site of the S. cerevisiae Toprim
domain (2RGR) is represented in blue and its bound magnesium ion in orange. C. Close view of the TopBK dimer interface. The two symmetry-related
a1 helices (shown in red and grey) generate steric clashes.
doi:10.1371/journal.pone.0012245.g003

M. tuberculosis DNA Gyrase
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lations will be used to design small molecules that mimic the

peptide-active site interactions [37].

The M. tuberculosis breakage-reunion domain possesses
two specific structural motifs

Unexpectedly, structural comparison of M. tuberculosis DNA

gyrase to other type II topoisomerases clearly reveals that there is no

significant difference between a DNA gyrase from species

containing only one type II topoisomerase and the other type II

topoisomerases, DNA gyrase and topoisomerase IV, generally

found in bacteria (Figure S4). However, we found that two regions

could be correlated to the wider substrate spectrum of M. tuberculosis

DNA gyrase function. First, a sequence motif (DPP) in the loop

between the a3–a4 DNA-binding motif and the catalytic tyrosine

residue resembles the sequence observed in topoisomerases IV and

is rarely observed in DNA gyrase sequences. Localised at the side of

Figure 4. The active site of M. tuberculosis DNA gyrase is blocked by the N-terminal helix of a symmetry-related molecule. A. Two
dimers of GA57BK, related by the crystallographic two-fold axis, interact through the N-terminal helix. B. Omit maps for the N-terminal helix. The
(2Fobs – Fcalc) map shown in blue is contoured at 1.5 s whilst the (Fobs – Fcalc) map shown in green is contoured at 3 s. C. Detailed interactions of the
N-terminal helix (chain A’, in hot pink) in the active site of the symmetry-related molecule (chain A, in light green). Y31 of the N-terminal helix and R54
of the symmetry-related molecule are located on the back-side of the helix and are not represented for better clarity. D. Based on the model
discussed in the text, the N-terminal helix (chain A’, in hot pink) occupies the quinolone-binding pocket (QBP) and clashes with the modeled DNA,
represented in orange, and the fluoroquinolone, in yellow, bound to the QBP.
doi:10.1371/journal.pone.0012245.g004
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the DNA-gate and in direct interaction with DNA (Figure 5A and

B), this loop could contribute to the topoisomerase IV-like activity

(i.e. decatenation) of M. tuberculosis DNA gyrase. Second, a specific

insertion in the M. tuberculosis sequence consists in a negatively

charged motif DEEE (residues 211–214) (Figure S3). In the

structure, this motif is localised at the solvent-exposed surface of

the tower domain in the a10-loop-a10’ region (Figure 5C). SAXS

studies showed that this region interacts with the GyrA CTD [38].

Superimposition of the different breakage-reunion domains shows

that the structures display significant differences in this region and

can be clustered in three distinct groups according to the

conformation of the loop (Figure 5C). First, the eukaryotic

topoisomerase II group, represented by the three different structures

of the S. cerevisiae topoisomerase II, is characterized by the absence of

the helices a10’. The second group, which contains the bacterial

type IIA topoisomerases (topoisomerase IV or DNA gyrase) from

organisms containing two topoisomerases, possess a short a10’. The

interaction between this region and the CTD might therefore be

different in these two groups suggesting that this region may be

implicated in functional specificity of type II topoisomerases, as the

CTD plays a crucial role in DNA interaction. Finally, the two

structures of M. tuberculosis constitute the third group. The DEEE

motif creates an extension of the a10’ helix modifying the CTD

interface and could thus play an important role during the catalytic

cycle of the M. tuberculosis DNA gyrase. To confirm the relationships

between these two specific structural motifs and the function of M.

tuberculosis DNA gyrase, the role of the DPP and the DEEE motifs

will be studied through site-directed mutagenesis.

Structural modeling of the catalytic reaction core in
complex with DNA and quinolone

During the catalytic cycle of DNA gyrase, a ternary complex is

formed between the Toprim and the breakage-reunion domains

and DNA. Quinolones target this complex and inhibit the enzyme

through stabilization of the covalent DNA-protein complex

formed during catalysis. To explore the mechanistic implications

of the M. tuberculosis DNA gyrase and to understand how the N-

terminal helix would interfere in the context of the complex

structure, we performed structural modeling of the cleavage

complex based on the structure of a topoisomerase IV complex

[26]. This quaternary complex is composed of the catalytic

reaction core consisting of the breakage-reunion domain

(GA57BK), the Toprim domain (TopBK), a 34-bp DNA duplex

and one of the most promising fourth-generation fluoroquinolone,

moxifloxacin. In the structure of the complex, DNA is settled on

the DNA gate, is linked covalently to the two catalytic tyrosines

129, and is maintained on each side by the ‘tower’ of the breakage-

reunion domain and the Toprim domain (Figure 6). The two

Figure 5. Comparison of the M. tuberculosis breakage-reunion domain to other type II topoisomerase structures. A. Global view of the
breakage-reunion domain. The boxes indicate the three close-up views shown in B, C and D. B. The DPP loop of GA57BK represented in light green is
near the DNA phosphate backbone, in orange (see text for details of the model). C. Close view of the a10–a10’ loop. Both M. tuberculosis structures,
GA57BK (represented in light green) and MtGyrA59 (in yellow) possess a DEEX sequence insertion in this loop. The conformation of this loop is
different in other bacterial type II topoisomerases, namely the three topoisomerase IV structures represented in red and E. coli GyrA59 in green, and in
the three yeast topoisomerase II structures in blue. D. Close-up view of the a3–a4 loop. The conformations of GA57BK chain B (light green), and
MtGyrA59 (yellow) are different from the conformation of GA57BK chain A (light green) and E. coli GyrA59 (dark green).
doi:10.1371/journal.pone.0012245.g005
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catalytic sites related by the heterotetramer two-fold axis are

separated by four base-pairs and each catalytic site contains one

quinolone molecule (Figure 6A and B). The quinolone carboxylate

group points towards the major groove, and the R7 group is

localised in the minor groove. The interaction energy between

each quinolone molecule and its devoted binding pocket is 2105

and 2112 kcal/mol, respectively. The slight discrepancy could

reflect some sequential binding. However, those values evidence a

very good binding affinity that is illustrated in Figures 6B and C.

Discussion

In the present work, we have structurally characterized the two

components of the catalytic reaction core. The structure of the

breakage-reunion domain (known as GyrA59 in E. coli) reveals a

new interaction promising for drug design, whilst the high

resolution structures of the Toprim domain highlights two

disordered regions that play a crucial role during the catalytic

reaction of DNA gyrase. The strong point of this study is that we

could identify original mechanistic properties of quinolone binding

that clarify relationships between amino acid mutations and

resistance phenotype. These structure-mechanism relationships

have been established from the modeling of the catalytic reaction

core based on the two crystal structures, DNA and quinolone,

using the crystal structure of the cleavage complex formed by the

S. pneumoniae breakage-reunion and Toprim domains of topoisom-

erase IV stabilized by a fluoroquinolone [26].

The Quinolone-Binding Pocket (QBP), a drug-binding
pocket composed of protein and DNA residues

Whereas the structures of the S. pneumoniae topoisomerase IV

and the M. tuberculosis DNA gyrase reaction core are very similar,

our model allowed us to establish clear relationships between

Figure 6. Model of the catalytic reaction core in complex with DNA and moxifloxacin. A. Overall structure of the complex. GA57BK is
represented in blue, TopBK in red, the DNA in orange and the moxifloxacin in green. B. Close-up view of the two quinolone-binding pockets (QBP).
The purple arrow highlights the rise of the intercalated base step that constitutes the DNA walls of the QBP. Protein residues that constitute the QBP
protein walls are indicated in red for TopBk and blue for GA57BK. The residues shown in sticks belong to the QRDR and are implicated in quinolone
resistance. C. Close-up view along the DNA axis of one of the two QBP. The same residues as in B are represented in sticks. D. Schematic
representation of the interactions between QBP residues and chemical groups of the quinolone.
doi:10.1371/journal.pone.0012245.g006
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amino acid mutation and resistance phenotype in M. tuberculosis

DNA gyrase. We propose that the atypical quinolone-binding

mode in the Quinolone-Binding Pocket (QBP), whose walls are

constituted not only by regions of the Toprim and the breakage-

reunion domains but also by DNA (Figure 6B), explains the effect

of the amino acid nature at a given position on the observed

resistance. The drug is intercalated between the dinucleotide step

for which the DNA backbone of one strand is broken (the

phosphorus atom is covalently linked to oxygen atom of the

catalytic tyrosine). The intercalated dinucleotide step is strongly

perturbed, with a twist of nearly 10u and a rise of 7.3 Å (36u and

3.4 Å for a canonical B-helix, 33u and 2.7 Å for A-DNA), typical

of an intercalation mechanism (as observed, for example, in the

structure of a DNA-nogalamycin complex [39]). The two

intercalated base pairs form a saddle, where quinolone is stabilised

through p-p interactions (Figure 6B and 7). The quinolone

molecule is blocked in this DNA saddle mainly by Van der Waals

contacts with residues of both protein domains (Figure 6C, D and

7). On one side, the carboxylate and the R2 groups (R2 is a

hydrogen atom in the moxifloxacin) of the drug are maintained by

the a3–a4 loop and the beginning of the a4-helix of the breakage-

reunion domain (residues 86–91). On the other side, quinolone is

immobilized by three regions of the Toprim domain. The b1-a1

loop (residues 459–462) interacts with the R1 group, the b2-DBL

loop (residues 480–486) with the R7–R8 group and the beginning

of a2 (residues 498–502) with the R7 group (Figure 6C and D).

Consequently, both deformation (rise) of the intercalated dinucle-

otide step forming the DNA saddle, and the specific sequence of

the QRDR-A and B, are required to build up the QBP and

determine the geometrical characteristics of the binding pocket

(volume and shape). In addition, the conformation of the loop

connecting helices a3 and a4 (residues 84–88) also affects the

depth of the QBP (Figure 6C and D). Whereas this loop displays

two different conformations in the two monomers in the GA57BK

crystal structure (Figure 5D), our model clearly shows that the

presence of DNA tends to push this loop towards the conformation

observed in the E. coli structure, suggesting that only this

conformation is observed when the QBP is formed.

Structural insights into the mechanism of ‘‘intrinsic
resistance’’ to quinolone

The three residues, M81 and A90 in GyrA and R482 in GyrB

have been shown to be implicated in ‘‘intrinsic’’ quinolone

resistance of M. tuberculosis [13,14]. We have previously demon-

strated that A90S and R482K substitutions (S and K are the

corresponding residues in E. coli) have direct effect on resistance

level [13]. In our model, A90 and R482 are part of the QBP,

residing on the a4-helix and in the b2-DBL, respectively. As

shown in Figure 6C, A90 side chain is oriented toward the

carboxylate group of the quinolone. The substitution of this

alanine for serine could increase the stability of the drug through a

hydrogen bond between the serine side chain and the hydroxyl

group of the quinolone, as observed in the S. pneumoniae complex

(3K9F). Furthermore, the R482 side chain is located in the minor

groove and forms a gate which blocks the quinolone in the pocket

(Figure 7). It has been shown that removing a lysine from the

minor groove energetically costs more than removing an arginine

[40]. The gate will open more easily when the residue at this

position is an arginine, in contrast to lysine, contributing to the

destabilisation of the quinolone in the QBP. This open-close

mechanism of the gate could play a role in the ‘‘intrinsic

resistance’’ mechanism. Finally, in our previous study, we showed

that M81I substitution (I in E. coli) alone had not any effect, but

could raise the quinolone susceptibility when associated with the

A90S mutation [13]. This correlates well with the fact that M81 is

not directly located in the QBP. This residue is spatially too far

from the quinolone-binding site, but it could affect the QBP by

altering the conformation of the a4-helix through direct

Figure 7. Two views of the Quinolone-Binding Pocket (QBP). The DNA-protein complex is represented in molecular surface and moxifloxacine
in sticks. GA57BK is colored in dark blue, TopBK in firebrick, DNA in orange and moxifloxacin in green. The residues of TopBK belonging to the QBP
are colored in yellow for the b1-a1 loop residues, in purple for the b2-DBL residues (including R482), and in pink for the DBL-a2 residues. The residues
of GA57BK belonging to the QBP are represented in light green and correspond to the a3–a4 region.
doi:10.1371/journal.pone.0012245.g007
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interactions of the residue at position 81 and two residues of the

helix, namely D89 and I92. All these observations show that direct

interaction has direct effect on the resistance level, and gives a

synergetic effect role to the amino acid nature at position 81. The

role of amino acids at position 81 and 90 in ‘‘intrinsic resistance’’

will be further investigated through structural studies of the M.

tuberculosis DNA gyrase double mutant A90S-M81I in complex

with DNA and a quinolone.

Structural insights into the mechanism of ‘‘acquired
resistance’’ to quinolone

A number of mutations that lead to fluoroquinolone ‘‘acquired

resistance’’ have been described in the literature [15,16]. They are

all localised in the QRDR-A and -B (residues 74–113 of the

GA57BK structure and 461–499 of the TopBK structure,

respectively). Interestingly, our model shows that all the residues

in the QRDR implicated in the ‘‘acquired resistance’’ are localised

in the QBP (as defined above), highlighting the relationships

between the QRDR of both subunits and the structurally

identified QBP, as previously suggested [41]. The model showed

that the overall geometry of the QBP, rather than the network of

H-bonding, is crucial for the recognition and binding of quinolone

in the pocket. Consequently, amino acid changes in the QBP will

lead to modification of the pocket geometry, either (i) directly, for

residues whose side chains point into the QBP or, most

importantly, (ii) indirectly, through modification of the DNA

structure, for residues interacting with the DNA moiety of the

QBP. Mutations implicated in nearly ninety percent of the

resistant strains are located in the QRDR-A at positions 90 and

94. Interestingly, only A90, which also contributes to the intrinsic

resistance of M. tuberculosis, interacts through a CH-O bond

between its methyl group with the quinolone carboxylate group.

Substitution by a valine could generate steric hindrance and this

could explain why this mutation is known to increase quinolone

resistance [42]. Mutations at other positions on the a4-helix affect

the DNA backbone structure by changing the major groove

dimensions, as DNA stacks on the a4-helix (Figure 6B and C).

Consequently, the size of the saddle formed by the intercalated

base pairs will be modified (Figure 7). This size modification could

affect the binding and the stability of the drug in the QBP. To

illustrate this mechanism, the amino acid at position 94 has a

paradoxical effect on the resistance level. Indeed, substitution by

either smaller residues like glycine or alanine and bulky residues

like tyrosine both increase the resistance level [21]. These residues

will either expand or reduce the volume of the pocket, leading to

instability of the quinolone in the QBP. Mutations in the QRDR-

B, like N499, are much less frequent, but their effects on DNA

gyrase activity can also be explained by this shape recognition

mechanism. All these observations can be used to improve the

efficacy of already existing quinolones.

Conclusion
Taken together with our previous work concerning the role of

specific residues implicated in quinolone resistance [13,23], our

structural results concerning the M. tuberculosis breakage-reunion

and Toprim domains and the modeled complex of the catalytic

reaction core provide key insights into the relationship between the

amino acid sequence of the M. tuberculosis DNA gyrase and the

resistance mechanism to quinolones, a major class of antibiotics

against this pathogen. In addition, these results highlight two

directions for future work. First, M. tuberculosis DNA gyrase, the

single type II topoisomerase in this organism, possesses two specific

structural motifs, the DEEE loop and the DPP loop, which could

partially explain its different activity spectrum as compared to

topoisomerase IV or DNA gyrase. Hence, this atypical activity

spectrum could be explained by the unique nature of the amino

acids present in the DNA gate. Second, the N-terminal helix of the

GA57BK structure is structurally ordered and stabilised through

crystal contacts. Interestingly, this helix blocks the active site of a

symmetry-related molecule through interactions with residues of

the a3–a4 loop. In the asymmetric unit, the dimeric structure

displays two different conformations for this loop. In agreement

with what was proposed by Tretter et al. [25], this suggests that this

region is conformationally dynamic (Figure 5D). Furthermore, this

helix contacts active site residues important for the catalysis of the

breakage-ligation reaction. The presence of this N-terminal helix

would prevent DNA binding (Figure 4D). These observations will

be exploited for the design of a new inhibitor family using peptide-

based approaches that target DNA gyrase by competitive

inhibition of DNA binding. Thus, they open up new avenues for

the development of novel peptide-based DNA gyrase inhibitors,

providing valuable new strategies to combat this disease as strains

resistant to the current repertoire of drugs are emerging.

Materials and Methods

Cloning, expression, purification and crystallization of
GA57BK

The breakage-reunion domain of DNA gyrase subunit A from

M. tuberculosis (residues 1–502), hereafter named GA57BK because

of its molecular weight of 57 kDa, was cloned, expressed and

purified as reported previously [43]. Briefly, the PCR amplified

construct was ligated into the pET-29a vector (Novagen) between

the NdeI and XhoI sites. The C-terminal His-tagged protein was

overproduced after transforming the plasmid into Rosetta 2(DE3)

pLysS (novagen), and purified with a Ni-NTA column and a size

exclusion chromatography using Superdex-75 10/300 (GE

Healthcare). The protein was concentrated to 10–15 mg/ml in

100 mM Tris-HCl pH 8.

Ga57BK crystals were prepared using the hanging drop vapor

diffusion method, mixing 2 volumes of protein sample against 1

volume of reservoir solution [100 mM Sodium HEPES pH 7.5,

4% PEG 4000, 30% MPD]. Crystals grew after several days at

21uC to a maximum size of 2006200650 mm3.

Data collection, structure determination and refinement
of GA57BK

Crystals were directly flash frozen in liquid nitrogen. Native

diffraction data were collected at the SOLEIL PROXIMA-1

beamline to 2.7 Å resolution. The XDS package [44] was used for

all data integration and scaling. The crystals belong to space group

C2 with unit cell dimensions a = 163.9 Å, b = 109.6 Å,

c = 102.0 Å, b= 120.4u and contain one biological dimer in the

asymmetric unit corresponding to a Matthews coefficient value of

3.4 Å3/Da [45]. Data collection statistics are shown in Table 2.

The structure of GA57BK was determined by molecular

replacement with AMoRe [46] implemented in CCP4 [47] using

the breakage-reunion domain of the DNA gyrase from E. coli [36]

(pdb accession code 1AB4) as a search model. Two distinct

orientations and positions were found in the asymmetric unit.

Structure refinement was carried out with BUSTER-TNT [48]

using two-fold non-crystallographic symmetry restraints. Model

building was performed manually with the program Coot [49].

Model refinement statistics are summarized in Table 2. The

figures were prepared using PyMol [50], available at http://pymol.

sourceforge.net/. Interface areas were calculated with the PISA

server [51].

M. tuberculosis DNA Gyrase

PLoS ONE | www.plosone.org 10 August 2010 | Volume 5 | Issue 8 | e12245



Cloning, expression, purification and crystallization of
TopBK crystal I and II

The Toprim domain of DNA gyrase subunit B from

Mycobacterium tuberculosis (residues 448–675), hereafter named

TopBK, was cloned into the expression vector pRSF-2 Ek/LIC

(Novagen). The plasmid was transformed into Rosetta 2(DE3)

pLysS (Novagen). The transformed cells were grown in LB

medium in presence of chloramphenicol and kanamycin. Gene

expression was induced by addition of IPTG (Sigma) to a final

concentration of 1 mM at 22uC over night. Cells were harvested

by centrifugation and stored at 220uC one night. Cells were

resuspended in buffer B1 containing 20 mM Tris-HCl pH 8,

500 mM NaCl and 15 mM imidazole. The cells were lysed by

sonication. Following the centrifugation, the protein was run over

a Ni-NTA column (GE Healthcare) equilibrated with buffer B1 at

4uC. The TopBK protein was eluted using a linear gradient from

15 to 500 mM imidazole. Finally, the protein was loaded on a

Superdex-75 10/300 (GE Healthcare) equilibrated with a buffer

containing 20 mM Tris-HCl pH 8. The protein was then

concentrated to 5 mg/ml in the same buffer.

TopBK crystal I was obtained in 10% PEG 4K, 200 mM

ammonium sulfate, 15 mM magnesium chloride, 100 mM Tris-

HCl pH 8 by vapour diffusion with the hanging drop vapour

diffusion method mixing 2 volumes of protein sample with 1

volume of reservoir solution [10% PEG 4K, 200 mM ammonium

sulfate, 15 mM magnesium chloride, 100 mM Tris-HCl pH 8].

TopBK crystal II was obtained in similar conditions, except that

magnesium chloride was substituted by calcium chloride.

Data collection, structure determination and refinement
of TopBK

For TopBK crystal I, diffraction data were collected at ESRF on

beamline id23eh1 to 2.1 Å resolution. The XDS package was used

for data processing and scaling (Table 2). The crystals belong to

Table 2. Data collection and refinement statistics.

TopBK crystal I TopBK crystal II GA57BK

Data Collection

Beamline ESRF ID23eh1 SOLEIL
PROXIMA 1

SOLEIL
PROXIMA 1

Space group P43212 P43212 C2

Unit cell dimensions

a, b, c (Å) 52.9, 52.9, 190.2 52.8, 52.8, 190.5 163.9, 109.6, 102.0

a, b, c (u) 90, 90, 90 90, 90, 90 90, 120.4, 90

Wavelength (Å) 0.9762 0.9800 0.9800

Resolution (Å) 14–2.1 (2.3–2.1)a 29–1.95 (2.06–1.95) 35–2.7 (2.8–2.7)

Rsym (%)b 13.0 (55.0) 7.5 (58.7) 8.6 (72.6)

Redundancya 8.6 (4.0) 7.6 (7.8) 3.5 (3.5)

Completeness (%)a 99.1 (86.5) 99.7 (99.2) 98.9 (99.0)

I/sig(I)a 13.1 (3.3) 16.9 (3.4) 12.44 (2.24)

Refinement

Resolution (Å) 14.0–2.1 17.0–1.95 19.9–2.7

No. Reflections 16487 20626 42396

No. Atoms

Protein 1474 1482 7534

Water 107 147 238

Rwork/Rfree
c 0.214, 0.249 0.210, 0.230 0.192, 0.233

B-factors

Protein 38.3 37.8 52.5

Water 52.6 52.2 57.6

RMSD

Bond length (Å) 0.004 0.007 0.004

Bond angles (u) 0.835 0.97 0.719

Ramachandran analysis

Most favored (%) 93.8 92.7 90.2

Additional allowed (%) 5.6 6.7 9.3

Generously allowed (%) 0.0 0.0 0.4

Disallowed (%) 0.6 0.6 0.1

aThe values in parentheses are statistics from the highest resolution shell.
bRsym~

PP
DIhkl{Ihkl jð ÞD=

P
Ihkl where Ihkl(j) is the jth observed intensity of Ihkl and Ihkl is the final average value of intensity.

cRwork~
P

DDFobs D{DFcalc DD=
P

DFobs D and Rfree~
P

DDFobs D{DFcalc DD=
P

DFobs D where the sum is restricted to reflections that belong to a test set of 5% randomly selected
data.

doi:10.1371/journal.pone.0012245.t002
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space group P43212 with unit cell dimensions a = b = 52.87 Å,

c = 190.22 Å. The structure of TopBK was determined by

molecular replacement with Molrep [52] implemented in ccp4

using one monomer of the previously published structure (PDB

accession code 2ZJT, [24]) as the starting model. The asymmetric

unit contains one monomer corresponding to a Matthews

coefficient value of 2.4 Å3/Da. Structure refinement was carried

out with BUSTER-TNT to 2.1 Å resolution. Model building was

performed manually with the program coot. Model refinement

statistics are summarized in Table 2. For TopBK crystal II,

diffraction data were collected at SOLEIL PROXIMA 1 to 1.95 Å

resolution. TopBK crystal II is isomorphous to crystal I and

structure determination protocol was the same as for crystal I

(Table 2).

Analytical ultracentrifugation
Sedimentation velocity experiments were performed in a

Beckman XL-I analytical ultracentrifuge using a double sector

charcoal-Epon cell at 20uC and 42000 rpm. Absorbance scans

were taken at 276 nm every 6 min. The protein concentration was

1 mg/ml for GA57BK corresponding to 17.5 mM in 20 mM Tris

pH 8. For TopBK, experiments were performed at three protein

concentrations, 0.5, 1 and 4 mg/ml (corresponding to 18, 37 and

148 mM, respectively) in the same buffer. The program Sednterp

1.09 (available at http://www.rasmb.bbri.org) was used to

calculate solvent density (0.9988 g/cm3), solvent viscosity

(0.010069 Poise) and partial specific volume (0.7340 ml/g for

GA57BK and 0.7390 for TopBK) using the amino-acid compo-

sition. The sedimentation data were analyzed with the program

Sedfit [53] using the continuous c(s) and c(M) distributions.

Theoretical sedimentation coefficients were calculated from the

crystal structure PDB file using Hydropro 7c [54] with a hydrated

radius of 3.4 Å for the atomic elements. The same experiments

were performed for GA57BK and TopBK in 20 mM Tris pH 8

and 100 mM NaCl. Sedimentation data were analyzed with

appropriate values of solvent density and viscosity.

Activity assays
DNA supercoiling and cleavage assays were carried out as

previously described [7,13,23,55]. Briefly, DNA cleavage assays

were performed with various ratios of purified M. tuberculosis GyrA

and GyrB subunits or GA57BK and TopBK domains. The

reaction mixture (total volume 20 ml) contained DNA gyrase assay

buffer (40 mM Tris-HCl pH 7.5, 25 mM KCl, 6 mM magnesium

acetate, 2 mM spermidine, 4 mM DTT, 0.1 mg/ml E. coli tRNA,

BSA (0.36 mg/ml), 100 mM potassium glutamate), supercoiled

pBR322 DNA (0.4 mg) as the substrate and moxifloxacin (50 mg/

ml). Proteins were added and reaction mixtures were incubated at

25uC for 1 h. Three ml of 2% SDS and 3 ml of a 1 mg/ml solution

of proteinase K were added, and incubation was continued for

30 min at 37uC. Reactions were terminated by the addition of

50% glycerol containing 0.25% bromophenol blue, and the total

reaction mixture was subjected to electrophoresis in 1% agarose

gel in TBE 0.56 buffer (Tris-Borate-EDTA, pH 8.3). After

running for 3.5 hrs at 50 V, the gel was stained with ethidium

bromide (0.7 mg/ml), photographed and quantified with an Alpha

Innotech digital camera and associated software. All enzyme

assays were done at least twice, with reproducible results.

Molecular modeling
The catalytic core model (GA57BK2+TopBK2+DNA) was

generated by superposition onto the crystal structure of the

Streptococcus pneumoniae topoisomerase IV catalytic core [26] (pdb

accession code 3FOF). Chains A and B from 3IFZ (GA57BK)

were superposed to the corresponding chains from 3FOF,

respectively, using SSM implemented in coot. The two disordered

regions of the TopBK structure were modeled using the Toprim

domain of 3K9F as a template. The amino acid torsion angles in

these regions were validated using the Ramachandran plot. The

two monomers of TOPBK were superposed using the same

method to the chains C and D of the S. pneumoniae topoisomerase

IV catalytic core structure. The DNA coordinates (chain E, F, G,

H) without moxifloxacin were inserted in the complex and defined

as fixed atoms. The complex was then energy minimized. Energy

minimization was performed with the NAMD2 program [56]

using CHARMM27 force field. The system was minimized by

300 000 steps of conjugate gradient minimization. Non bonded

interaction parameters were set such that electrostatic interaction

is shifted to zero at 12 Å and the van der Waals interaction is

switched off from 10 Å to 12 Å.

For the docking, the two fluoroquinolone moieties were

extracted from 3FOF coordinates. They were positioned in the

minimized catalytic core with respect to their respective positions

in the 3FOF structure. The system was further minimized using

the Minimization module of Discovery Studio� (Accelrys), the

CHARMM forcefield and a cascade of Steepest Descent, Gradient

Conjugate and Adopted Basis Newton Raphson minimizations,

during which the backbone of the protein complex plus the DNA

atoms were constrained while the side chains and ligand moieties

were allowed to relax (6,000 iterations with final RMS gradient

0.01). We computed energetic criteria as the potential energy of

the complex. The minimised model deviates from the crystal

structure of the Streptococcus pneumoniae topoisomerase IV catalytic

core with an rmsd of 2.4 Å over 1033 Ca atoms. Finally, we

computed the interaction energy (which corresponds to the sum of

VDW and electrostatics non-bonded interactions) between each

moxifloxacin and its devoted quinolone-binding pocket with the

Calculate Interaction Energy module of Discovery Studio�
(Accelrys).

Accession numbers
Co-ordinates and structure factors of TopBK crystal I have been

deposited in the protein data bank with the code 3IG0, TopBK

crystal II with the code 3M4I and GA57BK with the code 3IFZ.

Supporting Information

Table S1 Values of the interfaces calculated by PISA for the five

structures of the breakage-reunion domain dimer in closed

conformation. The PDB codes for the five structures are given:

3IFZ (this work) and 3ILW (25) correspond to M. tuberculosis DNA

gyrase, 1AB4 (36) to E. coli DNA gyrase, 2INR (34) to S. aureus

topoisomerase IV, 2NOV (33) to S. pneumoniae topoisomerase IV.

Nat, Nres correspond to the number of atoms and residues,

respectively, in interaction between the two monomers.

Found at: doi:10.1371/journal.pone.0012245.s001 (1.36 MB

DOC)

Figure S1 Structure-based sequence alignment of the Toprim

domain from type II topoisomerases. The sequence names are as

follows: MtGyr (PDB code 3IFZ) (this work), M. tuberculosis DNA

gyrase; SpTopIV (PDB code 3FOF) (26), S. pneumoniae topoisom-

erase IV and ScTopII (PDB code 2RGR) (29), S. cerevisiae

topoisomerase II. alpha-helices (cylinders) and beta-strands

(arrows) of M. tuberculosis GA57BK are shown with the sequences

and color-coded according to Figure 1 (Toprim region in yellow,

the hinge in blue and the Tail region in purple). Residues

emphasized by black shading are 100% conserved. The magne-

sium binding site residues are underlined by red stars (E and DxD).
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The disordered regions are emphasized in pale grey and indicated

as alpha1 and DBL for DNA Binding Loop. The QRDR-B is

delimited by a blue frame.

Found at: doi:10.1371/journal.pone.0012245.s002 (0.04 MB

DOC)

Figure S2 The three different conformations of the breakage-

reunion domain. A. The breakage-reunion domain of M.

tuberculosis (PDB id 3IFZ) (this work), representing the closed

conformation with the DNA-gate and the C-gate closed. This

closed conformation is also observed in the E. coli DNA gyrase (36),

S. pneumoniae and S. aureus topoisomerase IV breakage-reunion

domain structures (33,34). B. The breakage-reunion domain of S.

cerevisiae in complex with DNA (PDB id 2RGR) (29), representing

an open conformation with the DNA-gate open and the C-gate

closed. C. The breakage-reunion domain of S. cerevisiae (PDB id

1BGW) (31), representing an open conformation with the DNA-

gate closed and the C-gate open.

Found at: doi:10.1371/journal.pone.0012245.s003 (0.90 MB

DOC)

Figure S3 Structure-based sequence alignment of the breakage-

reunion domain from type II topoisomerases. The sequence names

are as follows: MtGyr (PDB code 3IFZ) (this work), M. tuberculosis

DNA gyrase; EcGyr (PDB code 1AB4) (36), E. coli DNA gyrase;

SaTopIV (PDB code 2INR) (34), S. aureus topoisomerase IV;

SpTopIV (PDB code 2NOV) (33), S. pneumoniae topoisomerase IV;

EcTopIV (PDB code 1ZVU), E. coli topoisomerase IV and

ScTopII (PDB code 2RGR) (29), S. cerevisiae topoisomerase II.

alpha-helices (cylinders) and beta-strands (arrows) of M. tuberculosis

GA57BK are shown with the sequences and color-coded

according to Figure 1 (N-terminal helix in red, DNA-gate in blue,

Tower in green, helix bundle in orange and C-gate in purple).

Residues emphasized by black shading are 100% conserved. The

catalytic residues are underlined by red stars (R128 and Y129) and

GA57BK specific motifs by black stars (the DPP and DEEX

motifs). The QRDR-A is delimited by a blue frame.

Found at: doi:10.1371/journal.pone.0012245.s004 (0.06 MB

DOC)

Figure S4 Superimposition of the different monomer structures

of the breakage-reunion domain. M. tuberculosis DNA gyrase

GA57BK (3IFZ) (this work) in light green, M. tuberculosis DNA

gyrase MtGyrA59 (3ILW, 25) in pale green, E. coli DNA gyrase

(1AB4) (36) in dark green, S. pneumoniae topoisomerase IV (2NOV)

(33) in red, S. aureus topoisomerase IV (2INR) (34) in pale red, S.

pneumoniae complexed with DNA (3FOF) (26) in dark red and E. coli

topoisomerase IV (1ZVU) in firebrick. The rmsd (in Ang.) after

superimposition and the number of common Ca (in parenthesis)

are indicated in the table. The color code is conserved.

Found at: doi:10.1371/journal.pone.0012245.s005 (0.43 MB

DOC)
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