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Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. BoNTs associate with non-toxic proteins to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.

I) Introduction

Botulinum neurotoxins (BoNTs) are responsible for human and animal botulism, a rare but severe disease that causes a descendant flaccid paralysis which can be lethal if not treated.

BoNT/A is the most potent toxin ever known with an estimated lethal dose of 0.3 ng/kg in mice by intraperitoneal route [START_REF] Gill | Bacterial toxins: a table of lethal amounts[END_REF]. BoNTs are mostly produced by C. botulinum but also by atypical strains of other Clostridium species.

The first descriptions of botulism were reported in Germany in 1793 and this disease was linked to the consumption of blood sausages prepared from pork. Indeed, in its natural form botulism is mostly acquired after absorption of BoNTs from the digestive tract following the ingestion of food contaminated by C. botulinum and its toxin. BoNTs are metalloproteases that specifically cleave SNARE (N-ethylmaleimide sensitive factor (NSF) attachment protein receptor) proteins localized at motoneuron nerve endings leading to an inhibition of evoked acetylcholine secretion and thus the characteristic flaccid paralysis.

C. botulinum and the other BoNT-producing clostridia are obligate anaerobic Grampositive bacteria. Their ability to form spores enables them to survive for long periods of time under stressful environmental conditions. BoNT-producing clostridia are heterogeneous and are divided into 6 groups [START_REF] Louis | Botulism: The Organism, Its toxin, The disease[END_REF]. Strains from the different groups exhibit specific physiological properties that dictate their main localization in the environment, such as resistance to high NaCl concentration, temperature or extreme pH and nutrient availability [START_REF] Marvaud | Le botulisme : agent, mode d'action des neurotoxines botuliques, formes d'acquisition, traitement et prévention[END_REF]. For example, group II strains can grow and produce toxins at temperature as low as 3°C whereas group I strains, which include type A neurotoxin producing C. botulinum, do not synthesize toxins at temperatures below 10°C. C. botulinum produces 7 BoNT types (A to G) based on their antigenic properties and many subtypes based on amino acid sequence variations [START_REF] Smith | Sequence Variation within Botulinum Neurotoxin Serotypes Impacts Antibody Binding and Neutralization[END_REF]. An eighth toxinotype (H) has recently been reported but awaits for further characterization [START_REF] Dover | Molecular Characterization of a Novel Botulinum Neurotoxin Type H Gene[END_REF].

Considering their physiological differences, limiting the proliferation of C. botulinum strains and toxin production has become a major issue in the food-processing industry, especially since the development of modified-atmosphere packaging (MAP) which strongly inhibits aerobic bacterial growth but has only limited effects on anaerobic bacteria [START_REF] Genigeorgis | Microbial and safety implications of the use of modified atmospheres to extend the storage life of fresh meat and fish[END_REF]. Based on the high potency of BoNTs, understanding the factors that govern the toxinogenesis in C.

botulinum and control of BoNT production notably in food processing are major challenge in the field.

BoNT production varies between strains, medium and culture conditions; thus it has rapidly become apparent that environmental factors play a central role in toxin production.

Two-component systems (TCSs) allow bacteria to sense environmental changes and to adapt in response to various stimuli including chemical (temperature, pH, ions), physical (oxygen pressure, osmolarity, redox state) and nutritional (glucose, tryptophan) stimuli by regulating the expression of specific genes at the transcriptional level. They are widespread among bacterial species and are involved in the control of gene expression of complex regulatory networks. For instance, recent evidence has shown that TCSs regulate cold tolerance in C.

botulinum types E and A [START_REF] Mascher | The twocomponent system CLO3403/CLO3404 of Clostridium botulinum E1 Beluga is important for cold-shock response and growth at low temperature[END_REF][START_REF] Lindström | Involvement of two-component system CBO0366/CBO0365 in the cold shock response and growth of group I (proteolytic) Clostridium botulinum ATCC 3502 at low temperatures[END_REF]. It has also been demonstrated that TCSs are major regulatory systems for the control of virulence factor production in numerous intracellular or extracellular pathogenic bacteria such as Clostridium perfringens, Helicobacter pylori or Listeria monocytogenes (for review see [START_REF] Beier | Regulation of bacterial virulence by two-component systems[END_REF]).

Although the molecular mechanisms of TCSs are well described, most of the stimuli that trigger regulation by TCSs are yet unknown. The involvement of TCSs in toxinogenesis in C.

botulinum is largely underestimated and the aim of this review is to highlight the role of TCSs and additional regulatory genes in the direct or indirect regulation of toxin production in C. botulinum.

II)

Toxinogenesis in C. botulinum, a highly regulated process a. Genetic organization of the botulinum toxin locus

In cultures, food, or digestive tract, BoNTs are produced in combination with associated non-toxic proteins (ANTPs) to form complexes of different sizes that spontaneously associate at low pH and dissociate at pH 7.5 and above (reviewed in [START_REF] Popff | Structural and genomic features of clostridial neurotoxins[END_REF]). ANTPs include the non-toxic non-hemagglutinin (NTNH) protein and hemagglutinin proteins (HAs) or OrfX proteins whose function is not well defined [START_REF] Gu | Botulinum neurotoxin is shielded by NTNHA in an interlocked complex[END_REF][START_REF] Gu | Assembly and Function of the Botulinum Neurotoxin Progenitor Complex[END_REF][START_REF] Benefield D A | Molecular assembly of botulinum neurotoxin progenitor complexes[END_REF]. NTNH has a main role in BoNT protection against low pH and protease degradation [START_REF] Gu | Botulinum neurotoxin is shielded by NTNHA in an interlocked complex[END_REF]. Thus BoNT complexes are stable in the highly acidic environment of the stomach. This operon lies upstream of the ntnh-bont operon and is transcribed in the opposite direction.

Genes encoding

Indeed, the operon can be formed by ha genes (ha70, ha17, and ha33 also named ha1, ha2 and ha3 respectively), which code for HAs proteins and are associated with BoNT/A5, B, C, D and G types, or orfX genes (orfX1, orfX2 and orfX3) associated with BoNT/A2, A3, A4, E, F types. BoNT/A1 is either associated with HAs or OrfX according to the strains [START_REF] Dineen | Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum[END_REF][START_REF] Hauser | Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum[END_REF][START_REF] Henderson | Genetic characterisation of the botulinum toxin complex of Clostridium botulinum strain NCTC 2916[END_REF][START_REF] Yang | Organization and nucleotide sequence of genes for hemagglutinin components of Clostridium botulinum type B progenitor toxin[END_REF][START_REF] Dover | Clostridium botulinum Strain Af84 Contains Three Neurotoxin Gene Clusters: Bont/A2, bont/F4 and bont/F5[END_REF].

Two additional genes (botR and p47) are also found in the botulinum toxin locus. botR codes for an alternative sigma factor which plays an important role in the positive regulation of botulinum toxin synthesis (see part IIc). In most trains, botR lies between the two operons, except in botulinum toxin locus type C and D where botR is located upstream of ha operon (Fig. 1). The function of p47 is still unknown [START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF]. Most of the strains contain either botR or p47 in their botulinum toxin locus. However, some strains encompass both botR and p47 which are transcribed in the opposite orientation [START_REF] Dineen | Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum[END_REF][START_REF] Brüggemann | Genomes of Foodborne and Waterborne Pathogens[END_REF][START_REF] Collins | Phylogeny and taxonomy of the food-borne pathogen Clostridium botulinum and its neurotoxins[END_REF][START_REF] Jacobson | Analysis of neurotoxin cluster genes in Clostridium botulinum strains producing botulinum neurotoxin serotype A subtypes[END_REF][START_REF] Kubota | Gene arrangement in the upstream region of Clostridium botulinum type E and Clostridium butyricum BL6340 progenitor toxin genes is different from that of other types[END_REF][START_REF] Li | Molecular characterization of type E Clostridium botulinum and comparison to other types of Clostridium botulinum[END_REF][START_REF] Lin | Expression of the Clostridium botulinum A2 neurotoxin gene cluster proteins and characterization of the A2 complex[END_REF]. This is the case for strains of the C. botulinum A and F with an orfX-bont locus [START_REF] Hill | Recombination and insertion events involving the botulinum neurotoxin complex genes in Clostridium botulinum types A, B, E and F and Clostridium butyricum type E strains[END_REF].

Depending on the strain, the ntnh-bont operon can be transcribed as a monocistronic or bicistronic messenger in C. botulinum type A and type C1 strains, whereas the p47-ntnh-bont operon of botulinum toxin locus of Kyoto F type A2 strain is transcribed as a tricistronic operon only [START_REF] Hauser | Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum[END_REF][START_REF] Bradshaw | Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC[END_REF][START_REF] Binz | The complete sequence of botulinum neurotoxin type A and comparison with other clostridial neurotoxins[END_REF]. The culture conditions can influence the transcription of the botulinum toxin locus genes. For example, in C. botulinum E strain CB11/1-1, distinct expression patterns of the six genes of the botulinum toxin locus at low and high temperatures suggest that type E neurotoxin cluster genes are transcribed as two tricistronic operons at 30°C, whereas the locus genes are mainly transcribed as monocistronic operon (bontE or orfx1 alone) and bicistronic (ntnh-p47 and orfx2-orfx3) at 10°C [START_REF] Chen | Quantitative real-time reverse transcription-PCR analysis reveals stable and prolonged neurotoxin cluster gene activity in a Clostridium botulinum type E strain at refrigeration temperature[END_REF]. Transcriptional analysis of C. botulinum type A, B and subtype A2 showed that ha and orfX loci are transcribed as tricistronic messengers [START_REF] Dineen | Nucleotide sequence and transcriptional analysis of the type A2 neurotoxin gene cluster in Clostridium botulinum[END_REF][START_REF] Henderson | Genetic characterisation of the botulinum toxin complex of Clostridium botulinum strain NCTC 2916[END_REF][START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF][START_REF] Yang | Organization and nucleotide sequence of genes for hemagglutinin components of Clostridium botulinum type B progenitor toxin[END_REF].

b. Expression and kinetic production of botulinum complex Expression of botulinum toxin locus genes is a highly controlled process involving various environmental and regulatory factors. Indeed, botulinum toxin gene expression during growth was monitored using real-time PCR and northern blot analyses on C. botulinum type A and E [START_REF] Bradshaw | Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC[END_REF][START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF][START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF][START_REF] Artin | Effects of carbon dioxide on neurotoxin gene expression in nonproteolytic Clostridium botulinum Type E[END_REF]. At 37°C, the botulinum toxin locus genes exhibit the same kinetics of expression including: weak expression during the exponential growth phase, then an increased expression reaching its maximal rate (100-fold increase) at the transition phase between the end of the exponential growth and the beginning of stationary phase. After 24-h of growth, the expression rate of botulinum toxin locus genes returns to the rate observed in the early growth phase [START_REF] Bradshaw | Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC[END_REF][START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. These data suggest that toxin gene expression in C. botulinum is tightly regulated and is growth phase dependent. BoNT and ANTP accumulation in the supernatant of C. botulinum type A and E, as monitored by the lethal activity and biochemical approach, reaches the highest value 12 hours after the peak of bont gene expression and remains stable for at least 5 additional days [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF].

It is not yet defined how the toxin is released in the extracellular medium. One hypothesis suggests that the toxin is freed into the extracellular medium during autolysis. Indeed, comparison of 2 strains from the group I proteolytic stains of C.botulinum type A, Hall A and NCTC2916 (A(B)), shows that they exhibit different patterns of growth, toxin expression, production and toxin release [START_REF] Rao | Variations in expression and release of botulinum neurotoxin in Clostridium botulinum type A strains[END_REF][START_REF] Olsen | Analysis of the genetic distribution among members of Clostridium botulinum group I using a novel multilocus sequence typing (MLST) assay[END_REF]. Although both strains reach the same maximal amount of toxin after 48h of growth in the extracellular medium, neurotoxin release starts during exponential growth and only a small increase in toxin release is observed during autolysis of C. botulinum Hall A, whereas BoNT release and autolysis are concomitant in NCTC916 [START_REF] Rao | Variations in expression and release of botulinum neurotoxin in Clostridium botulinum type A strains[END_REF].

However, the same strains show similar growth kinetics and patterns of botulinum locus gene expression and BoNT accumulation in the extracellular medium in another study using different culture media [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. Moreover, BoNT/A release in the extracellular medium starts concomitantly with the exponential growth phase as monitored by ELISA assay and lethality test on mice suggesting that another process than autolysis is involved [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF][START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. Thus, the release of BoNT/A in the extracellular medium may differ depending on experimental procedure, growth medium and strains.

Interestingly, C2 toxin produced by type C and D strains, which is an additional toxin distinct from the neurotoxin, is only produced during the sporulation phase. Conversely, no direct link between BoNT synthesis and sporulation has been identified at least in C.

botulinum A and E.. [START_REF] Bradshaw | Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC[END_REF][START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF][START_REF] Rao | Variations in expression and release of botulinum neurotoxin in Clostridium botulinum type A strains[END_REF]. However, A significant difference in antp expression was observed between the two conditions. Thereby, a study performed in our laboratory showed that in non-sporulating cultures of C. boutlinum NCTC2916, the relative expression of bont/A and antps are equivalent, while in sporulating conditions, the relative expression of bont/A is twofold higher than that of ntnh/A and ha35. Moreover, in sporulating conditions, ha genes are differentially expressed with ha35 transcripts being twofold more expressed than ha17 and ha70 transcripts [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. Thus an indirect link between sporulation and BoNT/ANTP production may exist.

c. BotR, an alternative sigma factor Before 2012, the only known regulator of toxinogenesis in C. botulinum was the alternative sigma factor BotR that drives RNA polymerase to transcribe genes of both operons of the botulinum toxin locus [START_REF] Marvaud | botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A[END_REF]. The DNA binding properties of BotR were first described in 1995 in C.botulinum type C [START_REF] Hauser | Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum[END_REF]. Homologs of BotR were subsequently identified in C.

botulinum types A, B, D, F and G but no homologs could be found in C. botulinum type E.

Homologs of BotR have also been evidenced in other Clostridium species like TetR in

Clostridium tetani, TcdR in Clostridium difficile, and UviA in Clostridium perfringens [START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF][START_REF] Mani | Regulation of toxin synthesis in Clostridium difficile by an alternative RNA polymerase sigma factor[END_REF][START_REF] Dupuy | Transcription activation of a UVinducible Clostridium perfringens bacteriocin gene by a novel sigma factor[END_REF][START_REF] Marvaud | TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR[END_REF]. These homologs are positive regulators of their corresponding toxin genes (TetR for tetanus toxin gene (tent), TcdR for toxA and toxB and UviA for C. perfringens bacteriocin gene), and they are functionally interchangeable in vitro and in vivo [START_REF] Dupuy | Regulation of toxin and bacteriocin synthesis in Clostridium species by a new subgroup of RNA polymerase sigma-factors[END_REF]. For example, an overexpression of botR/A and to a lesser extent botR/C in C. tetani, enhances TeNT synthesis suggesting that these sigma factors have a conserved function in several Clostridium and that they probably have evolved from a common ancestor [START_REF] Marvaud | TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR[END_REF]. BotR/A and its homologs have been assigned to a new cdRsubfamily group within the sigma (70) family on the basis of target DNA sequence (Fig. 2)  conserved promoter region (TTTAXA) which is distinct from themotifs targeted by the sigma factors from other families [START_REF] Dupuy | Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors[END_REF] . Moreover, the fact that TcdR is not interchangeable by a group 4 ECF (Bacillus subtilis w), a close related factor group, further supports that TcdR and related proteins belong to a distinct group of factors [START_REF] Dupuy | Regulation of toxin and bacteriocin gene expression in Clostridium by interchangeable RNA polymerase sigma factors[END_REF].

The mechanism of action of BotR/A and TetR was exhaustively studied by S. Raffestin et al. [START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF]. Footprinting experiments on DNA fragments containing the promoter region of the ntnh-bont/A operon showed that BotR/A specifically recognizes conserved sequences localized at -10 (GTTATA), and -35 (TTACA) within the promoter binding sites ATGTTATATataa and TagGTTTACAAAA, respectively [START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF]. These regions are also conserved in the promoter region of ha operon of C. botulinum types B, C, D and G and in the promoter of tent in C. tetani [START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF]. Then, BotR promotes the RNA polymerase-dependent transcription of the ntnh-bont and ha operons. Overall, BotR/A positively regulates the operons of the botulinum toxin locus in a dose dependent manner, increasing production of BoNT and ANTPs, and it was concluded that BotR/A is a transcriptional activator of botulinum toxin locus genes [START_REF] Marvaud | TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR[END_REF]. BotR/A can also target its own promoter, but no initiation of transcription could be observed in vitro, whereas TcdR in C. difficile activates its own expression [START_REF] Raffestin | BotR/A and TetR are alternative RNA polymerase sigma factors controlling the expression of the neurotoxin and associated protein genes in Clostridium botulinum type A and Clostridium tetani[END_REF][START_REF] Mani | Environmental response and autoregulation of Clostridium difficile TxeR, a sigma factor for toxin gene expression[END_REF].

In comparison with bont/A expression, botR/A is expressed approximately 100 fold less than the other genes of the botulinum toxin locus [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF][START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. Although BotR directly regulates botulinum toxin locus genes, it seems to have multiple targets. Transcriptomic analysis in C.

botulinum A were performed in isogenic strains which either overexpressed or partially repressed botR/A [START_REF] Marvaud | TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR[END_REF]. In these strains, a set of genes are overexpressed [START_REF] Hauser | Botulinal neurotoxin C1 complex genes, clostridial neurotoxin homology and genetic transfer in Clostridium botulinum[END_REF] and underexpressed (6) of at least 4-fold compared to the wild type strain including botulinum toxin locus genes but also many enzyme genes and to a lower extent, membrane and transporter genes (unpublished data as monitored by a microarray based transcriptomic analysis [START_REF] Connan | Regulation of toxin synthesis in Clostridium botulinum and Clostridium tetani[END_REF]). However, it is highly improbable that BotR is the only regulatory factor involved in toxinogenesis of C. botulinum. Indeed, expression of botulinum toxin genes and toxin production in C. botulinum E, which lacks botR but has p47, show the same kinetics of growth and toxin production as in C. botulinum A [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. The maximal expression of bont/E at the transition between the late exponential and early stationary phases strongly suggests that other regulatory pathways are involved.

d. Environmental stimuli in BoNT production and complex stability It has been known for decades that nutrient availability and environmental stimuli play an important role in toxin production in C. botulinum (Fig. 3).

The source of nitrogen in culture media is critical for BoNT production. Although toxin production by various C. botulinum strains has been obtained in diverse culture media ranging from complex media containing meat, yeast hydrolysates, vegetable extracts, to simpler media based on hydrolysates of casein, the complex media with meat extracts yielded the highest levels of toxin [START_REF] Shone | Growth of Clostridia and preparation of their neurotoxins[END_REF]. It seems that the size of peptides in complex media is critical (unpublished data).

Certain amino acids have been found to be important for toxin synthesis. For example, in minimal defined medium, group I C. botulinum strains require high concentrations of phenylalanine (> 1 g/l) and arginine (>3 g/l) for maximal toxin production [START_REF] Patterson-Curtis | Regulation of neurotoxin and protease formation in Clostridium botulinum Okra B and Hall A by arginine[END_REF]. However, in C. botulinum Okra B and Hall A, an excess of arginine in the culture media (20g/l) represses

BoNT/A and BoNT/B synthesis, respectively, without modification of growth or lysis [START_REF] Patterson-Curtis | Regulation of neurotoxin and protease formation in Clostridium botulinum Okra B and Hall A by arginine[END_REF]. A similar phenomenon is observed with proline, glutamate or ammonia. Moreover, tryptophan in culture media partially represses neurotoxin production in several C. botulinum type E strains without modifying growth kinetics, but this effect seems to be strain dependent [START_REF] Leyer | Repression of toxin production by tryptophan in Clostridium botulinum type E[END_REF].

Rapidly metabolizable sugars such as glucose are not absolutely required for neurotoxin synthesis but enhance C.botulinum growth and subsequently promote increased toxin production [START_REF] Whitmer | Development of improved defined media for Clostridium botulinum serotypes A, B, and E[END_REF]. Therefore, rapidly metabolizable sugars are essential factors for maximal toxin production.

The control of BoNT synthesis by the general metabolism is probably mediated, at least partially by CodY, which is a global regulator that governs the transition from the exponential growth to stationary phase. CodY senses the level of GTP and controls the expression of numerous genes (>100 in Bacillus subtilis) [START_REF] Brinsmade | Hierarchical expression of genes controlled by the Bacillus subtilis global regulatory protein CodY[END_REF]. In C. botulinum A, CodY has been reported

to regulate positively the expression of bont by interacting with the promoter of the ntnh-bont operon on a site distinct from that recognized by BotR/A in a GTP-dependent manner [START_REF] Zhang | Positive regulation of botulinum neurotoxin gene expression by CodY in Clostridium botulinum ATCC 3502[END_REF].

Various environmental stimuli such as carbon dioxide, NaCl concentration, pH and temperature have also been shown to regulate botulinum toxin production. CO 2 , which is commonly used in food preservation, has a strong antimicrobial activity on aerobic bacteria but is metabolized by numerous anaerobic bacteria and enhances toxin production in many bacteria such as Staphylococcus aureus, Vibrio cholerae or Bacillus anthracis [START_REF] Ross R A | Production of toxic shock syndrome toxin 1 by Staphylococcus aureus requires both oxygen and carbon dioxide[END_REF][START_REF] Shimamura | Enhancement of enterotoxin production by carbon dioxide in Vibrio cholerae[END_REF][START_REF] Hoffmaster A | The anthrax toxin activator gene atxA is associated with CO2-enhanced non-toxin gene expression in Bacillus anthracis[END_REF]. In non-proteolytic C. botulinum type B and E strains from group II, CO 2 enhances toxin production but has only minimal effects in C. botulinum type A strains [START_REF] Artin | Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome[END_REF][START_REF] Lovenklev | Quantitative interaction effects of carbon dioxide, sodium chloride, and sodium nitrite on neurotoxin gene expression in nonproteolytic Clostridium botulinum type B[END_REF][START_REF] Eisele | Studies on the dissociation of botulinum neurotoxin type A complexes[END_REF]. An increased CO 2 concentration from 10% to 70% leads to a more than 5-fold increase in BoNT/B neurotoxin synthesis without any growth modification. In C. botulinum type E, the increased CO 2 concentration (70%) also enhances toxin production despite a growth rate reduction [START_REF] Artin | Effects of carbon dioxide on growth of proteolytic Clostridium botulinum, its ability to produce neurotoxin, and its transcriptome[END_REF].

Thus, in C. botulinum type E, toxin production seems to be linked to growth rate as it has been described in stress situations in C. difficile [START_REF] Artin | Effects of carbon dioxide on neurotoxin gene expression in nonproteolytic Clostridium botulinum Type E[END_REF].

Li et al. have investigated the effects of pH on C. botulinum type A growth, toxin gene expression and production [START_REF] Li | The Effect of pH on growth of Clostridium botulinum type A and expression of bontA and botR during different growth stages[END_REF]. BoNT/A gene expression is optimal at pH 7 and then decreases at lower or higher pH. Thus, pH is a critical parameter controlling bont/A expression and subsequent toxin synthesis and is of great importance in safety of food processing.

High temperature (at least until 44°C) which is a common signal involved in the relay of alternative sigma factors (reviewed in [START_REF] Narberhaus | RNA thermometers[END_REF]), seems not to be an inhibitory signal for toxin production in C. botulinum type E and A, but appears to play an important role in complex stability [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. Even though botulinum toxin locus genes are expressed at the same level between 37°C and 44°C, BoNT/A activity monitored by its lethal activity on mice is strongly The number of TCSs can vary from none in Mycoplasma genitalium to 80 in Synochocystis species, which represents 2.5% of the entire Synochocystis genome [START_REF] Mizuno | Compilation of all genes encoding bacterial twocomponent signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803[END_REF][START_REF] Mizuno | His-Asp phosphotransfer signal transduction[END_REF].

Among these TCSs, several are implicated in the regulation of virulence factors in Grampositive and Gram-negative bacteria such as Staphylococcus aureus, Salmonella thyphimurium, S. enterica, and Bordetella. pertussis [START_REF] Miller | A two-component regulatory system (phoP phoQ) controls Salmonella typhimurium virulence[END_REF][START_REF] Yarwood | Identification of a Novel Two-Component Regulatory System That Acts in Global Regulation of Virulence Factors of Staphylococcus aureus[END_REF][START_REF] García-Calderón | Rcs and PhoPQ regulatory overlap in the control of Salmonella enterica virulence[END_REF][START_REF] Bock | The BvgAS two-component system of Bordetella spp.: a versatile modulator of virulence gene expression[END_REF]. However, due to their pleiotropic functions and inteconnexions, the individual role played by TCS in toxinogenesis is still unclear and it's highly probable that toxin synthesis is under the control of a complex regulatory network including TCSs and also sigma factors, orphan regulators and/or small regulatory RNAs.

a. Biochemistry and interconnexions of TCSs

TCSs are transduction signal phosphorelay systems that require ATP and at least 2 proteins: one transmembrane protein which detects the environmental changes called sensor histidine kinase (SHK) and a regulatory protein (RR for response regulator) which is typically a DNA binding protein (Fig. 4). The two TCS genes are often expressed from a single operon which can autoregulate itself [START_REF] Ray | Adaptable functionality of transcriptional feedback in bacterial two-component systems[END_REF].

The signal pathway is triggered by the SHK protein, which senses the stimuli by its Nterminal region and autophosphorylates a conserved histidine (H) residue localized in the Cterminal region at the expense of ATP. SHKs are structurally complex, homodimeric integral membrane proteins which can vary in size from 40 kDa to 200 kDa. Each protomer is divided into several functionally and structurally dissociable domains: one sensor, two transmembrane helices called linker domains, and one HAMP domain (histidine kinase, adenylyl cyclase, methyl accepting chemotaxis protein and phosphatase). The HAMP domain connects the second transmembrane domain to the dimerization and histidine phosphorylation domain (DH) where the conserved H is localized, and finally to a catalytic and ATP-binding domain (CA) (reviewed in [START_REF] Wang | Bacterial Two-Component Systems: Structures and Signaling Mechanisms[END_REF]). The sensor domain can be highly variable, allowing the detection of a wide range of stimuli. SHKs can sense environmental stimuli when bound to the periplasmic membrane like EnvZ which is involved in the osmoregualtion pathway in E. coli. But SHKs can also detect intracellular stimuli through enzymatic behavior (for example CheA involved in the control of chemotaxis in E. coli) or by interacting with other cytoplasmic protein which promote an adaptive response (reviewed in [START_REF] Stock A | Two-Component Signal Transduction[END_REF]). Some SHKs exist as hybrids that contain multiple phosphodonor and phosphoacceptor sites, adding steps to the phosphorelay system as in the case of BarA which is implicated in growth stationary phase and ArcB which is involved in the anoxic redox control [START_REF] Mizuno | Compilation of all genes encoding bacterial twocomponent signal transducers in the genome of the cyanobacterium, Synechocystis sp. strain PCC 6803[END_REF].

Once SHK is phosphorylated, the phosphate group is transferred to a conserved aspartate residue (D) on the cognate RR receptor domain which regulates the expression of specific target genes. RR proteins are structurally less complex than SHKs but their multitude of targets make them difficult to classify [START_REF] Gao | Bacterial response regulators: versatile regulatory strategies from common domains[END_REF]. They are divided into one receiver domain (REC) which is well conserved among RRs and one variable effector output domain [START_REF] Galperin | Structural classification of bacterial response regulators: diversity of output domains and domain combinations[END_REF]. RR RRs. Three types of cross-communication have been described: cross-talk, cross-regulation and one-to-many or many-to-one interaction. However in most cases, the cross-talks have only been described after important genetic modifications like overexpression of SHKs (see [START_REF] Laub | Specificity in two-component signal transduction pathways[END_REF]). These data highlight the fact that TCSs should not be studied individually, but in interaction with other TCSs and bacterial regulatory systems.

b. TCSs in C. botulinum

In 2007, the first genome of C. botulinum Hall A was sequenced and its analysis allowed the prediction of the presence of several regulatory systems including 15 sigma factors, 16

orphan genes and 28 putative TCSs [START_REF] Sebaihia | Genome sequence of a proteolytic ( Group I ) Clostridium botulinum strain Hall A and comparative analysis of the clostridial genomes[END_REF]. Another analysis showed that this genome contains 39 proteins which exhibit TCS characteristics including a Rec domain and a DNA binding domain [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF].

Analysis of RRs show that numerous C. botulinum Hall A TCSs share more than 60% identity with homologs in other clostridia [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. One approach is to modulate an environmental signal already known to trigger the TCS of interest by either supplementing or depleting the culture media with this specific signal (nutrient or chemical compounds). However, TCSs function as a saturating process leading to variable results depending on the amplitude of the environmental signal variation, as is the case of the phosphate regulon [START_REF] Lamarche | The phosphate regulon and bacterial virulence: a regulatory network connecting phosphate homeostasis and pathogenesis[END_REF]. Another way is to modulate the TCS expression in bacteria at the transcriptional or translational level. As discussed above, SHK domain overexpression may lead to cross-talk, rendering the involvement of one TCS in a pathway of interest difficult to analyze (see [START_REF] Laub | Specificity in two-component signal transduction pathways[END_REF]). In contrast, silencing or knocking out TCS gene expression can be a relevant experiment to identify the role of a TCS [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF][START_REF] Dahlsten | The coldinduced two-component system CBO0366/CBO0365 regulates metabolic pathways with novel roles in cold tolerance of Group I Clostridium botulinum ATCC 3502[END_REF][START_REF] Saujet | The Key Sigma Factor of Transition Phase, SigH, Controls Sporulation, Metabolism, and Virulence Factor Expression in Clostridium difficile[END_REF][START_REF] Zhang | Twocomponent signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502[END_REF].

The potential role in toxin production of 34 TCSs has been investigated in the laboratory using the antisense mRNA strategy. Compared to gene knock-outs, the mRNA antisense methodology only partially silences gene expression but allows the detection of very fine regulation. The ability of isogenic C. botulinum strains to produce BoNTs and ANTPs was investigated by western blot analysis and ELISA assay in the culture supernatant, and the botulinum locus gene expression by qRT-PCR [START_REF] Marvaud | botR/A is a positive regulator of botulinum neurotoxin and associated non-toxin protein genes in Clostridium botulinum A[END_REF]. This method allowed the identification of 6 TCSs involved in toxinogenesis in C. botulinum Hall A [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF][START_REF] Zhang | Twocomponent signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502[END_REF].

Isogenic strains repressed in 5 RRs showed a drastic decrease in toxin and ANTP production, with, for some strains, a more important decrease than that observed in the isogenic strain repressed in botR/A. However, 2 of these isogenic antisense strains corresponding to CLC_0411 and CLC_3293 TCSs present a more rapid growth and lysis explained by drastic changes in cell wall or surface structure [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. The corresponding RRs belong to the OmpR family and thus seem to be involved in the regulation of cell surface properties, e.g. surface polysaccharide synthesis and integrity and only indirectly in toxin production and/or secretion. Isogenic strains of the 2 RRs sharing sequence similarity with VirS/ VirR RR were also obtained. The corresponding orphan RR (CLC_0632) showed a drastic delay in growth compared to the wild type strain but produces a similar level of toxin.

Thus, this TCS seems to be involved in global metabolism and not in the direct control of toxin synthesis. In this case, the other homolog (CLC_1105) of VirR did not show any difference in growth or toxin production. Thus VirR/VirS TCS homologs seem to regulate different processes in C. perfringens and in C. botulinum [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. Concerning the three other positive regulatory TCSs (CLC_1093/CLC_1094, CLC_1914/CLC_1913 and CLC_0661/CLC_0663) no difference in growth or lysis was observed in the isogenic strains containing antisense mRNA construction targeting each of these three TCS RRs. Expression of bont/A and antps in isogenic strains containing antisense mRNA construction targeting the 3 TCSs is repressed at the same level as in the isogenic antisense strain repressed for botR/A.

But the production of BoNT/A and ANTPs is slightly lower than in the control strain, indicating that these three TCSs may have a more important effect on toxin production than BotR/A. Moreover qRT-PCR analysis showed no decrease in botR/A expression in these isogenic strains, indicating that the three TCSs control directly or indirectly the expression of the botulinum locus genes independently of BotR/A [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF].

The first TCS downregulating BoNT synthesis was described recently [START_REF] Zhang | Twocomponent signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502[END_REF]. In this study, the methodology used is a shutdown of TCS gene of interest by the Clostron technology which is a group II intron-based insertional mutagenesis [START_REF] Uehne | ClosTron-Mediated Engineering of Clostridium[END_REF]. Unlike the mRNA antisense method, Clostron engineering totally represses gene expression. The TCS CBO0787/CBO0786, equivalent to CLC_0842/CLC_0843 is located approximately 11 kb upstream of the botulinum toxin locus in contrast to the other TCSs involved in positive regulation of bont which lie at distance of the botulinum. This TCS binds to the consensus core promoter region of both operons of the botulinum toxin locus, thus inhibiting the transcription of the botulinum locus genes enhanced by BotR/A. Thus, this TCS probably acts by preventing BotR/A binding to the promoters of the botulinum toxin locus operons and thus inhibiting the transcription of botulinum toxin locus genes. Additionally, TCS CBO0787/CBO0786 could be also an anti-sigma factor similarly to TcdC in C. difficile by impairing the transcription and/ or translation of botR/A. But, this TCS has not been found to bind to botR/A promoter [START_REF] Carter | The antisigma factor TcdC modulates hypervirulence in an epidemic BI/NAP1/027 clinical isolate of Clostridium difficile[END_REF]. Isogenic strain silenced for TCS CBO0787/ 0786 by the mRNA antisense method has been investigated [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. No difference in growth or toxin production compared to wild type strain was evidenced suggesting that the regulation of toxin synthesis by this TCS is not a tight process. [START_REF] Sperandio | Quorum sensing Escherichia coli regulators B and C (QseBC): a novel two-component regulatory system involved in the regulation of flagella and motility by quorum sensing in E. coli[END_REF][START_REF] Hammer | Quorum sensing controls biofilm formation in Vibrio cholerae[END_REF][START_REF] Smith | Pseudomonas aeruginosa quorum sensing as a potential antimicrobial target[END_REF]. Thus quorum sensing may be a potential antimicrobial target.

For decades, several teams have been trying to evidence quorum sensing in C. botulinum.

It was shown in C. botulinum 56A that spores in contact with latency phase bacteria germinate more rapidly than the control spores [START_REF] Zhao | Evidence for quorum sensing in Clostridium botulinum 56A[END_REF] demonstrating that quorum sensing in C.

botulinum exists and may influence spore germination.

Quorum sensing molecular mechanisms differ between Gram-positive and Gramnegative bacteria. In the case of Gram-negative bacteria, the stimuli are small molecules called AutoInducers (AIs) that are passively transported through the bacterial cell wall, whereas in Gram-positive bacteria, the AIs are secreted by specific transport systems and detected by TCSs (Fig. 5).

One well known peptide detected by this system is AI-2 (AutoInducer-2) produced by LuxS from SAM (S-adenosylmethionine). Numerous bacterial species carry luxS in their genomes and thus AI-2 can be produced and detected by different species allowing interspecies communication [START_REF] Federle | Interspecies communication in bacteria[END_REF]. In order to determine the involvement of LuxS in toxinogenesis, an isogenic strain silenced for the homologs of luxS identified in the genome of C. botulinum

Hall A was generated, but only a small delay in growth and toxin production could be observed (unpublished data). Even though the implication of LuxS in the C. botulinum toxinogenesis is still unclear, it has been demonstrated that the TCS VirR/VirS of C.

perfringens has a pleiotropic action and regulates toxin production but also luxS transcription.

LuxS enhances toxin production in the mid-exponential growth phase, demonstrating that TCS and quorum sensing are tightly linked in maximal toxin production in C. perfringens [START_REF] Shimizu | Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins[END_REF][START_REF] Ohtani | The luxS gene is involved in cell-cell signalling for toxin production in Clostridium perfringens[END_REF]. Furthermore, AI-2 positively regulates virulence factors in C. difficile such as toxin A and B, and also the holine encoded by tcdE which plays an important role in biofilm formation [START_REF] Carter | Quorum sensing in Clostridium difficile: analysis of a luxS-type signalling system[END_REF][START_REF] Lee | LuxS/autoinducer-2 quorum sensing molecule regulates transcriptional virulence gene expression in Clostridium difficile[END_REF][START_REF] Ðapa | Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile[END_REF].

Another type of AIs is the AIPs (AutoInducers Peptide). AIPs are small peptides that require a highly specific detection by appropriate TCSs and that only mediate intra-species communication [START_REF] Waters | Quorum sensing: cell-to-cell communication in bacteria[END_REF] (Fig. 5). One of the most well known systems of intra-species communication is the Agr system of S. aureus which is responsible for 50% of iatrogenic infection. In this system the AIP is produced from a peptide encoded by agrD which is then hydrolyzed by AgrB, an integral membrane endopeptidase. Once AIP reaches a threshold level in the environment, it is detected by the TCS AgrA/ AgrC which upregulates the production of a small RNA (sRNA) called ARN III and subsequently enhances toxin production [START_REF] Geisinger | Inhibition of rot translation by RNAIII, a key feature of agr function[END_REF]. A putative agrBD signaling system has been identified in proteolytic C.

botulinum group I strains and homologs of agrB and agrD called agr-1 and agr-2 were identified but they seem to play different roles than in S. aureus. Indeed, agr-1 is suggested to regulate the sporulation state while agr-2 seems to be implicated in BoNT/A production [START_REF] Cooksley | Regulation of neurotoxin production and sporulation by a Putative agrBD signaling system in proteolytic Clostridium botulinum[END_REF]. However the isogenic antisense strain silenced for the homologous AgrA/ AgrC TCS in C. botulinum Hall A was not impaired in BoNT production or growth in the tested experimental process [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF]. Thus the effect and the mode of action of agr-2 homologs in toxin production in C. botulinum remain to be characterized.

In addition, quorum sensing plays a major role in the transition between growth phase and stationary phase and regulates virulence factor production at high cellular density. This is the case in P. aeruginosa, which is a major opportunistic pathogen responsible for pulmonary infections as well as burn wound and other infection. Its multiple virulence factors are expressed at high cellular density and are under the control of quorum sensing (reviewed in [START_REF] Kievit | Quorum sensing in Pseudomonas aeruginosa biofilms[END_REF]). Thus quorum sensing is evidenced only under certain conditions, such as growth in nutrient-limitation, very high population density, or in response to specific stresses and it is conceivable that the experimental conditions used in C. botulinum studies are not appropriate to evidence a quorum sensing-mediated regulation in this bacterium.

IV) Discussion and conclusion

Data collected in recent decades has shown that TCSs are highly involved in several processes in bacteria including the regulation of virulence factor production such as toxins.

However, few links have been made between environmental stimuli and bacterial processes, underestimating the capacity of bacteria to adapt to their environment. Thanks to the structural understanding of TCSs, the mode of action of TCSs is well understood, but a correlation between SHK domain and stimuli is still elusive. Even though techniques based on phenotypic microarray approaches are available to characterize phenotypes under different environmental conditions, the number and combination of variable parameters are too numerous and complex to effectively carry out a systematic screening of all stimuli and all putative genes [START_REF] Bochner | Phenotype MicroArrays for High-Throughput Phenotypic Testing and Assay of Gene Function[END_REF].

As discussed above, only a few regulatory systems are known to participate in botulinum toxin production in C. botulinum. The alternative sigma factor BotR was the first positive regulator identified in this process. Botulinum locus genes reach their maximum expression at the transition phase between exponential and stationary growth [START_REF] Bradshaw | Regulation of neurotoxin complex expression in Clostridium botulinum strains 62A, Hall A-hyper, and NCTC[END_REF][START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. The transition between these 2 phases is a highly regulated process in E. coli and is under the control of RpoS, a sigma factor which replaces the vegetative sigma factor 70 in stationary phase and under numerous stress conditions (reviewed in [START_REF] Loewen | Regulation in the rpoS regulon of Escherichia coli[END_REF]). This mechanism is very complex and is partly regulated by a TCS (BarA/ UvrY). Even if no TCS has been described

to regulate the transcription of BotR, botR/A has the same kinetic of expression as the other genes of the botulinum toxin locus suggesting that botR/A regulation of expression is under the control of environmental stimuli [START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF].

Small RNAs (sRNAs) are another regulatory system described to be involved in the regulation of virulence factor production in bacteria and in quorum sensing (reviewed in [START_REF] Toledo-Arana | Small noncoding RNAs controlling pathogenesis[END_REF]). Numerous sRNAs have been identified in the genomes of 21 Clostridium species and most of them are not found in bacteria of other phyla [START_REF] Chen | Small RNAs in the Genus Clostridium[END_REF]. Although the synthesis of toxins in C. perfringens is under the control of a TCS and involves a sRNA called VR-RNA, the role of sRNAs in botulinum toxin synthesis is still unknown [START_REF] Shimizu | Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins[END_REF].

Overall, only a few regulatory systems of toxinogenesis are described in C. botulinum including the positive regulatory sigma factor BoTR and 6 TCSs [START_REF] Connan | Twocomponent systems are involved in the regulation of botulinum neurotoxin synthesis in Clostridium botulinum type A strain Hall[END_REF][START_REF] Marvaud | TetR is a positive regulator of the tetanus toxin gene in Clostridium tetani and is homologous to botR[END_REF][START_REF] Zhang | Twocomponent signal transduction system CBO0787/CBO0786 represses transcription from botulinum neurotoxin promoters in Clostridium botulinum ATCC 3502[END_REF]. Some small regulatory RNAs may also be involved but no such regulation has yet been described [START_REF] Chen | Small RNAs in the Genus Clostridium[END_REF].

The environmental factors triggering BoNTs synthesis are so far poorly understood but new technologies associated with a better understanding of the structural and molecular mechanism of TCSs should help to unravel the mechanism of toxin regulation and eventually lead to the development of new strategies to control botulism. Due to their absence in mammals and their wide range of action, TCSs constitute interesting therapeutic targets. 

  BoNTs and ANTPs are closely clustered together on the botulinum toxin locus (Fig 1), which is organized into two polycistronic operons. The ntnh-bont operon of the botulinum toxin locus is well conserved among BoNT-producing clostridia and consists of the ntnh gene, which codes for the NTNH protein, and immediately downstream, a bont gene (approximately 3.8 kb). The gene composition of the second operon varies from type to type.

  ) and those induced by heat, called Heat Shock Protein (HSPs)[START_REF] Neidhardt | The genetics and regulation of heat-shock proteins[END_REF][START_REF] Selby | Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridium botulinum strain ATCC 3502[END_REF]. Homologs of CspB and HSPs have been identified in C. botulinum type A and D to play a major role in temperature tolerance and stressful environmental conditions[START_REF] Söderholm | cspB encodes a major cold shock protein in Clostridium botulinum ATCC 3502[END_REF][START_REF] Selby | Class I heat shock genes hrcA and dnaK play an important role in heat shock response and response to pH and NaCl stress of group I Clostridium botulinum ATCC 3502[END_REF][START_REF] Sagane | Molecular characterization of GroES and GroEL homologues from Clostridium botulinum[END_REF]. It is not known whether these proteins also control the toxin synthesis or they play a role in toxin protection.Thus, the composition of culture media and culture conditions differentially affects BoNT synthesis depending on C. botulinum strains and one of the major challenges in the understanding of the toxinogenesis in C. botulinum, is to identify the molecular mechanisms associated with these environmental regulators.III) TCSs play a central role in the regulation of toxinogenesis in C. botulinumThousands of TCSs have been identified among all kingdoms, in Gram-positive, Gram-negative bacteria, Archaea, and to a lesser extent in eukaryotic organisms. TCSs are implicated in the control of various physiological processes including osmoregulation (for example OmpR/EnvZ in E. coli), and sporulation (KinA/ KinB/ KinC and Spo0F/ Spo0B/ Spo0A in B. subtilis), but also in cell-cell communication, and control of virulence factor production[START_REF] Cai | EnvZ-OmpR interaction and osmoregulation in Escherichia coli[END_REF][START_REF] Parkinson | cheA, cheB, and cheC genes of Escherichia coli and their role in chemotaxis[END_REF][START_REF] Colloms | The ArcA/ArcB two-component regulatory system of Escherichia coli is essential for Xer site-specific recombination at psi[END_REF][START_REF] Grossman | Different roles for KinA , KinB , and KinC in the initiation of sporulation in Bacillus subtilis . Different Roles for KinA , KinB , and KinC in the Initiation of Sporulation in Bacillus subtilis[END_REF][START_REF] Pernestig | The Escherichia coli BarA-UvrY Two-Component System Is Needed for Efficient Switching between Glycolytic and Gluconeogenic[END_REF].

  proteins catalyze phosphate group transfer from SHK H to the conserved aspartate (D) residue on the receiver domain of RR protein, and then to the effector output domain. Most of the RRs can also catalyze autodephosphorylation to limit the time lapse of activation. The effector domains are variable. They are either DNA-binding, RNA-binding, ligand binding, transporter output domain or core enzyme and can act at a transcriptional post-transcriptional or post-translational level. However most of them are DNA-binding proteins and are transcriptional regulators. They contain only one output domain as in the case of LytR/AgrA, OmpR/PhoB and Spo0A domain families or two output domains as in the case of Ntrc/DctD family (reviewed in[START_REF] Wang | Bacterial Two-Component Systems: Structures and Signaling Mechanisms[END_REF][START_REF] Stock A | Two-Component Signal Transduction[END_REF][START_REF] Galperin | Diversity of structure and function of response regulator output domains[END_REF]).SHKs and RRs share sequence and structural similarities permitting cross-phosphorylation or cross-communication between them. As for RRs, most SHKs are bifunctional and can catalyze phosphorylation and dephosphorylation of their cognate RR. Since RRs are more abundant than SHKs, SHK phosphorylation is competitive depending on their interaction with
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  type A, cultures at 44°C has no effect on lethal activity levels of C. botulinum type E strains which are not proteolytic bacteria[START_REF] Couesnon | Expression of botulinum neurotoxins A and E, and associated non-toxin genes, during the transition phase and stability at high temperature: analysis by quantitative reverse transcription-PCR[END_REF]. It has been known for decades that bacterial growth adaptation to changes in temperature implicates two types of protein, those that are induced by cold called Cold Shock Proteins (CspA, CspB, and CspC

reduced after 24-48 h of culture incubated at 44°C suggesting that a protease leading to BoNT/A degradation is activated at 44°C in C. botulinum Hall A strain. Indeed, a Ca ++ dependent protease activated at high temperature is produced by C. botulinum A. Unlike C. botulinum

  Among the 39 C. botulinum Hall A TCSs, the majority (12/39) are homologous to those found in C. carboxidivorans and C. ljungdahlii. OmpR/EnvZ TCS is involved in the adaptive response to extracellular osmolarity changes by regulating the transcription rate of 2 porin proteins. Moreover, it has also been demonstrated that regulation by the OmpR/EnvZ TCS is critical for curli formation and thus plays an important role in biofilm formation [86]. Four C. botulinum RRs belongs to the LytR family, which is widespread among bacteria and control the synthesis of several virulence factors. The LytR family has been characterized in S. aureus. Indeed, the S. aureus infection potency is linked to the synthesis of more than 50 virulence factors including toxins which are mostly regulated by cellular density (quorum sensing) via the accessory gene regulator (Agr) system including the TCS AgrA/LytR [80,87,88]. Other C. botulinum predicted TCSs have RRs that belong to the NarL family (2/39) which regulates nitrite-and nitrate-dependent gene expression or CheB (1/39) for chemotaxis in E. coli, and WspR (1/39) which has been found to stimulate biofilm formation in Pseudomonas aeruginosa or Pas_4 (1/39) [33]. c. TCSs and BoNTs production Different techniques are available to investigate the regulatory pathway linked to a TCS.

Eight RRs also exhibit high TCS similarity to the closely related C. tetani RRs. However, some RRs

[START_REF] Gu | Assembly and Function of the Botulinum Neurotoxin Progenitor Complex[END_REF] 

have no similarity with proteins in other clostridia and thus seem specific of C. botulinum. Interestingly, 2 RRs, of which one is an apparent orphan regulator, show high protein identity (38%) with the VirR protein of the well-known VirR-VirS C. perfringens TCS. The VirR-VirS TCS regulates the synthesis of numerous toxins in C. perfringens at the transcriptional level, either directly by interacting with the toxin gene promoter like in the case of theta toxin or perfringolysin O, or indirectly via a regulatory RNA (VR-RNA) like in the case of alpha toxin and collagenase A

[START_REF] Shimizu | Clostridial VirR/VirS regulon involves a regulatory RNA molecule for expression of toxins[END_REF][START_REF] Cheung | The VirSR two-component signal transduction system regulates NetB toxin production in Clostridium perfringens[END_REF][START_REF] Hiscox | Regulation of virulence by the RevR response regulator in Clostridium perfringens[END_REF]

. However, the VirR-VirS related TCS in C. botulinum Hall A seems not to be involved in the regulation of toxinogenesis (see below) Two-third of TCS RR proteins identified in C. botulinum Hall A by genome analysis belong to the OmpR family. Regulator proteins of the OmpR family have been described to control multiple functions including bacterial surface organization, polysaccharide synthesis and/or assembly. One of the best understood TCSs is OmpR/EnvZ. In E. coli,

  virulence factors in several Gram-positive and Gram-negative bacteria. For example, it has been shown that quorum sensing is implicated in the production of the type III secretion system and the regulation of motility and flagella in E. coli EHEC (enterohemorrhagic E. coli) and EPEC (enteropathogenic E. coli), or in the production of virulence factors in V. cholerae and biofilm formation in C. perfringens or P. aeruginosa

	significantly related genes were found in other C. botulinum groups. These data strongly
	suggest that C. botulinum from group I share a common regulatory network of toxin
	production distinct from that of the other C. botulinum groups.
	Overall, certain TCSs control toxin production either in a direct way by regulating
	botulinum locus gene transcription or indirectly via regulating general metabolism pathways.
	d. Quorum sensing, TCS and toxin production
	One of the most interesting systems that bacteria have developed to adapt their
	physiological behaviors and pathogenesis (biofilm formation, virulence, antibiotic resistance)
	to local population density is quorum sensing. Quorum sensing controls multiple metabolic
	processes but also
	Interestingly, the five TCSs which directly or indirectly control positively BoNT
	production are conserved among C. botulinum strains from group I (subtype A1, A(B), A2,
	A3, Ba4, B1 and F) but they are not detected in C. botulinum group II strains. Similarly, the
	negative regulator TCS has homologs (more than 90% identity) in other C. botulinum group I
	strains including subtypes (A2 strain Kyoto, A5 and F strain Langeland) [33,92]. No

SAM and are then passively released into the extracellular medium. AIs are detected by a TCS which regulates specific target genes.