P. R. Caron, M. D. Mullican, R. D. Mashal, K. P. Wilson, M. S. Su et al., Chemogenomic approaches to drug discovery, Current Opinion in Chemical Biology, vol.5, issue.4, pp.464-470, 2001.
DOI : 10.1016/S1367-5931(00)00229-5

M. Bieler and H. Koeppen, The Role of Chemogenomics in the Pharmaceutical Industry, Drug Development Research, vol.4, issue.7, pp.357-364, 2012.
DOI : 10.1002/ddr.21026

A. Koutsoukas, B. Simms, J. Kirchmair, P. J. Bond, A. V. Whitmore et al., From in silico target prediction to multi-target drug design: Current databases, methods and applications, Journal of Proteomics, vol.74, issue.12, pp.2554-2574, 2011.
DOI : 10.1016/j.jprot.2011.05.011

M. J. Keiser, V. Setola, J. J. Irwin, C. Laggner, A. I. Abbas et al., Predicting new molecular targets for known drugs, Nature, vol.99, issue.7270, pp.175-181, 2009.
DOI : 10.1038/nature08506

G. J. Van-westen, J. K. Wegner, A. P. Ijzerman, H. W. Van-vlijmen, and A. Bender, Proteochemometric modeling as a tool to design selective compounds and for extrapolating to novel targets, Med. Chem. Commun., vol.48, issue.1, pp.16-30, 2011.
DOI : 10.1039/C0MD00165A

A. Koutsoukas, R. Lowe, Y. Kalantarmotamedi, H. Y. Mussa, W. Klaffke et al., In Silico Target Predictions: Defining a Benchmarking Data Set and Comparison of Performance of the Multiclass Na??ve Bayes and Parzen-Rosenblatt Window, Journal of Chemical Information and Modeling, vol.53, issue.8, pp.53-1957, 2013.
DOI : 10.1021/ci300435j

E. Lounkine, M. J. Keiser, S. Whitebread, D. Mikhailov, J. Hamon et al., Large-scale prediction and testing of drug activity on side-effect targets, Nature, vol.57, issue.7403, pp.361-367, 2012.
DOI : 10.1038/nature11159

S. Dakshanamurthy, N. T. Issa, S. Assefnia, A. Seshasayee, O. J. Peters et al., Predicting New Indications for Approved Drugs Using a Proteochemometric Method, Journal of Medicinal Chemistry, vol.55, issue.15, pp.55-6832, 2012.
DOI : 10.1021/jm300576q

G. J. Van-westen and J. P. Overington, A ligand's-eye view of protein similarity, Nature Methods, vol.2, issue.2, pp.116-117, 2013.
DOI : 10.1038/nmeth.2339

M. R. Doddareddy, G. J. Van-westen, E. Van-der-horst, J. E. Peironcely, F. Corthals et al., Chemogenomics: Looking at biology through the lens of chemistry, Statistical Analysis and Data Mining, vol.7, issue.5507, pp.149-160, 2009.
DOI : 10.1002/sam.10046

E. Van-der-horst, E. Peironcely, J. , J. P. Van-westen, G. et al., Chemogenomics Approaches for Receptor Deorphanization and Extensions of the Chemogenomics Concept to Phenotypic Space, Current Topics in Medicinal Chemistry, vol.11, issue.15, pp.1964-1977, 2011.
DOI : 10.2174/156802611796391230

A. Z. Dudek, T. Arodz, and J. Gálvez, Computational Methods in Developing Quantitative Structure-Activity Relationships (QSAR): A Review, Combinatorial Chemistry & High Throughput Screening, vol.9, issue.3, pp.213-228, 2006.
DOI : 10.2174/138620706776055539

G. J. Van-westen, J. K. Wegner, P. Geluykens, L. Kwanten, I. Vereycken et al., Which Compound to Select in Lead Optimization? Prospectively Validated Proteochemometric Models Guide Preclinical Development, PLoS ONE, vol.6, issue.11, p.27518, 2011.
DOI : 10.1371/journal.pone.0027518.s016

G. J. Van-westen, A. Hendriks, J. K. Wegner, A. P. Ijzerman, H. W. Van-vlijmen et al., Significantly Improved HIV Inhibitor Efficacy Prediction Employing Proteochemometric Models Generated From Antivirogram Data, PLoS Computational Biology, vol.38, issue.3, p.1002899, 2013.
DOI : 10.1371/journal.pcbi.1002899.s022

G. J. Van-westen, O. O. Van-den-hoven, R. Van-der-pijl, T. Mulder-krieger, H. De-vries et al., Identifying Novel Adenosine Receptor Ligands by Simultaneous Proteochemometric Modeling of Rat and Human Bioactivity Data, Journal of Medicinal Chemistry, vol.55, issue.16, pp.55-7010, 2012.
DOI : 10.1021/jm3003069

T. I. Netzeva, A. Worth, T. Aldenberg, R. Benigni, M. T. Cronin et al., Current status of methods for defining the applicability domain of (quantitative) structure-activity relationships. the report and recommendations of ECVAM workshop 52, ATLA, Altern. Lab. Anim, vol.33, issue.2, pp.155-173, 2005.

I. V. Tetko, P. Bruneau, H. Mewes, D. C. Rohrer, and G. I. Poda, Can we estimate the accuracy of ADME???Tox predictions?, Drug Discovery Today, vol.11, issue.15-16, pp.15-16, 2006.
DOI : 10.1016/j.drudis.2006.06.013

Z. Bosni´cbosni´c and I. Kononenko, An overview of advances in reliability estimation of individual predictions in machine learning, IDA, vol.13, issue.2, pp.385-401, 2009.

F. Sahigara, K. Mansouri, D. Ballabio, A. Mauri, V. Consonni et al., Comparison of Different Approaches to Define the Applicability Domain of QSAR Models, Molecules, vol.17, issue.12, pp.17-4791, 2012.
DOI : 10.3390/molecules17054791

D. Rogers and M. Hahn, Extended-Connectivity Fingerprints, Journal of Chemical Information and Modeling, vol.50, issue.5, pp.742-754, 2010.
DOI : 10.1021/ci100050t

C. Kramer, T. Kalliokoski, P. Gedeck, and A. Vulpetti, Data, Journal of Medicinal Chemistry, vol.55, issue.11, pp.5165-5173, 2012.
DOI : 10.1021/jm300131x

URL : https://hal.archives-ouvertes.fr/in2p3-01071154

T. Kalliokoski, C. Kramer, A. Vulpetti, and P. Gedeck, Comparability of Mixed IC50 Data ??? A Statistical Analysis, PLoS ONE, vol.51, issue.4, p.61007, 2013.
DOI : 10.1371/journal.pone.0061007.s006

C. Kramer and R. Lewis, QSARs, Data and Error in the Modern Age of Drug Discovery, Current Topics in Medicinal Chemistry, vol.12, issue.17, pp.1896-1902
DOI : 10.2174/156802612804547380

P. Tiikkainen, L. Bellis, Y. Light, and L. Franke, Estimating Error Rates in Bioactivity Databases, Journal of Chemical Information and Modeling, vol.53, issue.10, pp.2499-2505, 2013.
DOI : 10.1021/ci400099q

S. P. Brown, S. W. Muchmore, and P. J. Hajduk, Healthy skepticism: assessing realistic model performance, Drug Discovery Today, vol.14, issue.7-8, pp.7-8, 2009.
DOI : 10.1016/j.drudis.2009.01.012

A. Golbraikh and A. Tropsha, Beware of q2!, Journal of Molecular Graphics and Modelling, vol.20, issue.4, pp.269-276, 2002.
DOI : 10.1016/S1093-3263(01)00123-1

A. Tropsha and A. Golbraikh, Predictive Quantitative Structure-Activity Relationships Modeling, Handbook of Chemoinformatics Algorithms, vol.33, p.211, 2010.

A. Tropsha, P. Gramatica, and V. K. Gombar, The Importance of Being Earnest: Validation is the Absolute Essential for Successful Application and Interpretation of QSPR Models, QSAR & Combinatorial Science, vol.38, issue.1, pp.69-77, 2003.
DOI : 10.1002/qsar.200390007

F. R. Burden, Quantitative Structure???Activity Relationship Studies Using Gaussian Processes, Journal of Chemical Information and Computer Sciences, vol.41, issue.3, pp.830-835, 2001.
DOI : 10.1021/ci000459c

O. Obrezanova, G. Csányi, J. M. Gola, and M. D. Segall, Gaussian Processes:?? A Method for Automatic QSAR Modeling of ADME Properties, Journal of Chemical Information and Modeling, vol.47, issue.5, pp.1847-1857, 2007.
DOI : 10.1021/ci7000633

O. Obrezanova and M. D. Segall, Gaussian Processes for Classification: QSAR Modeling of ADMET and Target Activity, Journal of Chemical Information and Modeling, vol.50, issue.6, pp.1053-1061, 2010.
DOI : 10.1021/ci900406x

A. Schwaighofer, T. Schroeter, S. Mika, J. Laub, A. Ter-laak et al., Accurate Solubility Prediction with Error Bars for Electrolytes:?? A Machine Learning Approach, Journal of Chemical Information and Modeling, vol.47, issue.2, pp.407-424, 2007.
DOI : 10.1021/ci600205g

P. Zhou, X. Chen, Y. Wu, and Z. Shang, Gaussian process: an alternative approach for QSAM modeling of peptides, Amino Acids, vol.90, issue.1, pp.199-212, 2010.
DOI : 10.1007/s00726-008-0228-1

P. Zhou, F. Tian, X. Chen, and Z. Shang, Modeling and prediction of binding affinities between the human amphiphysin SH3 domain and its peptide ligands using genetic algorithm-Gaussian processes, Biopolymers, vol.2, issue.6, pp.792-802, 2008.
DOI : 10.1002/bip.21091

Y. Ren, B. Wu, Y. Pan, F. Lv, X. Kong et al., Characterization of the binding profile of peptide to transporter associated with antigen processing (TAP) using Gaussian process regression, Computers in Biology and Medicine, vol.41, issue.9, pp.41-865, 2011.
DOI : 10.1016/j.compbiomed.2011.07.004

P. A. Romero, A. Krause, and F. H. Arnold, Navigating the protein fitness landscape with Gaussian processes, Proceedings of the National Academy of Sciences, vol.110, issue.3, pp.193-201, 2013.
DOI : 10.1073/pnas.1215251110

M. Reutlinger, T. Rodrigues, P. Schneider, and G. Schneider, Combining On-Chip Synthesis of a Focused Combinatorial Library with Computational Target Prediction Reveals Imidazopyridine GPCR Ligands, Angewandte Chemie International Edition, vol.23, issue.2, pp.582-585, 2014.
DOI : 10.1002/anie.201307786

A. Gaulton, L. J. Bellis, A. P. Bento, J. Chambers, M. Davies et al., ChEMBL: a large-scale bioactivity database for drug discovery, Nucleic Acids Research, vol.40, issue.D1, pp.40-1100, 2011.
DOI : 10.1093/nar/gkr777

D. E. Gloriam, S. M. Foord, F. E. Blaney, and S. L. Garland, Definition of the G Protein-Coupled Receptor Transmembrane Bundle Binding Pocket and Calculation of Receptor Similarities for Drug Design, Journal of Medicinal Chemistry, vol.52, issue.14, pp.52-4429, 2009.
DOI : 10.1021/jm900319e

P. Prusis, M. Lapins, S. Yahorava, R. Petrovska, P. Niyomrattanakit et al., Proteochemometrics analysis of substrate interactions with dengue virus NS3 proteases, Bioorganic & Medicinal Chemistry, vol.16, issue.20, pp.16-9369, 2008.
DOI : 10.1016/j.bmc.2008.08.081

R. C. Glem, A. Bender, C. H. Arnby, L. Carlsson, S. Boyer et al., Circular fingerprints: flexible molecular descriptors with applications from physical chemistry to ADME, IDrugs, vol.9, issue.3, pp.199-204, 2006.

A. Bender, J. L. Jenkins, J. Scheiber, S. C. Sukuru, M. Glick et al., How Similar Are Similarity Searching Methods? A Principal Component Analysis of Molecular Descriptor Space, Journal of Chemical Information and Modeling, vol.49, issue.1, pp.108-119, 2009.
DOI : 10.1021/ci800249s

R. Team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing R Foundation for Statistical Computing, 2013.

M. Sandberg, L. Eriksson, J. Jonsson, M. Sjöström, and S. Wold, New Chemical Descriptors Relevant for the Design of Biologically Active Peptides. A Multivariate Characterization of 87 Amino Acids, Journal of Medicinal Chemistry, vol.41, issue.14, pp.41-2481, 1998.
DOI : 10.1021/jm9700575

C. E. Rasmussen and C. K. Williams, Gaussian Processes in Machine Learning, 2006.
DOI : 10.1162/089976602317250933

M. G. Genton, Classes of kernels for machine learning: a statistics perspective, J. Mach. Learn. Res, vol.2, pp.299-312, 2002.

A. Ben-hur, C. S. Ong, S. Sonnenburg, B. Schölkopf, and G. Rätsch, Support Vector Machines and Kernels for Computational Biology, PLoS Computational Biology, vol.14, issue.10, p.1000173, 2008.
DOI : 10.1371/journal.pcbi.1000173.t002

S. Puntanen and G. P. Styan, Schur complements in statistics and probability, The Schur Complement and Its Applications. Numerical Methods and Algorithms, pp.163-226, 2005.
DOI : 10.1007/0-387-24273-2_7

D. J. Mackay, Information Theory, Inference and Learning Algorithms, 2003.

R. M. Neal, Bayesian Learning for Neural Network, 1996.
DOI : 10.1007/978-1-4612-0745-0

J. Skilling, Nested sampling for general Bayesian computation, Bayesian Analysis, vol.1, issue.4, pp.833-859, 2006.
DOI : 10.1214/06-BA127

C. E. Rasmussen and H. Nickisch, Gaussian processes for machine learning (gpml) toolbox, J. Mach. Learn. Res, vol.11, pp.3011-3015, 2010.

M. Kuhn, Building predictive models in r using the caret package, J. Stat. Softw, vol.28, issue.5, pp.1-26, 2008.

A. Karatzoglou, A. Smola, K. Hornik, and A. Zeileis, kernlab ? An S4 Package for Kernel Methods in R, J. Stat. Softw, vol.11, issue.9, pp.1-20, 2004.

J. Reid, Infpy package for python. version 0, p.13

R. Clark and P. Fox, Statistical variation in progressive scrambling, Journal of Computer-Aided Molecular Design, vol.7, issue.7-9, pp.563-576, 2004.
DOI : 10.1007/s10822-004-4077-z

P. Prusis, M. Junaid, R. Petrovska, S. Yahorava, A. Yahorau et al., Design and evaluation of substrate-based octapeptide and non substrate-based tetrapeptide inhibitors of dengue virus NS2B???NS3 proteases, Biochemical and Biophysical Research Communications, vol.434, issue.4, pp.767-772, 2013.
DOI : 10.1016/j.bbrc.2013.03.139

J. B. Brown, Y. Okuno, G. Marcou, A. Varnek, and D. Horvath, Computational chemogenomics: Is it more than inductive transfer?, Journal of Computer-Aided Molecular Design, vol.2, issue.1, pp.1-22, 2014.
DOI : 10.1007/s10822-014-9743-1

Q. Huang, H. Jin, Q. Liu, Q. Wu, H. Kang et al., Proteochemometric Modeling of the Bioactivity Spectra of HIV-1 Protease Inhibitors by Introducing Protein-Ligand Interaction Fingerprint, PLoS ONE, vol.37, issue.7, p.41698, 2012.
DOI : 10.1371/journal.pone.0041698.s005

D. Wu, Q. Huang, Y. Zhang, Q. Zhang, Q. Liu et al., Screening of selective histone deacetylase inhibitors by proteochemometric modeling, BMC Bioinformatics, vol.13, issue.1, p.212, 2012.
DOI : 10.1016/j.chemolab.2005.09.003

Z. Qifu, H. Haifeng, Z. Youzheng, and S. Guodong, Support Vector Machine Based on Universal Kernel Function and Its Application in Quantitative Structure - Toxicity Relationship Model, 2009 International Forum on Information Technology and Applications, pp.708-711, 2009.
DOI : 10.1109/IFITA.2009.256

H. Kubinyi, F. A. Hamprecht, and T. Mietzner, Three-Dimensional Quantitative Similarity???Activity Relationships (3D QSiAR) from SEAL Similarity Matrices, Journal of Medicinal Chemistry, vol.41, issue.14, pp.41-2553, 1998.
DOI : 10.1021/jm970732a

M. C. Peeters, G. J. Van-westen, D. Guo, L. E. Wisse, C. E. Müller et al., GPCR structure and activation: an essential role for the first extracellular loop in activating the adenosine A2B receptor, The FASEB Journal, vol.25, issue.2, pp.632-643, 2011.
DOI : 10.1096/fj.10-164319

M. C. Peeters, G. J. Van-westen, Q. Li, and A. P. Ijzerman, Importance of the extracellular loops in G protein-coupled receptors for ligand recognition and receptor activation, Trends in Pharmacological Sciences, vol.32, issue.1, pp.35-42, 2011.
DOI : 10.1016/j.tips.2010.10.001

V. Jaakola, M. T. Griffith, M. A. Hanson, V. Cherezov, E. Y. Chien et al., The 2.6 Angstrom Crystal Structure of a Human A2A Adenosine Receptor Bound to an Antagonist, Science, vol.322, issue.5905, pp.1211-1217, 2008.
DOI : 10.1126/science.1164772

J. Klekota and F. P. Roth, Chemical substructures that enrich for biological activity, Bioinformatics, vol.24, issue.21, pp.2518-2525, 2008.
DOI : 10.1093/bioinformatics/btn479

J. Gottfries, The drug designer??s guide to selectivity, Chemometrics and Intelligent Laboratory Systems, vol.83, issue.2, pp.148-156, 2006.
DOI : 10.1016/j.chemolab.2006.03.003

J. Gao, Q. Huang, D. Wu, Q. Zhang, Y. Zhang et al., Study on human GPCR???inhibitor interactions by proteochemometric modeling, Gene, vol.518, issue.1, pp.124-131, 2013.
DOI : 10.1016/j.gene.2012.11.061

F. A. Kruger and J. P. Overington, Global Analysis of Small Molecule Binding to Related Protein Targets, PLoS Computational Biology, vol.45, issue.1, p.1002333, 2012.
DOI : 10.1371/journal.pcbi.1002333.s017

B. B. Fredholm, A. P. Ijzerman, K. A. Jacobson, K. N. Klotz, and J. Linden, International union of pharmacology. XXV. nomenclature and classification of adenosine receptors, Pharmacol. Rev, vol.53, issue.4, pp.527-552, 2001.

D. Duvenaud, J. R. Lloyd, R. Grosse, J. B. Tenenbaum, and Z. Ghahramani, Structure discovery in nonparametric regression through compositional kernel search. ArXiv e-prints 1302, p.4922, 2013.

G. Kronberger and M. Kommenda, Evolution of Covariance Functions for Gaussian Process Regression Using Genetic Programming, p.3794, 2013.
DOI : 10.1007/978-3-642-53856-8_39

C. J. Paciorek, B. Lipshitz, W. Zhuo, . Prabhat, C. G. Kaufman et al., Parallelizing gaussian process calculations in R. arXiv e-print 1305, p.4886, 2013.

L. Csato and M. Opper, Sparse On-Line Gaussian Processes, Neural Computation, vol.14, issue.3, pp.641-668, 2002.
DOI : 10.1109/34.735807

V. Tresp, A Bayesian Committee Machine, Neural Computation, vol.45, issue.1, pp.2719-2741, 2000.
DOI : 10.1007/BF01414873

M. Lapins, M. Eklund, O. Spjuth, P. Prusis, and J. E. Wikberg, Proteochemometric modeling of HIV protease susceptibility, BMC Bioinformatics, vol.9, issue.1, p.181, 2008.
DOI : 10.1186/1471-2105-9-181

O. Spjuth, M. Eklund, M. Lapins, M. Junaid, and J. E. Wikberg, Services for prediction of drug susceptibility for HIV proteases and reverse transcriptases at the HIV drug research centre, Bioinformatics, vol.27, issue.12, pp.1719-1720, 2011.
DOI : 10.1093/bioinformatics/btr192