
HAL Id: pasteur-01111002
https://pasteur.hal.science/pasteur-01111002

Submitted on 19 Mar 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Attribution of the French human Salmonellosis cases to
the main food-sources according to the type of

surveillance data.
J M David, P Sanders, N Bemrah, S A Granier, M Denis, François-Xavier

Weill, D Guillemot, L Watier

To cite this version:
J M David, P Sanders, N Bemrah, S A Granier, M Denis, et al.. Attribution of the French human
Salmonellosis cases to the main food-sources according to the type of surveillance data.. Preventive
Veterinary Medicine, 2013, 110 (1), pp.12-27. �10.1016/j.prevetmed.2013.02.002�. �pasteur-01111002�

https://pasteur.hal.science/pasteur-01111002
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


 

Attribution of the French human Salmonellosis cases to the main food-sources 

according to the type of surveillance data 

 

J.M. David1,2,3,4, P. Sanders1, N. Bemrah5, S. Granier6, M. Denis7, F-X. Weill8, D. 

Guillemot2,3,4, L. Watier*2,3,4 

 

1
 Anses, BP 90203 Fougères, F-35302, France 

2
 INSERM, U 657, Paris, F-75015, France 

3
 Institut Pasteur, Pharmacoépidémiologie et Maladies Infectieuses, Paris, F-75015, France 

4
 Université Versailles Saint Quentin, EA4499, F-Garches 92380, France  

5
 Anses, Maisons-Alfort, F-94701, France 

6
 Anses, Maisons-Alfort, F-94700, France 

7
 Anses, BP 53, Ploufragan, F-22440, France 

8
 Institut Pasteur, Unité des Bactéries Pathogènes Entériques, Centre National de Référence des 

Salmonella, Paris, F-75015, France 

 

* Inserm U657, UVSQ EA 4499, Unité de Santé Publique, Hôpital Raymond Poincaré, Bat Rabelais, 

104 av R. Poincaré, F-92380  Garches, France. Tel: +33 1 47 10 79 08 poste 6132 ; Fax: +33 1 47 14 

49 08. Email: laurence.watier@inserm.fr  

 

Present address of J.M. David: Public Health Agency of Canada, Laboratory for Foodborne Zoonoses, 

3200 rue Sicotte, CP5000, St Hyacinthe, Quebec, J2S 7C6 

mailto:laurence.watier@inserm.fr


 

Abstract 

 

Salmonella are the most common bacterial cause of food-borne infections in France and 

ubiquitous pathogens present in many animal productions. Assessing the relative 

contribution of the different food-animal sources to the burden of human cases is a key step 

toward the conception, priorisation and assessment of efficient control policy measures. For 

this purpose, we considered a Bayesian microbial subtyping attribution approach based on a 

previous published model (Hald et al., 2004). It requires quality integrated data on human 

cases and on the contamination of their food sources, per serotype and microbial subtype, 

which were retrieved from the French integrated surveillance system for Salmonella. The 

quality of the data available for such an approach is an issue for many countries in which the 

surveillance system has not been designed for this purpose. In France, the sources are 

monitored simultaneously by an active, regulation-based surveillance system that produces 

representative prevalence data (as ideally required for the approach) and a passive system 

relying on voluntary laboratories that produces data not meeting the standards set by Hald et 

al. (2004) but covering a broader range of sources. These data allowed us to study the 

impact of data quality on the attribution results, globally and focusing on specific features of 

the data (number of sources and contamination indicator). The microbial subtyping attribution 

model was run using an adapted parameterization previously proposed (David et al., 2012). 

A total of 9,076 domestic sporadic cases were included in the analyses as well as 9 sources 

among which 5 were common to the active and the passive datasets. The greatest impact on 

the attribution results was observed for the number of sources. Thus, especially in the 

absence of data on imported products, the attribution estimates presented here should be 

considered with caution. The results were comparable for both types of surveillance, leading 

to the conclusion that passive data constitute a potential cost-effective complement to active 

data collection, especially interesting because the former encompass a greater number of 

sources. The model appeared robust to the type of surveillance, and provided that some 



 

methodological aspects of the model can be enhanced, could also serve as a risk-based 

guidance tool for active surveillance systems. 
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1. Introduction 

 

Worldwide, Salmonella is a priority public health issue and one of the main causes of 

bacterial foodborne diseases (Sofos, 2008). This concern prompted France to start a 

nationwide intervention in 1999 that targeted the most frequent serotypes, Enteritidis and 

Typhimurium, in the main known sources of Salmonella at an early stage of the food chain  

in the breeding flocks of laying hens and broilers. The Gallus gallus plan has been successful 

at mitigating the number of human cases (Poirier et al., 2008), as have other similar plans 

implemented in other European countries (Edel, 1994; Wegener et al., 2003). However, 

Salmonella still is one of the most common recorded bacterial causes of foodborne 

gastroenteritis, as well as the most common cause of hospitalizations and deaths (InVS, 

2004). 

 

In this context, interest in methods to understand and assess management measures in 

various commodities and at different points in the agro-food chain has been growing. Source 

attribution is one of these tools; it allows identification, prioritization and assessment of the 

impact of interventions at the farm level and subsequently (Batz et al., 2005). The microbial 

subtyping attribution approach has been already successfully applied for such purposes in 

Denmark (Hald et al., 2004). The corresponding model requires intensive data collection on 

microbial types repartition both in human and in food animal sources, as well as food 

consumption data (Hald et al., 2004; Mullner et al., 2009). The data originally used in the 

model were ideally designed for such an approach  representative; based on an efficient 

typing system (systematic sero- plus phage typing); covering a broad spectrum of sources’ 

and with sources contamination measured as prevalence for each bacterial type. Because 

surveillance systems are usually restrained by budget considerations or structural aspects 

and may have been designed before source attribution became a potential objective, the 

data collected may not fully meet the ideal requirements cited above. 



 

The French integrated surveillance system for Salmonella covers the whole food-chain from 

the breeding farms to the human cases. Many actors contribute to this “mosaic” surveillance 

system (David et al., 2011). Salmonellosis cases are monitored by the National Reference 

Centre for Salmonella (NRC, Institut Pasteur, a collection of human strains sent on a 

voluntary basis by private and public medical laboratories), and the National Public Health 

Institute (InVS, mandatory declaration of enteric disease outbreaks). Regarding food-animal 

reservoirs of Salmonella, two parallel systems gather data on the contamination level in the 

different commodities at the national level. The Food Directory of the French Agriculture 

Ministry (DGAL) coordinates sampling plans at the farm level within the framework of 

European and national regulation-based surveillance. Those plans are designed so that 

surveillance is representative of national production and constitute an active surveillance of 

food-animal sources. The Salmonella network (SN), hosted by the French Agency for Food, 

Environmental and Occupational Health and Safety (Anses), gathers non-human Salmonella 

strains sent on a voluntary basis by public and private veterinary laboratories spread all over 

the national territories, ensuring a passive surveillance of Salmonella in the food-animal 

sources (Danan et al., 2011; David et al., 2011). 

 

We thus had the opportunity to compare two surveillance datasets of food-animal sources of 

Salmonella. In each dataset, the sources contamination data were linked to human cases 

data described above. The first dataset, referred to as the active dataset, comprised data 

that were similar to the data used in the original attribution approach (representative 

prevalence data). The second dataset, referred to as the passive dataset, had some 

weaknesses (unknown representativeness, no access to prevalences but only types 

repartition in a commodity) but covered supplementary food-animal sources. 

 

In this paper, using our previous proposal of an adapted parameterization for the Bayesian 

microbial subtyping attribution model (Hald et al., 2004; David et al., 2012), we assessed the 

impact of the deviation from the required data quality on source attribution results globally 



 

and more particularly the impact of the sources contamination indicator used (prevalence in 

the active dataset versus proportion, that is, repartition of Salmonella types in a given 

commodity, in the passive dataset) and the number of sources included. 

 

2. Materials and methods 

2.1 Data 

Two databases were used in the analyses, associating the human data with either passive or 

active surveillance data for the contamination of the sources. In the active dataset, source 

contamination data meet the requirements of the original model and this dataset constitutes 

our reference for attribution results. In the passive dataset, source contamination data had 

unknown representativeness and were measured as types proportions and not prevalences, 

so that this dataset does not meet the data requirements. However, it covers a broader range 

of sources. The targeted study period was 2005, but some data on sources contamination in 

the active surveillance dataset were retrieved from 2004 to 2007 according to the commodity. 

In the following paper, we will use “type” to designate both serotype (non Enteritidis and 

Typhimurium Salmonella) and subtype (for S. Enteritidis and Typhimurium) depending on the 

situation. 

 

2.1.1 Human cases 

The human cases data were retrieved from the NRC database for the year 2005. The cases 

included in the study correspond to confirmed non-Typhi salmonellosis cases for which the 

strain, or an analysis report, has been sent on a voluntary basis to the NRC by a public or 

private microbiology laboratory, together with epidemiological information. Travel-related 

cases and outbreak-related cases were excluded, based on the travel information available 

in the NRC database, and on the mandatory declarations of outbreaks centralized by InVS. 

The cases registered in the overseas “départements” and territories were excluded as well. 

For each outbreak, one case was kept in the dataset to represent it in the model (Hald et al., 



 

2004) This avoids (i) overestimation of the role of the source of the outbreak type when this 

type is specific to that source and (ii) underestimation of the role of the source of the 

outbreak type when this type occurs in several other sources. 

 

The types that caused only a few (or no) infections or were not observed in the animal 

reservoirs were grouped into the categories “others” for serotypes and “other Typhimurium” 

or “other Enteritidis” for the Typhimurium and Enteritidis subtypes (see paragraph on 

subtyping below). Subsequently, the types’ composition of the “other” categories can be 

different for the human data and for the different sources. The corresponding human cases 

were consequently considered as not attributable (they do not have the potential to be 

attributed, or linked, to any source because their type has not been observed in any of the 

sources). They were excluded from the attribution process and affected to an “unknown 

source” category. 

 

2.1.2 Food-animal sources 

2,1,2,1 Active dataset 

In the frame of European regulations, national prevalence studies of one year in length have 

been conducted from 2004 to 2007 in the main animal commodities either at the farm (layers 

in 20042005, broilers in 20052006, turkeys in 20062007) or at the slaughterhouse (pigs 

in 20062007) level. For each food-animal species, a random sample of flocks or carcasses 

representative of the national production has been tested for Salmonella: 519 layer flocks 

(faeces and environmental samples), 371 broiler flocks (faeces samples), 331 turkey flocks 

(faeces samples) and 1,166 pig carcasses (ileo-caecal lymph nodes). A flock or carcass was 

considered positive if at least one sample of Salmonella was positive, and all isolates were 

serotyped. The estimated prevalences were adjusted for the flock size for layers, broilers and 

turkeys. The flock size was known for layers and we used the barn capacity as an indicator 

of the flock size for broilers and turkeys. The weights were calculated as follow: 

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where Fi is either the flock size (layers) or the barn capacity (broilers and turkeys). More 

details on the sampling and analyses methodologies can be found in the corresponding 

European Food Safety Agency reports (Anonymous, 2007a, 2007b, 2008a, 2008b). The 

2005 data on cattle were gathered within the framework of the national surveillance plan of 

antimicrobial resistance in indicator and zoonotic bacteria in cattle, a national annual 

monitoring plan conducted by the French Ministry of Agriculture aimed at assessing the 

prevalence of resistant bacteria in this commodity. The plan was based on the sampling of 

caecal content of 334 cattle carcasses (veal, young beef cattle and cull cows from beef 

herds) randomly selected at the abattoirs of the nine “départements” where the production is 

greatest, stratifying by abattoir size. 

 

2,1,2,2 Passive dataset 

In the SN database, we extracted the 2005 serotyping data for the 5 main commodities 

common to the active surveillance and added sheep, ducks, other poultry and sea products. 

The “sea products” category gathered data on fish, shellfish and seafood, the “other poultry” 

category gathered data on geese, guinea fowls, pheasants, quails and pigeons. We only 

included strains collected at the farm, on production animals and their environment, and at 

the abattoir, on whole carcasses. Strains relative to breeding animals, to diseased animals or 

for which the origin was unclear were excluded. For cattle, an overrepresentation of 

pathogenic strains has been identified at the farm level. As a consequence, for this 

commodity, we only included the strains collected at the abattoir. 

 

2.1.3 Subtyping 

To optimize the attribution process, Enteritidis and Typhimurium strains that represented 

more than 30% of the human cases each, were further subtyped. The subtyping was based 

on antimicrobial resistance profiles (Berge et al., 2003). One hundred and two strains out of 

3,138 for Enteritidis and 92 strains out of 3,536 for Typhimurium were subtyped, representing 



 

about 4% of all Enteritidis and Typhimurium human strains. For the food-animal sources, all 

strains of Enteritidis and Typhimurium collected in the active surveillance were analyzed for 

antimicrobial resistance, and all Typhimurium and Enteritidis strains collected in the passive 

surveillance by the SN were tested after exclusion of duplicates. 

 

Antimicrobial susceptibility was determined by disk diffusion on Mueller-Hinton agar 

according to the guidelines of the Antibiogram Committee of the French Society for 

Microbiology (Soussy et al., 2000). All the routine tested antimicrobials common to the 

human and animal databases were included: amoxicillin, chloramphenicol, ceftazidime, 

gentamicin, kanamycin, nalidixic acid, streptomycin, sulfonamides, sulfamethoxazole-

trimethoprim and tetracycline. For each antimicrobial, the strains were classified either as 

susceptible or as not susceptible when intermediate or resistant. The subtypes were defined 

through Multiple Correspondence Analysis (MCA) and mixed classification (Berge et al., 

2003) applied on the antimicrobial profiles obtained. 

 

2.1.4 Consumption 

The consumption data are individual consumption data extrapolated to the French 

population. To calculate the consumption data, we referred to the INCA study (Etude 

Individuelle Nationale sur les Consommations Alimentaires), which is a national survey of 

individual food consumption conducted by Anses, in 1999 on 3,003 representative subjects 

above 3 years of age (Volatier, 2000). The INCA study results were used by pooling the 

consumption of all animal products related to a commodity over the study population and 

then extrapolated to the national population. Because the consumption of animal products 

varies substantially from year to year (following long term trends and food crises such as 

BSE), those results were then updated for 2005 by the mean of an index based on the 

annual data on the amount of the different meat types, eggs and sea products available on 

the market for consumption, published by the French Livestock Institute and the French 



 

Interprofessional National Board for Sea and Fish-Farming Products. This allowed us to 

estimate as close as possible to the actual consumption of the respective food products for 

the French population. 

 

2.2 Bayesian microbial subtyping attribution model 

In the model, the expected number of human cases due to a given type i in a given source j 

(λij) depends on the prevalence of the type i in the source j (pij), on the consumption of the 

source j in the general population (Mj) and on a source-dependant and a type-dependant 

parameters (aj and qi respectively). The expected number of observed human cases (oi) is 

assumed to be Poisson distributed.  

oi ~ Poisson (Σj λij) with  λij= Mj pij qi aj  (1) 

where : 

i = sero- or sub-type index; 

j = source index; 

oi = observed number of human cases for sero- or sub-type i; 

λij = expected number of human cases due to type i in source j; 

Mj = observed consumption in the general population of the source j in tons; 

pij = observed prevalence of type i in source j; 

qi = unknown type-dependant parameter of type i; 

aj = unknown source-dependant parameter of source j. 

As defined by Hald et al., (2004) the type-dependant factor (qi) summarizes the 

characteristics of the type (such as survivability, virulence and pathogenicity) which 

determine its capacity to cause an infection and the source-dependant factor (aj) summarizes 

the characteristics of the source (such as physical properties, preparation methods and 

processing procedures) which determine its capacity to act as a vehicle for Salmonella (Hald 

et al., 2004). 

 



 

Since the model is overparameterized, it is necessary to introduce information on some 

parameters, and we used the adapted parameterization recommended in David et al. (2012). 

The type-dependant parameters relative to specific types (types only present in a unique 

food-animal source) other than Enteritidis and Typhimurium were set to the following data-

based value: 


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where oi is the observed number of cases due to type i and pjj is the prevalence in the 

sources. It should be noted that  
j

ijij ppp because the type i is only present in its 

unique source j. We thus used the percentage of human cases per point of prevalence in the 

source, as an indicator of the capacity of that particular type to cause an infection. The prior 

distributions for the other type-dependant parameters and the source-dependant parameters 

are uniform distributions with 0 as the lower value and an upper value defined to encompass 

all possible values for the parameter. This parameterization requires the availability of at 

least as many specific types not corresponding to Enteritidis and Typhimurium as there are 

different sources, which was the case for both datasets. 

 

Since not all S. Typhimurium and S. Enteritidis isolates from human cases were subtyped, an 

allocation step was necessary to extrapolate from the observed subtypes’ distribution among 

the subtyped strains to the strains that were not subtyped. Gamma distributions were used to 

reflect the uncertainty distributions for the proportions of cases per subtype. The proportions 

used for the allocation within a serotype are as follows: 


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where oi is the observed number of cases of subtype i (Hald et al., 2004). 

 



 

The directed acyclic graph (DAG) relative to the Bayesian model is presented in Figure 1. It 

is divided into three parts to take into account the differences between the types. A general 

part represents the model common to all types that are neither SE or ST subtypes, nor 

specific types, and the two other parts represent the specificities linked to the specific types 

(parameterization) and to SE and ST subtypes (allocation). 

 

When considering the passive dataset, since prevalences were not available, proportions 

were used instead. 

 

2.3 Analyses 

We first focused on the impact of two data characteristics that are part of the differences 

between the two types of surveillance on the attribution results: the indicator used to 

measure the sources contamination (proportions versus prevalences) and the number of 

sources included. We then studied the impact of the type of surveillance globally on the 

attribution results. 

 

To study the impact of the indicator, we used the active dataset for which both prevalences 

and proportions were available to measure the sources contamination. The model was 

applied using both indicators alternatively. To measure a potential effect of the indicator, we 

compared first the sources ranking and second, for each source, the posterior means of the 

attribution estimates and their 95% credibility intervals (95% CIs). 

 

To study the impact of the number of sources included, we used the passive dataset, in 

which 4 additional sources were available in addition to the five main sources. We then 

estimated the model, considering alternatively the entire dataset (9 sources) and only the five 

main sources. The impact of the number of sources was compared based on the total 



 

number of attributable cases, the sources ranking and for each source, the posterior mean of 

the source attribution estimates and the corresponding 95% CI. 

 

To study the global impact of the type of surveillance (sources contamination) on the 

attribution results, we applied the model alternatively to each of the datasets. The results 

were compared based on the number of attributable cases, on the ranking of the sources, on 

the posterior means and 95% CIs of the source attribution estimates for each source, on the 

source- and type-dependant parameters estimates and on the number of cases with 

unknown source. 

 

Analyses were performed using Winbugs 1.4.3® 2007 (Lunn et al., 2000). 

 

3. Results 

 

3.1 Description of the datasets 

A total of 9,076 domestic sporadic confirmed human cases were included in the study. 

Enteritidis and Typhimurium were the most frequent serotypes, representing respectively 

35% and 39% of the cases. The subtyping resulted in 9 subtypes both for Enteritidis and 

Typhimurium. Some of those subtypes were just human or food-animal sources related. The 

main characteristics of the subtypes are summarized in Tables 1 and 2. 

 

3.1.1 Active dataset 

Among the 9,076 included cases, 5,938 were attributable to the five considered food 

sources, spread between 28 serotypes, 5 Typhimurium subtypes and 3 Enteritidis subtypes. 

The overall observed prevalences in the sources were 30.8% for layers, 18.2% for pigs, 

13.8% for turkeys, 8.2% for broilers and 2.4% for cattle. The types proportions among the 

human cases and in the sources are presented in Table 3a. Enteritidis and Typhimurium 

represented over 75% (47.1 % and 30.4%, respectively) of the attributable human cases. 



 

The human cases were mostly associated to SE-multiS (35.2%), ST1 (17.5%), SE1 (10.4%), 

ST4 (6.5%) and Infantis (2.8%). Only 2 types were observed in cattle, Indiana and 

Mbandaka, the latter representing 62.5% of all cattle strains. Derby was the most frequently 

observed type both in turkeys and pigs. Enteritidis was mainly observed in the layers source 

(7.9%) and Typhimurium, if ubiquitous, was mostly associated with pigs (38.7%) and to a 

lesser extent layers (14.3%) and broilers (13.4%). 

 

This dataset comprised 15 specific types (Table 4), including one Typhimurium subtype and 

one Enteritidis subtype. All sources but cattle were represented among the specific types, 

pigs and layers being the sources that comprised the highest number of specific types. 

 

3.1.2 Passive dataset 

In total 6,527 human cases were attributable to the 9 included sources, spread between 37 

serotypes, 5 Typhimurium subtypes and 4 Enteritidis subtypes. The number of strains 

included in the study was 617 for layers, 1,273 for broilers, 796 for turkeys, 213 for pigs, 71 

for cattle, 104 for sheep, 40 for the sea products, 3,113 for ducks and 722 for other poultry. 

The distribution of types among the human cases and in the sources is presented in Table 

3b.Serotypes Enteritidis and Typhimurium represented over 75% (47.6% and 27.7%, 

respectively) of the attributable cases. The five main types were almost the same as in the 

active dataset  SE-multiS (32.1%), ST1 (15.9%), SE1 (9.4%), ST4 (5.9%) and SE3 (4.7%). 

Poultry commodities were characterised by a high number of subtypes. Sheep was the 

source with the smallest number of types (6 types out of the other categories) and was 

strongly associated with the type S 61:k:1,5,7 of subspecies diarizonae, which represented 

57.7% of the strains. Serotype Senftenberg was mainly associated with layers (19.8%), 

broilers (13.0%) and turkeys (14.7%). SE-multiS was particularly present in layers and 

broilers (16.9% and 16.6%). Serotype Indiana was associated with ducks (23.1%) and other 

poultry (31.0%). ST1 (22.5%), Derby (19.7%) and Montevideo (14.1%) were associated with 

cattle and Weltevreden with sea products (25.0%). Globally, serotype Enteritidis was mostly 



 

found in layers (24.3%) and broilers (16.7%), whereas serotype Typhimurium was 

preferentially associated with other poultry (30.7%), pigs (23.5%), cattle (22.5%) and sea 

products (15.0%). 

 

This dataset comprised 14 specific types (Table 4), including 2 Enteritidis subtypes. As for 

the active dataset, all sources except cattle were represented among the specific types and 

pigs and layers were the most frequently concerned, according to the number of specific 

types and the number of associated human cases. There were 4 specific types in common 

with the active dataset: SE2, Oranienburg and Havana, linked to layers; and Goldcoast, 

linked to pigs. 

 

Finally, as expected, the types observed differed according to the dataset leading to a 

difference in the number of attributable cases, which was 10% higher in the passive dataset. 

When considering the 5 common food-animal species, the types’ distribution differed 

between the two datasets for a given species, which was confirmed by Fisher exact tests. 

However, across the datasets Derby was always the most frequent type for pigs and also for 

Typhimurium globally. SE-multiS was the most frequent type in layers. Specific types were 

identified for all food sources except cattle (Table 4). However, there were few types in 

common between the datasets, and these were only observed in layers and pigs. Thus the 

two datasets gave divergent results of the food-sources contamination. 

 

3.1.3 Consumption data 

On the basis of the updated results of the INCA study, the consumption estimates for 2005 

were 82,301 tons for layers (eggs), 84,842 tons for broilers, 18,967 tons for turkeys, 161,971 

tons for pigs, 144,504 tons for cattle, 20,232 tons for sheep, 111,764 tons for sea products, 

5,309 tons for ducks and 4,580 tons for other poultry (Table 3). 

 

3.2 Impact of the data characteristics on the attribution estimates 



 

Results presented correspond to runs of 100,000 iterations of the Gibbs sampler with a thin 

of 25 for 5 independent chains. Convergence diagnostics were satisfactory (Cowles and 

Carlin, 1996; Brooks and Gelman, 1998; Brooks and Roberts, 1998b). From these runs, 

parameters estimates (posterior means, and posterior 95% CIs) were computed from the last 

50,000 iterations. 

 

3.2.1 Source contamination indicator: proportion vs prevalence 

Based on the active dataset, using proportions instead of prevalence as indicator for sources 

contamination gave the same ranking of the sources (Figure 2), layers being ranked number 

one source, and cattle ranked last. The numbers of cases attributed to each source differed 

significantly only for broilers. Using prevalence versus proportion led to a significant 

decrease in the attribution posterior means of 58.3% (427 cases attributed versus 178) for 

broilers and to a non-significant decrease of 24.9% (3,060 cases attributed versus 2,297) for 

layers. For the three other food-sources, a non-significant increase of 26.9% for pigs, 12.0% 

for cattle and 57% for turkeys was observed. 

 

3.2.2 Increasing sources’ number 

Based on the passive dataset, when including 4 supplementary sources to the 5 initial 

sources, the total number of attributable cases increased slightly, leading to 1.1% newly 

attributed cases. Moreover, even though the ranking of the 5 common sources remained 

unchanged, 25.5% of the cases initially attributed to one of the 5 common sources were 

reattributed to one of the 4 additional sources (Figure 3). Thus, the number of attributed 

cases decreased by 46.6% for cattle, 39.9% for pigs, 24.3% for broilers and 19.0% for layers, 

turkeys being the only exception with an increase of 2.8%. This difference was significant 

only for pigs (1,728 attributed cases; 95%CI 1,3452,094 versus 1,039; 95%CI 

7,84.91,310). 

 

3.3 Impact of the type of surveillance on the attribution results 



 

The model was applied separately to the active and passive datasets, with prevalence and 

proportion as source contamination indicator and 5 and 9 sources included, respectively. To 

assess the adequacy of the model, estimated numbers of attributed cases per type and 

observed numbers of cases were compared. As can be seen in Figure 4, the model fit was 

satisfactory for both datasets. To be able to compare the estimated number of cases, the 

observed numbers of cases per Enteritidis and Typhimurium subtype were replaced by 

deterministically allocated numbers (the subtypes’ distribution observed among the subtyped 

cases was deterministically applied to allocate the cases with unknown subtype). As 

expected, the estimated total number of cases was higher with the passive dataset than the 

passive dataset: 7,122 attributable cases (95% CI: 6,719–7,528) versus 5,746 (95% CI: 

5,307–6,172), respectively. However, for the passive dataset, the estimated number was 

overestimated with regard to the 6,527 attributable cases. 

 

With the active dataset (Figure 5), the top ranked source of infection was layers (eggs) to 

which 53.3% (95% CI, 46.060.0) of the estimated cases were attributed corresponding to 

3,060 attributed cases, followed by pigs, to which 25.7% (95% CI, 20.731.1) of the cases 

were attributed (1,477 attributed cases). The third ranked sources were broilers and turkeys, 

which did not differ significantly, representing 7.4% and 12.4% of the cases respectively 

(95% CI, 5.69.5 and 6.919.2) corresponding to 427 and 714 attributed cases, respectively. 

Cattle was a minor source, comprising only 1.2% of the cases (69 attributed cases). The 

cases whose origin remained unknown, were as numerous as the expected number of cases 

attributed to layers. 

 

Using the passive dataset led, in term of attributed cases, to comparable results concerning 

layers (2,328 versus 3,060 for active dataset), pigs (1,039 versus 1,477), turkeys (336 versus 

714) and cattle (133 versus 69). However, for broilers the number of attributed cases was 

significantly higher (1,410 versus 427) so that this source was comparable to pigs (1,410; 



 

95% CI, 1,0261,821 versus 1,039; 95% CI, 7851,310) in importance. The ranking of the 

sources indicated layers as the most important source of infection, broilers and pigs as 

second most important sources, all the other sources (turkeys, cattle and the four additional) 

following without distinction (as the expected numbers of attributed cases were not 

significantly different). As for the results obtained with the active dataset, the cases of 

unknown origin were as numerous as the cases attributed to layers. 

 

The source-dependant parameter estimates for the five common sources were quite similar 

between the two datasets, except for cattle (Table 5). Ranking of the sources based on their 

ability as vectors of Salmonella could not be concluded from the active dataset because of 

the wide posterior credibility interval related to cattle (first ranking). However, with the 

passive dataset, the highest source-dependant parameter posterior means were relative to 

ducks (1.37) and other poultry (1.06). 

Unlike the source-dependant parameters, the type-dependant parameters estimates were 

systematically different, mostly significantly, between the two datasets; estimates for the 

passive dataset were lower. The only exception was serotype Stourbridge for which the 

estimates were coherent for both datasets. Another global feature was that the 95% CIs were 

narrower for Enteritidis and Typhimurium subtypes in the passive dataset. When considering 

the 10 top ranked type-dependant parameter estimates for each dataset (Table 6), 6 types 

appeared in both lists: SE1, SE-multiS, Stourbridge, Havana, Oranienburg and Napoli. 

However, only the parameter for  Stourbridge had the same value, the calculated value in the 

active dataset (5.40) being in accordance with the estimate in the passive dataset (5.41; 95% 

CI, 2.4210.72). For serotype Napoli, if the values were different, the ranking was the same 

in both cases (10th). Heidelberg, ST2 and SE2 ranked high in the active dataset but low in the 

passive dataset. Finally, all Enteritidis subtypes but one were in the top ten for each dataset, 

whereas for Typhimurium only ST2, a subtype that gathers multi-resistant strains resistant to 

nalidixic acid, was present in the top ten of the active dataset. 



 

  

4. Discussion 

 

The model estimates appeared to be robust to a deviation from the required quality of the 

data, due to a passive design of the sources data collection (but with a national coverage 

ensured), and to the consequent use of proportions instead of prevalences for the 

contamination indicator, but sensitive to the number of sources included. The results 

confirmed layers as the top source for Salmonella and were globally coherent for both 

datasets except for broilers. This was probably linked to the higher frequency in this source 

of Typhimurium and Enteritidis subtypes in the passive dataset (27.4% of the strains globally 

versus 5.1% in the active dataset). In both configurations, the number of cases with unknown 

source represented about a third of all cases and with the passive dataset, the 4 additional 

sources contributed to a non-negligible proportion of all cases (around a quarter of all cases). 

Because source- and type-dependant parameters measured different quantities according to 

the dataset and because of the wide posterior credibility intervals, those parameters were 

difficult to interpret. However, it can be extrapolated from the few convergent results that 

birds appear to be a good vehicle for Salmonella and that Enteritidis has a high capacity for 

infection, whichever the subtype, as do some other serotypes such as Stourbridge, Havana, 

Oranienburg and Napoli. 

 

When considering the active dataset complemented by the passive dataset for the 4 

additional sources, relative importance of the sources deduced from the posterior estimations 

were in accordance with those from Denmark (Hald et al., 2004; Havelaar et al., 2007): 

layers were the most important source, followed by pigs and broilers, turkeys, ducks and 

cattle, which were not significantly different. 

 



 

The significant difference observed in broilers between the two datasets could be related to 

the higher frequency of Typhimurium and Enteritidis among the strains in the passive 

dataset, the source-dependant factor being similar between both datasets. Another 

possibility is that some samples corresponding to abattoir data for broilers may correspond to 

spent hens, despite our efforts to discriminate these (many strains have been excluded 

because of incomplete or unclear information). Such a difference in the results obtained for 

Salmonella with active and passive data, especially for broilers (compared to pigs), has been 

recently shown for antimicrobial resistance (Mather et al., 2009). It would be interesting to 

further explore the reasons for this difference, which seems to be specific to broilers.  

 

The number of cases with unknown origin was as high as the number of expected cases 

attributed to the main source, layers. A non-negligible part of these “unknown” cases 

belonged to Enteritidis and Typhimurium “other” categories. They correspond to subtypes not 

observed in the animal sources considered in this study. The restricted number of subtypes 

common to the cases and the sources could be linked either to a problem of detection due to 

the small number of human strains subtyped, or to the absence of some potential sources. 

Moreover, the subtyping based on antimicrobial resistance profiles, a phenotypic method, is 

not ideal. Namely, the antimicrobial resistance profile of a strain could evolve along the food 

chain, because of, for example, selection by disinfectants (cross-resistance) (Braoudaki and 

Hilton, 2004; Condell et al., 2012) or the impact of stress encountered at different stages of 

the food chain (Poole, 2012). Furthermore, a study by Mather et al. (2012) raises the 

possibility that the resistance diversity in human cases may not be exclusively of animal 

origin, based on observations of Enteritidis DT104 strains. Besides, some resistance traits 

are known to be linked to virulence factors, especially in S. Typhimurium (Martinez and 

Baquero, 2002; Mølbak, 2004; Foley and Lynne, 2008), what can influence the type-

parameter. This makes it essential to be able to distinguish that parameter between subtypes 

within a serotype. Having based the subtyping on antimicrobial resistance in this study 

makes it impossible to assess the attribution of cases according to their resistance status. 



 

For future studies a new genotypic subtyping method, based on CRISPR polymorphisms 

(Fabre et al., 2012), is now available. It will be more appropriate to assess strain linkage 

(rather than using a phenotypic method based on resistance traits). Also, such a method can 

be used extensively to type a greater number of strains each year and would not be an 

obstacle for the source attribution of resistant Salmonella. Regarding the potentially missing 

sources, we only considered foodborne transmission, thereby excluding sources such as 

pets (both domestic and exotic) which are known sources of human salmonellosis 

(Woodward et al., 1997; Bellido Blasco et al., 1998; Mermin et al., 2004; De Jong et al., 

2005; Finley et al., 2006; Marcus et al., 2007), and person-to-person transmission (Todd et 

al., 2008). Moreover, among the potential food sources we focused on some animal food-

sources which are the most frequent sources of human salmonellosis but not the only ones. 

Plants (Brandl, 2006; Elviss et al., 2009) and other non-animal products (Kirk et al., 2008) 

have been implicated as a source for salmonellosis. Finally, imported products, which 

represent from 15% (eggs) to 60% (lamb) of the national consumption according to the food-

animals products are a potential major source for the human cases but could not be taken 

into account in this analysis. Because of this large category of cases with unknown sources, 

the attribution estimates, although valuable for studying the methodological differences 

between passive versus active data, have to be interpreted with caution regarding their 

representativeness and accuracy. 

 

Direct comparison between the source-dependant parameters for the two datasets was 

difficult. The contamination indicator was prevalence in one case and proportion in the other 

case, so that the source-dependant parameter did not measure the same quantity, which is 

also true for the type-dependant parameter. The type-dependant parameters were almost 

systematically different when using one or the other dataset, even when (rarely) the ranking 

was coherent. However, the source-dependant parameter estimates were in good agreement 

between both datasets, except for cattle. Hald et al. (2004, p267) underlined that these 

factors were only multiplication factors that helped arrive at the most probable solution given 



 

the observed data. This was actually the case in our study, although it was difficult to draw 

any firm conclusion on the posterior distributions, especially for the type-dependant 

parameter. The type- and source- parameters (qi and aj) are conceived as ‘black boxes’, and 

they allow differences between types and between sources to be taken into account, which is 

of primary importance (Blaser and Newman, 1982; D'Aoust, 1989; Sarwari et al., 2001; 

Coleman et al., 2004; Bollaerts et al., 2008; Jones et al., 2008). However, their nature is not 

defined. Thus, to better specify their prior distributions, it would be essential to give a 

definition to these parameters and to be able to use exogenous information, such as dose-

response relationship, infective dose and pathogenicity (Bollaerts et al., 2008; Jones et al., 

2008). It would also be of utmost importance to take the potential interactions between those 

factors into account. Interactions would reflect what is known about the specificity of the 

dose-illness relationship for a serotype-food matrix combination (Bollaerts et al., 2008). 

Bayesian models, as for all models, are conceptual simplifications of the real world and the 

modelling of latent traits (such as a and q parameters in this example) is questionable if 

experts do not even agree on the nature of these unobserved parameters. Our aim in this 

work was to study the behaviour of the Hald model according to the data quality. So we 

adapted the parameterization while keeping the original outlines of the model.   

 

The parameterisation of the model relied on specific types for which the type-dependant 

parameter was set to a data-based value. Only a few of those types were common to both 

datasets. This raises the question of their definition. For now they are defined on an 

observational basis, but biological and ecological criteria could be used to refine the choice 

of those types and introduce complementary information to calculate the value of the 

associated type-dependant parameters and thus avoid any negative impact on the attribution 

results. 

 

We may have taken into account the data generating process in the model by putting some 

priors on the prevalence of types, as has been recommended by Muellner et al,. The 



 

sampling protocol of the active dataset was detailed enough to define those priors, but this 

would have introduced greater uncertainty on the results and would have led to a different 

structure of the model. Moreover, we couldn’t have used this model structure for the passive 

dataset, as the sampling protocols are not known in this system.  

 

 

In France, thanks to the European regulatory framework and to long running laboratory-

based surveillance systems (the NRC began its activities in 1947 and the SN in 1997), all the 

data required for the chosen approach were available and the typing methods were 

harmonized for all datasets, as a consequence of the on-going cooperation for outbreaks 

investigations. Besides, we disposed for the sources both of active and passive surveillance 

data, an ideal situation to assess the relative advantages of using the data generated by 

those two surveillance systems in the Bayesian microbial subtyping attribution approach. 

Because the data were fragmented between several actors, gathering all those data required 

a large scope collaboration, which is a key element to ensure the success of such projects 

(Batz et al., 2005; ICMSF, 2006). However, we had to deal with some insufficiencies in the 

data. The human data were retrieved through voluntary participation of private and public 

laboratories, and thus were neither exhaustive nor perfectly representative of all cases. 

Moreover, the information on travel was scarce. The NRC relies on a stable and nationwide 

network of public and private laboratories, which is estimated to have good 

representativeness (a national survey conducted in 2008 concluded that the NRC covered 

66.3% of all laboratory confirmed cases). Therefore, no major bias should have occurred. 

Another problem was that, due to logistical constraints, only a fraction of the human cases of 

serotype Enteritidis and Typhimurium were subtyped. As a consequence, it is likely that less 

prevalent subtypes have not been observed in the small sample of cases tested. 

Furthermore, around 96% of the Enteritidis and Typhimurium cases had to be reallocated 

(through Gamma distributions) in the model, which led to wide credibility intervals. This can 

be  corrected in future studies by changing the  subtyping method (for example a method 



 

based on CRISPR polymorphisms that makes it logistically possible to routinely test a high 

number of strains). Regarding the sources contamination, the representativeness of the 

passive surveillance data cannot be assessed. In the active dataset the sampling point varies 

from one commodity to another. Poultry were tested at the farm, pigs were tested at the 

slaughterhouse, which could have led for the latter to underestimation of the prevalence but 

overestimation of the variety of serovars compared to what could have been observed at the 

farm level (Beloeil et al., 2004). Also for the active dataset, there is a lack of time consistency 

between the food-sources data and the human cases data, the sources data being posterior 

to the cases data that they should explain. We could not avoid this potential bias in this 

exploratory study. This is a further reason to consider the attribution results with caution. 

Such a problem should not occur in future studies because the main sources (layers, 

broilers, turkeys and pigs) are now monitored on a yearly basis as required by the European 

Zoonosis Directive (David et al., 2011). Finally, the food consumption data were recovered 

through interviews of people aged more than 3 years, whereas the cases were of all ages. 

Because it is known that the risk factors can be different for young children (Bellido Blasco et 

al., 1998) and because we could not exactly assess the number of cases under 3 year of age 

(age categories in the database were 01 year old and 15 years old, so that the number of 

0-3 years old cases is between 200 and 1,590 out of the 9,076 cases included in the 

database), this could have caused a bias in our results, although probably minor. Including 

non-food sources (such as pets) might be particularly important in the case of children. Also, 

measuring exposure as a frequency of consumption rather than as quantities consumed 

would be more accurate. This could not be done here, though the frequency was available in 

the INCA dataset, because of the necessary update of the consumption data collected in 

1999 based on availability of the market (tonnage) data. 

 

As the active monitoring of food-sources is costly and not always developed for the 

production level (farm) (Batz et al., 2005; Kirk et al., 2008; Sofos, 2008), in some countries 

passively acquired surveillance data can be the only alternative available. Based on the 



 

current study, passive data appear to be a potential complement for active datasets, even 

moreso when considering the costs of data acquisition. A systematic active surveillance 

system of food sources is costly and thus can only encompass a limited number of sources, 

whereas the costs of a passive system are less important and independent of the number of 

sources monitored (Havelaar et al., 2007), which are important features in the design of a 

public health tool. Including additional sources through a passive surveillance system could 

have several advantages. Such a system would encompass more potential sources and 

could thus avoid mis-attributions. Moreover, as the contamination of sources at the farm level 

evolves according to public health interventions, enforcement of regulations and changes in 

hygiene practices (Rostagno et al., 2005; Denagamage et al., 2007), and as the exposure of 

the population to the sources also changes (Combris, 1997; Allard, 2002; Desenclos et al., 

2002), including more sources can help detect the emergence of newly important sources 

not institutionally monitored. Thus, when applied with both active and passive data, the 

model could be a useful tool to contribute to the adjustment of the institutional active 

surveillance of the potential food-sources, besides its potential role for targetting and 

evaluating public health interventions. If only passive surveillance data are available for the 

sources contamination, valuable results can still be obtained. Of course in this case, 

conclusions will have to be made with caution and rather on the sources ranking than on the 

estimated number of attributed cases, but nevertheless will help local risk assessors to 

communicate with risk managers and stakeholders. 

 

With regard to an optimal use of the model for source attribution, key elements include the 

subtyping method and the number of sources included, as well as an extensive national 

coverage of both cases and sources. In addition and uppermost, some features of the model 

should be improved, principally the definition of the type- and source-parameters and the 

consideration of their interactions. 

 

 



 

5. Conclusion 

 

We here have addressed the problem of the impact of data quality on the attribution of 

human cases to food-animal sources of Salmonella when using the bayesian microbial 

subtyping approach. Our results indicate that it is possible to obtain reasonably reliable 

attribution estimates based on passively acquired data for the sources contamination. In 

addition, such cost-effective data can complement actively-acquired and representative 

prevalence data. The data we used have limitations which could be addressed by an 

improvement in human and animal datasets through enhancement of the subtyping system 

and the inclusion of other potential contamination sources, especially imported products. The 

Bayesian tool could also be improved with respect to the nature, dimension and interactions 

of the type- and source-parameters, which are of primary importance in the approach. 

Finally, the parallel use of active and passive data could contribute to a risk-based focus of 

active surveillance policy. 
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Table 1. Characteristics of the Enteritidis subtypes defined on the basis of the antimicrobial 
profiles, passive and active datasets for the surveillance of Salmonella in France, 2005 
(2004-2007 for the sources contamination in the active surveillance) 

 

Subtype Main charactersitics Origin* 
Number of 

observed human 
cases** 

SE multiS Pansusceptible strains Cases, sources 2092 

SE1 Resistance to nalidixic acid only Cases, sources 615 

SE2 
Resistance to nalidixic acid associated 

with another resistance 
Cases, sources 92 

SE3 Resistance to amoxicillin Cases, sources 307 

SE4 Resistance to tetracycline Sources - 

SE5 Multiresistance Cases 31 

SE6 Resistance to sulfonamides Sources - 

SE7 Resistance to streptomycin Sources - 

SE8 Resistance to chloramphenicol Sources - 

 
* Cases refers to strains isolated from human cases and sources to strains isolated from food-animal sources 
(passive or active dataset) 
** For Enteritidis and Typhimurium subtypes, deterministically reallocated numbers of cases are used in place of 
the observed numbers of cases. 



 

Table 2. Characteristics of the Typhimurium subtypes defined on the basis of the 
antimicrobial profiles, passive and active datasets for the surveillance of Salmonella in 
France, 2005 (2004-2007 for the sources contamination in the active surveillance) 

 

Subtype Main characteristics Origin* 
Number of 
observed 

human cases** 

ST multiS pansusceptible Cases 1115 

ST1 Pentaresistance AmxCSSssTe Cases, sources 1038 

ST2 
AmxCSSssTe associated with nalidixic acid 

resistance 
Cases, sources 154 

ST3 
AmxCSSssTe associated with 

sulfamethoxazole-trimethoprim resistance 
Cases, sources 154 

ST4 
AmxCSSssTe associated with kanamycin 

resistance 
Sources - 

ST5 susceptible to streptomycine Cases 615 

ST6 Resistance to streptomcyine and tetracycline Cases, sources 384 

ST7 Resistance to streptomycine Cases, sources 77 

ST8 
Résistance to streptomycine and nalidixic 

acid 
Sources - 

 
* Cases refers to strains isolated from human cases and sources to strains isolated from food-animal sources 
(passive or active dataset) 
** For Enteritidis and Typhimurium subtypes, deterministically reallocated numbers of cases are used in place of 
the observed numbers of cases. 



 

 

Table 3a. Number of cases and prevalence in the sources of Salmonella Sero- and Subtypes 
in the different food-animal Species and amount of foodstuffs available for consumption in 
France in 2005 (2004-2007 for the sources contamination), active surveillance dataset. 

 
 

   
Active dataset 

 
Number of 
observed 
human 
cases* 

 
Prevalence in sources (%) 

Serotype** 
 

Layers Broilers Turkeys Pigs Cattle 

ST1 1038 
 

1.25% 0.00% 0.00% 3.60% 0.00% 

ST2 154 
 

0.00% 0.00% 0.00% 0.09% 0.00% 

ST3 154 
 

0.00% 0.00% 1.88% 0.17% 0.00% 

ST4 384 
 

1.88% 0.00% 0.00% 0.77% 0.00% 

ST5 77 
 

2.82% 0.07% 0.00% 2.40% 0.00% 

Other-Typhimurium 1730 
 

0.31% 0.00% 0.75% 0.51% 0.00% 

SE-multiS 2092 
 

2.66% 0.25% 0.41% 0.09% 0.00% 

SE1 615 
 

0.41% 0.00% 0.20% 0.00% 0.00% 

SE2 92 
 

0.20% 0.00% 0.00% 0.00% 0.00% 

Other-Enteritidis 338 
 

0.82% 0.12% 0.10% 0.09% 0.00% 

Infantis 168 
 

5.49% 0.07% 0.00% 0.43% 0.00% 

Derby 144 
 

0.00% 0.00% 3.55% 6.52% 0.00% 

Hadar 115 
 

0.08% 1.55% 0.76% 0.09% 0.00% 

Newport 105 
 

0.00% 0.49% 0.77% 0.17% 0.00% 

Virchow 100 
 

0.86% 1.53% 0.00% 0.00% 0.00% 

Napoli 90 
 

0.00% 0.07% 0.42% 0.00% 0.00% 

Agona 85 
 

0.98% 0.00% 0.82% 0.43% 0.00% 

Indiana 75 
 

0.00% 0.34% 0.75% 0.09% 0.30% 

Brandenburg 71 
 

0.00% 0.00% 0.00% 0.34% 0.00% 

Stourbridge 42 
 

0.00% 0.00% 0.00% 0.09% 0.00% 

Bovismorbificans 40 
 

0.00% 0.00% 0.00% 0.09% 0.00% 

Coeln 36 
 

0.73% 0.00% 0.11% 0.09% 0.00% 

Anatum 33 
 

5.25% 0.21% 0.00% 0.17% 0.00% 

Montevideo 32 
 

1.92% 1.31% 0.00% 0.09% 0.00% 

Oranienburg 31 
 

0.09% 0.00% 0.00% 0.00% 0.00% 

Bredeney 31 
 

0.00% 0.00% 0.72% 0.26% 0.00% 

Heidelberg 30 
 

0.00% 0.02% 0.00% 0.00% 0.00% 

S IIIa 48:z4,z23:- 24 
 

0.00% 0.00% 0.00% 0.18% 0.00% 

Senftenberg 17 
 

0.27% 0.07% 0.00% 0.00% 0.00% 

Havana 16 
 

0.04% 0.00% 0.00% 0.00% 0.00% 

Ohio 12 
 

0.00% 0.07% 0.00% 0.00% 0.00% 

Mbandaka 9 
 

2.81% 0.88% 1.58% 0.09% 1.50% 

Goldcoast 9 
 

0.00% 0.00% 0.00% 0.09% 0.00% 

Bareilly 8 
 

2.95% 0.00% 0.00% 0.00% 0.00% 

Muenster 7 
 

0.00% 0.00% 0.38% 0.00% 0.00% 

Ajiobo 2 
 

0.00% 0.00% 0.04% 0.00% 0.00% 

Others 1070 
 

9.74% 1.72% 0.81% 1.27% 0.60% 



 

Total number / 
prevalence 

9076 
 

30.82% 8.23% 13.78% 18.18% 2.40% 

Food amount 
  

82 301 84 842 18 967 161 971 144 504 

 
 
*the number of human cases corresponds to observed cases for all serotypes except 
Enteritidis and Typhimurium for which deterministically allocated numbers of cases are 
shown. 
**the serotypes that are present in the sources for the passive dataset only are bolded (i.e. 
they were not observed with the active surveillance in the sources) 
 



 

Table 3b: Number of cases and prevalence in the sources of Salmonella Sero- and 
Subtypes in the different food-animal Species and amount of foodstuffs available for 
consumption in France in 2005, active surveillance dataset. 
  

    
Passive dataset 

 
Number of 
observed 
human 
cases* 

  
Proportion in sources (%) 

Serotype** 
  

Layers Broilers Turkeys Pigs Cattle Sheep 
Sea 

products 
Ducks 

Other 
poultry 

ST1 1038 
  

3.24% 1.34% 4.77% 4.23% 22.54% 2.88% 7.50% 0.00% 1.66% 

ST2 154 
  

0.00% 1.57% 0.00% 1.41% 0.00% 0.00% 7.50% 0.00% 14.54% 

ST3 154 
  

0.00% 0.31% 4.90% 3.29% 0.00% 0.00% 0.00% 0.00% 6.09% 

ST4 384 
  

4.05% 1.34% 0.00% 14.55% 0.00% 1.92% 0.00% 1.00% 5.12% 

ST5 77 
  

4.05% 1.26% 2.89% 0.00% 0.00% 1.92% 0.00% 9.12% 3.32% 

Other-
Typhimurium 

1730 
  

1.30% 3.85% 2.89% 0.00% 0.00% 0.00% 0.00% 13.49% 7.76% 

SE-multiS 2092 
  

16.86% 16.58% 0.88% 0.00% 2.82% 0.00% 0.00% 1.54% 2.22% 

SE1 615 
  

2.11% 0.16% 1.88% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

SE2 92 
  

4.05% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

SE3 307 
  

1.30% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Other-Enteritidis 31 
  

2.92% 1.02% 0.00% 0.00% 0.00% 3.85% 0.00% 0.00% 0.00% 

Infantis 168 
  

1.46% 3.93% 1.01% 6.57% 2.82% 0.00% 5.00% 4.85% 0.55% 

Derby 144 
  

0.65% 2.20% 9.05% 16.43% 19.72% 3.85% 5.00% 0.13% 1.94% 

Hadar 115 
  

0.81% 5.50% 8.17% 1.41% 0.00% 0.00% 0.00% 1.70% 2.49% 

Newport 105 
  

0.00% 0.63% 1.63% 0.00% 0.00% 1.92% 0.00% 0.29% 2.77% 

Virchow 100 
  

1.46% 5.89% 0.25% 0.00% 0.00% 0.00% 2.50% 0.10% 0.14% 

Napoli 90 
  

0.16% 0.16% 3.77% 0.00% 0.00% 0.00% 0.00% 0.67% 0.55% 

Agona 85 
  

0.81% 2.59% 8.29% 2.35% 1.41% 0.00% 0.00% 0.26% 1.11% 

Manhattan 81 
  

0.00% 0.00% 0.00% 7.51% 0.00% 0.00% 0.00% 0.00% 0.00% 

Indiana 75 
  

2.27% 10.37% 9.55% 0.47% 0.00% 0.00% 2.50% 23.10% 31.02% 

Brandenburg 71 
  

0.16% 0.24% 0.88% 2.82% 4.23% 0.00% 0.00% 0.03% 0.00% 

Dublin 67 
  

0.16% 0.00% 0.00% 0.00% 2.82% 0.00% 0.00% 0.00% 0.00% 

Kentucky 43 
  

0.16% 0.55% 0.00% 0.00% 7.04% 0.00% 0.00% 0.00% 0.28% 

Stourbridge 42 
  

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.03% 0.14% 

Bovismorbificans 40 
  

0.00% 0.00% 0.50% 0.94% 0.00% 0.00% 0.00% 0.00% 0.00% 

Kottbus 36 
  

0.32% 2.75% 3.77% 0.47% 0.00% 0.00% 0.00% 23.19% 1.80% 

Coeln 36 
  

0.49% 0.16% 2.39% 0.00% 1.41% 0.00% 0.00% 0.03% 0.42% 

Anatum 33 
  

0.97% 1.34% 0.50% 0.00% 2.82% 0.00% 5.00% 0.80% 0.55% 

Montevideo 32 
  

3.73% 2.44% 1.01% 0.47% 14.08% 0.00% 7.50% 7.04% 2.91% 

Oranienburg 31 
  

0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Bredeney 31 
  

0.32% 1.02% 6.91% 0.94% 0.00% 0.00% 0.00% 0.06% 2.49% 

Heidelberg 30 
  

0.16% 2.99% 0.63% 0.00% 0.00% 0.00% 0.00% 0.00% 0.28% 

Blockley 29 
  

0.00% 0.08% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Corvallis  24 
  

0.00% 0.00% 0.00% 0.94% 0.00% 0.00% 0.00% 0.00% 0.00% 

Poona 21 
  

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 2.50% 0.00% 0.00% 

Senftenberg 17 
  

19.77% 13.04% 14.70% 0.00% 0.00% 0.00% 0.00% 1.35% 2.77% 

Havana 16 
  

0.16% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Weltevreden 9 
  

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 25.00% 0.00% 0.00% 

Mbandaka 9 
  

3.08% 0.86% 0.50% 0.94% 1.41% 0.00% 0.00% 0.13% 0.97% 



 

Goldcoast 9 
  

0.00% 0.00% 0.00% 0.94% 0.00% 0.00% 0.00% 0.00% 0.00% 

Sandiego 8 
  

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.06% 0.00% 

Muenster 7 
  

0.16% 0.08% 0.75% 0.00% 0.00% 0.00% 2.50% 0.00% 0.00% 

S 4,12:-:- 4 
  

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 

Essen 2 
  

0.00% 0.00% 0.13% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 

Aberdeen 2 
  

0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.00% 0.14% 

S 61:k:1,5,7 1 
  

0.00% 0.00% 0.00% 0.00% 0.00% 57.69% 0.00% 0.00% 0.00% 

Others 789 
  

22.69% 15.79% 7.41% 33.33% 16.90% 25.96% 27.50% 11.02% 5.82% 

Total number / 
prevalence 

9076 
  

617 1273 796 213 71 104 40 3113 722 

Food amount 
   

82 301 84 842 18 967 161 971 144 504 20 232 111 764 5 309 4 580 

 
 
*the number of human cases corresponds to observed cases for all serotypes except 
Enteritidis and Typhimurium for which deterministically allocated numbers of cases are 
shown. 
**the serotypes that are present in the sources for the passive dataset only are bolded (i.e. 
they were not observed with the active surveillance in the sources) 
 



 

Table 4. Characteristics of the specific types in the active and passive food-animal datasets - 
Salmonella cases in France in 2005 (2004-2007 for the sources contamination in the active 
surveillance). 
 

 Active dataset Passive dataset 
Type Prevalence (%) Number of observed 

cases 
Proportion (%) Number of observed 

cases 

Source contamination: Broilers 

Blockley - - 0.08 29 
Heidelberg 0.02 30 - - 
Ohio 0.07 12 - - 

Source contamination: Layers 

Bareilly 2.95 8 - - 
Havana 0.04 16 0.16 16 
Oranienburg 0.09 31 0.16 31 
SE2 0.20 92* 4.05 92* 
SE3 - - 1.30 307* 

Source contamination: Pigs 

Bovismorbificans 0.09 40 - - 
Brandenburg 0.34 71 - - 
Corvallis - - 0.94 24 
Goldcoast 0.09 9 0.94 9 
Manhattan - - 7.51 81 
S 48:z4,z23:- 0.18 24 - - 
ST2 0.09 154* - - 
Stourbridge 0.09 42 - - 

Source contamination: Turkeys 

Aijobo 0.04 2 - - 
Essen 0.13 2 - - 
Muenster 0.38 7 - - 

Source contamination: Other poultry 

Aberdeen - - 0.14 2 
S 4,12:-:- - - 0.14 4 

Source contamination: Sea products 

Poona - - 2.50 21 
Weltevreden - - 25.0 9 

Source contamination: Ducks 

Sandiego - - 0.06 8 

Source contamination: Sheep 

S 61:k:1,5,7 - - 57.7 1 

* For Enteritidis and Typhimurium subtypes, the type distribution observed for subtypes cases were 
deterministically applied to allocate the cases with unknown subtype. 
 



 

Table 5: Posterior means and 95% CI* of the source-dependant parameters (ai) according to 
the dataset - Salmonella cases in France in 2005 (2004-2007 for the sources contamination 
in the active surveillance). 
 

 Active dataset Passive dataset 
Source Posterior mean 95% CI* Posterior mean 95% CI* 

Layers 0.094 0.070-0.12 0.097 0.070-0.13 
Broilers 0.092 0.066-0.12 0.090 0.059-0.13 
Turkeys 0.32 0.14-0.59 0.11 0.02-0.31 
Pigs 0.054 0.046-0.062 0.055 0.045-0.065 
Cattle 13.5 0.025-83.64 0.0039 6.57E-05-0.018 
Sheep - - 0.54 0.056-1.62 
Sea products - - 0.076 0.050-0.11 
Ducks - - 1.37 0.59-2.51 
Other poultry - - 1.06 0.38-2.16 
*95% credibility interval. 



 

Table 6. Posterior means and 95% CI of the top 10 type-dependant parameters (qi) 
according to the dataset - Salmonella cases in France in 2005 (2004-2007 for the sources 
contamination in the active surveillance). 
 

 Active dataset Passive dataset 
 
Type 

Posterior 
mean 

95% CI* Ranking Posterior 
mean 

95% CI Ranking 

Heidelberg 19.24 - 1 - - (26)** 
SE1 14.16 8.45-21.67 2 2.88 1.61-4.56 5 
ST2 14.01 0.65-36.75 3 - - (33) 
SE-multiS 8.18 6.17-10.56 4 0.73 0.55-0.94 9 
Stourbridge 5.40 - 5 5.41 2.42-10.72 1 
Bovismorbificans 5.14 - 6 - - (13) 
Havana 4.41 - 7 1.09 - 8 
SE2 4.26 0.17-12.82 8 - - (19) 
Blockley - - (NR)*** 4.07 - 2 
Orianenburg 3.89 - 9 2.11 - 6 
Napoli 3.23 1.65-5.80 10 0.56 0.26-0.98 10 
Dublin - - (NR) 3.19 0.77-6.26 3 
SE3 - - (NR) 3.03 1.45-5.41 4 
Sandiego - - (NR) 1.37 - 7 
*95% credibility interval;  
** numbers in brackets correspond to the ranking of types not included in the top 10;  
***  not relevant, corresponds to types not observed in the dataset. 

 
 



 

 

 

 

 

 

 

 
Figure 1. Directed Acyclic Graph of the bayesian model: (a) general DAG for non specific 
types and non SE and ST types, the double arrows indicate a deterministic link ; (b) setting 
specific types non SE and ST with a data-based value; (c) reallocation step for SE and ST 
types. Observations are represented in squares, parameters are represented in circles. 
i = sero- or sub-type index; 



 

j = source index; 
oi = observed number of human cases for sero- or sub-type i; 
λij = expected number of human cases due to type i in source j; 
Mj = observed consumption in the general population of the source j in tons; 
pij = observed prevalence of type i in source j; 
qi = unknown type-dependant parameter of type i; 
aj = unknown source-dependant parameter of source j. 
 U stands for uniform distribution and G for gamma distribution 

 

 

Figure 2. Attribution estimates (posterior means and 95% CI) for the active dataset 
according to the sources contamination indicator (proportion vs prevalence), Salmonella - 
France - 2005 (2004-2007 for the sources contamination) 



 

 

Figure 3. Attribution estimates (posterior means and 95% CI) for the passive dataset 
according to the number of sources included in the model, Salmonella - France - 2005  
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Figure 4. Adequacy of the attribution model (estimated over observed human cases per type) for the active and passive dataset - Salmonella, 
France 2005 (2004-2007 for the sources contamination in the active surveillance) 
 
For Enteritidis and Typhimurium subtypes, deterministically reallocated numbers of cases are used in place of the observed numbers of cases  
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Figure 5. Attribution estimates for the active and passive datasets (posterior means and 95% CI) – Salmonella, France 2005 (2004-2007 for the 

sources contamination in the active surveillance) 


